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CONVERGENCE OF A-BERNSTEIN-KANTOROVICH OPERATORS
IN THE L,-NORM

PURSHOTTAM N. AGRAWAL! and BEHAR BAXHAKU?

Abstract. We show the convergence of A-Bernstein-Kantorovich operators de-
fined by Acu et al. [J. Ineq. Appl. 2018], for functions in L,[0,1], p > 1. We
also determine the convergence rate via integral modulus of smoothness.
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1. INTRODUCTION

Bernstein [4] gave a marvellous proof of the Weierstrass approximation the-
orem by defining a sequence of polynomials as follows:

(1) B (p;2) = quvy(z)go(%), Vzel meN,
v=0

where g, (2) = (7)2"(1—2)"", 0<v <m, I =[0,1] and ¢ € C(I),
C(I) := {¢: ¢ is continuous on I'} with the sup-norm ||.|[¢(). Later, many
researchers [8, 9, 17, 12, 11], etc. introduced new sequences of operators based
on (1) and studied their approximation behaviour for functions in several
function spaces. Ye et al. [16] proposed the following Bezier basis through a

parameter A € [—1,1]:
Gm,0(2) = gm,0(2) — 72 74m+1,1(2)
Gmw(2) = qmw(2) + )‘(%Qm—f—lw(z) - %Qm—f—l,z&l(z))v
1<v<m-1
2 dmn(2) = dmm(2) = A7 dmt1m ().
In the particular case A = 0, it is evident that (2) leads us to the Bernstein

basis ¢m,(2), V0 < v < m. We remark here that addition of the parameter A
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provides better modeling flexibility to the basis (2). Cai et al. [6] generalized
the operators (1) by involving the Bezier basis (2) in the following manner:

Q Bl = 3 Gmul2)e(L), Ve L meN
v=0

and studied some direct approximation results.
For ¢ € L,(I), p> 1, Acu et al. [1] presented a Kantorovich variant of the
operators (3) as

v+1
m—+1

m
(4) Loalgiz) = (m+ 1) Y Gma(2) [

v=0 mF1
and studied a quantitative Voronovskaja type theorem by means of the Ditzian-
Totik modulus of smoothness and a Griiss-Voronovskaja type theorem. Rah-
man et al. [14] investigated the convergence properties of a generalized case of
(3) by shifting the nodes, for functions in C'(I). Agrawal et al. [2] considered
a two dimensional version of the operators defined in [14] and obtained the
degree of approximation. Further, the authors [2] also examined the approxi-
mation behavior of the associated generalized boolean sum operators. Kumar
[10] considered another generalization of (3) along the lines of [13] and dis-
cussed some direct theorems in the continuous functions space C(I). Aslan [3]
derived the approximation properties for a new class of (3) in the univariate
and the bivariate cases. Bodur et al. [5] discussed a Stancu type variant of
(3) and established some results in local approximation.

Sucu and Ibikli [15] investigated the convergence of the Bernstein-Stancu-
Kantorovich type operators in the spaces C(I) and Ly(I), p > 1. Encouraged
by their work, our objective in this paper is to prove that L, x(¢;2) converge
to ¢(z) in the Ly-norm, as m — 0o, V ¢ € L,(I), p > 1 and also estimate the
approximation error via integral modulus of smoothness.

p(u)du,

2. PRELIMINARIES
In our study, the following results are needed:

LEMMA 1 ([1]). For all m > 2, there hold the inequalities:

L a1 = 2 2)| < (b + ey )5

and
(5)  [Lmal(w—2)%2)| < (P22 + phly) =m0,

THEOREM 2 ([1]). For ¢ € C(I), the operators (4) verify

Jim ([La (@) = @lle) =0
For ¢ € L,(I), 1 < p < oo, the integral modulus of smoothness is given by
wy(;0) = sup [lo(-+1) — ()L, @)
0<n<d
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where [.][z,(q,) is the Ly-norm over the interval {2, = [0,1 —7].
For ¢ € L,(I), 1 < p < oo, the Peetre’s K- functional is defined as

Ro(pi0) = inf (Il = ey + 319 lyin)

where W, (I) = {4 € Ly(I) : 1 is absolutely continuous and ¢ € L, (I)}.
It is well known [7, Thm. 2.4, p. 177] that for some positive constants ¢; and
c2, there holds the following relation:

(6) 1w, (56) < Rp(36) < eawyy (93 0).
LEMMA 3. For 1 € Wpl(I), p > 1, we have

L) = ) < 27 (525) VCOm M1 L)

where (m, \) is given by (5).

Proof. For any z € I, we have

m v+1

Laa(32) = 6(2)] = (m+ |3 o) [ 77 () — 0(2)) dz
v=0 m+1
<m+DY dna@) [T Hdt| du
v=0 m+1
(7) < 0@+ 1) 3 a2 [ 2z,

where

Oy (2) = sup ‘/ Y (t)dt],

uEI,u;ﬁz

is the Hardy-Littlewood majorant of 1’. Now, applying the Cauchy-Schwarz
inequality to (7) and Lemma 2.1 of [6], one gets

[Lm (5 2) = (2)] <

<Oy (2)y/(m+1) ( qul, ) X (Ji@m,u(z)/’f“(u_z)m“)
v=0 m+1

(8)

< Os(z) max (Ema(w = 2)%52) ) < 0u(2)y/Cm ).
Using Hardy-Littlewood theorem (see [18]), one has
9) /01(%’( )Pz <2( / Y/ (2)|Pdz, p> 1.
From (8) and (9), we get

[ a2 - v = < (femn) {2 ()" [ wepaz).
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Hence,

L) = ) < 27 (525) VSO MLy

3. MAIN RESULTS

The following result shows that the operator (4) is an approximation method
for functions in Ly (I).

THEOREM 4. For ¢ € Ly(I), 1 < p < oo, the operators (4), verify
Jim ([ L () = @z, () = 0

Proof. By Luzin theorem, we know that for a given ¢ > 0, 3 a function
g € C(I) satisfying
(10) I — gllz, ) <e
From Theorem 2, we have
Jim [£m A (9) = glle) =0,
hence for € > 0, 3 an integer mg € N in such a way that
(11) 1LmA(9) = glley <€ ¥V m>my.

Next, we show that 3 a constant M > 0 satisfying ||L,, || < M, for all m > 2.
By Jensen’s inequality

m v+1 p
|cm,A<so;z>|P<{m+1 > male) [T olu)du
v=0 +1
m v+1
m-+41
(m+1)Y " Gmul / |o(u)|Pdu.
v=0 m-+1
Hence,
1 n o v
L 1emateiora: < e+ DY ([ anit2idz) [T ol
0 v=0 0 m+1
< 2[jo|l} () Ym = 2.
Hence,

1L ()L, < 2Y7lellL,
Consequently, 3 a constant M > 0 satisfying

(12) Ll < M, Ym > 2.

Let us define m’ = max(my, 2). Then in view of (10)-(12), we have

1LmA(®) = @l < 1 LmA(@)—LmA( D L,y HLmA9) —dgllem +e — 9l
< (Imall + D) lle=gll L, 1) + 1£ma(9) = gllem
< (M +2)e, Vm >m'.
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Due to the arbitrariness of € > 0, the result follows. O

The next result yields the approximation degree for the operators (4) via
integral modulus of smoothness.

THEOREM 5. For ¢ € Ly(I), p > 1, the operators L,  verify the following
inequality

1L (9) = @l L) < Ceyps /¢ (m, ),
where ((m, \) is given by (5) and the constant C' is independent of ¢ and m.
Proof. From the proof of Theorem 4 and Lemma 3, we have
3lgllz,(n g € Ly(I)
20 (32) VN Ly 9 € W)
Then for ¢ € Ly(I) and any ¢ € W) (I), we may write
[Lm (@) = @llL, ) < 1Lmale =) = (0 = V)L, ) + 1Lma () =Vl

<3 (Il = bl + 2 (521) YOm0 ) -

Hence due to the arbitrariness of 1) € W (I), we get

1£mA(9) = 9llr,a) <

1£mae) = el < 38 (28 (525) y/Em ).
Finally using (6), we have
1£male) = Pleyin < Beawy (127 (525) /om0 )
(52)) @i /< m, V)
< Cwp(1/C(m, N)),

whence the result follows. O

3=

§302(1+2
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