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Abstract. Our aim is to answer the following question: “Among the Filon-type
methods for computing oscillatory integrals, which one is the most efficient in
practice?”. We first discuss why we should seek the answer among the family
of Filon-Clenshaw-Curtis rules. A theoretical analysis accompanied by a set of
numerical experiments reveals that the plain Filon-Clenshaw-Curtis rules reach a
given accuracy faster than the (adaptive) extended Filon-Clenshaw-Curtis rules.
The comparison is based on the CPU run-time for certain wave numbers (medium
and large).
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1. INTRODUCTION

Consider the oscillatory integral

(1) Ik(f) :=
∫ 1

−1
f(x)eikx dx,

where f is a given smooth function on [−1, 1], and the wave number k > 0 is
rather large. Filon-type methods, in brief, reads as Ik(p), where p is a poly-
nomial approximation of f in [−1, 1]. In details, the interpolation polynomial
p is generally expanded as
(2) p(x) =

∑
j

αjqj(x), x ∈ [−1, 1],

where qj is a polynomial of order j for each j. The scalars αj , for all j, are
computed in the construction phase of p. Thus, the Filon-type method is
expanded as
(3) Ik(p) =

∑
j

αjmj ,

where mj := Ik(qj) are the moments to be evaluated.
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1 A comparative study 1

Certainly, accuracy of a Filon-type method is proportional to the accuracy
of the corresponding polynomial approximation because
(4) |Ik(f) − Ik(p)| < 2∥f − p∥∞.

In practice, what is the best choice of p of a given degree? Even if we
restrict our investigation to interpolation, there are a tremendous number
of interpolation polynomials approximating a smooth function satisfactory,
e.g. splines, Hermite-Birkhoff interpolation, and those based on orthogonal
polynomials and their roots or extrema. The main question motivating this
research is, which interpolation is the best choice for Filon-type methods?
Beside the accuracy of the interpolation polynomial p on [−1, 1], there are
mainly three other aspects that affect the efficiency of the Filon-type method
Ik(p) in practice: (i) the cost of construction of p, (ii) the cost of computing
the moments, (iii) and the order of interpolation at the endpoints ±1.

In general, Lagrange interpolation at arbitrary points is rather costly. How-
ever, in [6], a rapid and stable construction method is proposed based on the
fast multipole method (FMM) of [8]. Instead of an arbitrary set of interpola-
tion points, however, one prefers roots or extrema of orthogonal polynomials
and utilize FFT for better performance. Among several kinds of orthogonal
polynomials, Chebyshev polynomials are often used mainly because their roots
and extrema are in the most simple and explicit forms.

For fast computing the moments, one prefers polynomials which satisfy a
recurrence relation. Then the moments can be computed recursively with few
computational cost. Orthogonal polynomials not only can be constructed effi-
ciently by FFT, but also they satisfy three-term recurrence relations. Assume
that (qj) in (2) satisfies the three-term recurrence relation
(5) qj+2 = ajqj+1 + bjqj , j = 0, 1, . . . ,

where aj and bj are known scalars with |aj | + |bj | ≠ 0 for all j. The first
two moments can easily be computed analytically. Then, the other ones are
computed by (5), recursively:
(6) mj+2 = ajmj+1 + bjmj , j = 0, 1, . . . .

On the other hand, the asymptotic expansion of the oscillatory integral
Ik(f) turns out that the value of Ik(f) is mostly determined by its amplitude,
f , and their derivatives up to some order at the endpoints ±1. More precisely,
if f is smooth enough in [−1, 1], and

(7)
(
f (m) − p(m)

)
(±1) = 0, m = 0, . . . , s,

for some integer s ≥ 0, then
(8) |Ik(f) − Ik(p)| = O(k−s−2), as k → ∞
(see, e.g., [11]). Therefore, not only the accuracy of the interpolation, i.e.
∥f − p∥∞, is important for the total accuracy of a Filon-type rule Ik(p), but
also its order s at the endpoints.
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2 Hassan Majidian 2

The conditions (7) implies an example of Hermite-Birkhoff interpolation,
which construction rarely utilizes fast algorithms like FFT or FMM. Inter-
polation at the Clenshaw-Curtis points tn,N := cos(nπ/N), j = 0, . . . , n, have
all the above advantages. Because of the distribution of the Clenshaw-Curtis
points in [−1, 1], interpolation at them is most accurate and numerically sta-
ble. Moreover, thanks to the three-term recurrence relation for the Chebyshev
polynomials, it can stably be constructed by FFT at the cost of O(n log n)
(see [5]). In addition, the computational cost for computing tn, n = 0, . . . , N ,
is negligible. Finally, having the Lagrange interpolant at the Clenshaw-Curtis,
one can efficiently construct the corresponding Hermite-Birkhoff interpolant p
that satisfies (7), too (see [14]).

Therefore, without doubt, Filon-Clenshaw-Curtis (FCC) rules and their ex-
tensions are the most efficient Filon-type rules for computing the oscillatory
integral (1). Extended FCC (FCC+) rules and their adaptive versions can be
constructed efficiently by the algorithms of [14] and [13], respectively. To the
best of our knowledge, they are the most efficient algorithms for constructing
the FCC+ and adaptive FCC+ rules so far.

In comparison with the algorithm of [5] for constructing the FCC rules, the
algorithms of [14] and [13] are more complex. This difference in the compu-
tational costs may be negligible when the maximum order of derivatives s in
the FCC+ rules is rather small. On the other hand, the asymptotic order of
an (adaptive) FCC+ rule is better than that of the corresponding FCC rule.
Actually, one cannot readily answer which algorithm is more efficient, and this
question naturally triggers a comparative study. Indeed, this paper fills a gap
in the literature and help in the comparison between Filon-type methods.

In this paper, we carry out a set of numerical experiments to compare
efficiency of FCC, FFC+, and adaptive FCC+. Actually, we are interested in
the CPU run-time to achieve a specific accuracy. We apply these three classes
of rules to a set of oscillatory integrals with different regularity characteristics.
Since FCC is less complex than the other rules, one can use more interpolation
points for the same computational effort as (adaptive) FCC+.

The rest of the paper is organized as follows. In Section 2, we carry out
a set of numerical experiments in order to compare the efficiency of the FCC
and the FCC+ rules. In Section 3, the same is done for the FCC and the
adaptive FCC+ rules. We also modify Theorem 2.2 of [13] and give a more
practical error bound for the adaptive FCC+ rules that is explicit in k and
the rule parameters. In Section 4, we account several other advantages of the
FCC rules over the (adaptive) FCC+ ones. Finally, we bring some conclusions
in Section 5.

2. FCC VS FCC+

In this section, we compare the efficiency of the FCC and FCC+ rules. In
contrast to the common ideas in the literature, we see that the FCC+ rules
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3 A comparative study 3

have no advantages over the plain FCC rules in practice. At first, we give a
brief review of the FCC+ rules (see [7, 14]).

2.1. A review of the FCC+ rules. The (N + 1)-point FCC+ rule of order
s ≥ 1 is defined by
(9) IFCC+

k,N,s (f) := Ik(pN+2s),

where pN+2s is the (N + 2s)th degree Hermite interpolation polynomial satis-
fying the following interpolation conditions (see [14]):

pN+2s(tn,N ) = f(tn,N ), n = 0, . . . , N,(10a)

p
(m)
N+2s(±1) = f (m)(±1), m = 1, . . . , s.(10b)

Then, the asymptotic error of the rule will be

(11)
∣∣∣Ik(f) − IFCC+

k,N,s (f)
∣∣∣ = O

(
k−s−2

)
,

see, e.g., [11].
An important advantage of the FCC rules over the FCC+ ones is that

there are error estimates for the FCC rules, which are applicable even if f
is of confined regularity. Furthermore, they are explicit in both k and N
(see [4, 5, 20, 21]). Such error bounds do not exist for the FCC+ rules so far
(see [14] for details).

In [7], an efficient algorithm is proposed for constructing the FCC+ rule (9)
that can be implemented by O

(
N log N + s3)

flops. A more efficient algorithm
was later proposed in [14]. One advantage of the latter is that its computa-
tional cost can be determined precisely. By the algorithm of [14], one needs
O(s3 +Ns+s2) flops to extend the (N + 1)-point FCC rule to the correspond-
ing FCC+ rule of order s in a natural way. Thus, beside its simplicity and
naturality, the algorithm of [14] enables one to compare computational costs of
the two rules easily. The algorithm for constructing the (N + 1)-point FCC+
rule of order s > 1 leads to two linear systems of order s. However, the FCC+
rules of order 1 can be stated explicitly, and one only needs about 3N + 14
extra flops to build it from the corresponding (N + 1)-point FCC rule.

2.2. The race for convergence speed. Error estimate (11) turns out that for
a fixed N , the asymptotic decaying rate of the error of IFCC+

k,N,s (f) is higher than
that of IFCC

k,N (f), and it grows by s. On the other hand for rather large N , the
complexity of the FCC rule, O (N log N), is comparable to that of the FCC+
rule, O

(
N log N + s3)

because s is usually taken rather small in practice.
Thus, some authors conclude that the FCC+ rules are always the winner in
the competition with the FCC rules. According to [3],“the generalization of
FCC . . . enjoys all the advantages of ‘plain’ FCC . . . in cost and simplicity,
while arbitrarily increasing the asymptotic rate of decay of the error” (p. 66).

In this section, we show that such claims are in doubt in practice. Although,
it may be required in some applications to compute Ik(f) for several k and
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4 Hassan Majidian 4

f , but each time, we face the problem of computing one integral with a fixed
parameter k and a fixed amplitude function f . The FCC+ rule IFCC+

k,N1,s (f)
approximates the integral to a specific accuracy for some rather large inte-
gers N1 and s. As mentioned above, the FCC rule IFCC

k,N1
(f) with the same

N1 generally achieves less accuracy. However, we may choose larger integer
N2 > N1 and achieve the same accuracy or even better while the computa-
tional cost does not exceed that of IFCC+

k,N1,s (f). Recall from [14] that the FCC+
rule IFCC+

k,N,s (f) is more complex than its corresponding FCC rule IFCC
k,N (f) by

at least O(s3) + N(8s − 5) + s(17s + 9) + 1 flops. Now assume that Ck(N) is
the exact number of flops for constructing IFCC

k,N (f) by the algorithm proposed
in [5]. Thus, in order to compare the simplicity of the two rules IFCC+

k,N1,s (f) and
IFCC

k,N2
(f), we should compare the two numbers Ck(N2) and

Ck(N1) + O(s3) + N1(8s − 5) + s(17s + 9) + 1.

Even if we compute the number of flops for construction of the two rules
exactly, error estimates (specially for the FCC+ rules) are not so sharp that
the accuracy of the rules can be estimated a priori for a given N and s. For
practical examining the efficiency of an approximation method (or rule), one
can consider the run-time that the method consumes in a specific machine to
reach a given accuracy.

Fig. 2.1. Accuracy vs execution time (in miliseconds) when the FCC
rules and the FCC+ rules with s = 1, 2, 3 are applied to Ik(f) for
f(x) = (1 + x)/(1 + x2) and some wave numbers k that range from
small to quite large values.

In the following, we apply FCC and FCC+ to a set of oscillatory inte-
grals (1), covering wave numbers from moderate to quite large values. We try
to have at least one sample of the amplitude function in each class of C∞([−1, 1]),
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5 A comparative study 5

Cm([−1, 1]) for some integer m > 0, elementary functions, and non-elementary
functions. In each method, we choose N as the minimum number of interpo-
lation points to achieve a given accuracy. As discussed above, this number for
FCC is generally larger than that of FCC+.
Experiment 1. Let d := − log10 E, where E is the relative error of an ap-
proximation. Indeed, d is roughly the number of correct significant digits in
the approximation. In Figure 2.1, we plotted d versus the machine run-time
(in milliseconds) for the FCC and FCC+ rules (9) of orders s = 1, 2, 3 when
applied to Ik(f) with f(x) = (1 + x)/(1 + x2) and some wave numbers k > 0
ranging from small to quite large values. Note that each time an algorithm
is run by a specific machine, the run-time may vary a little mainly because
of invisible services running in the background on the operating system (OS).
For that reason, in all the numerical experiments in the sequel concerning run-
times, we run the corresponding Matlab algorithm ten times and consider
the minimum of the run-times. For k ≥ 70, for which the plots have space
enough, we label each marker by the corresponding N . All the Matlab codes
have been optimized in order to use less memory and take less time to execute.

Although, the derivatives of f have been precalculated manually to the
advantage of FCC+, our numerical experiments turn out that FCC are still
more efficient than FCC+, especially for moderate and larger k. Also, among
the FCC+ rules, those with smaller s are more efficient. This observation
is against some authors’ claims that the FCC+ rules are ‘the winner’ just
because the asymptotic decaying rates of their error are higher than those of
the FCC rules. As it is seen, for a specific N , accuracy of the FCC+ rules is
higher than that of the FCC rule, and this accuracy enhances as s grows. For
example, in the last plot corresponding to k = 1000, the 31-point FCC rule,
the 26-point FCC+ rule of order 1, the 19-point FCC+ rule of order 2, and
the 12-point FCC+ rule of order 3 reach approximately 13 correct significant
digits. However, the FCC rules ultimately reach a given accuracy faster than
all the FCC+ rules.
Experiment 2. The amplitude function f in the previous experiment is in-
finitely differentiable. Here, we consider f(x) = x3/2, x ∈ [0, 1], for which
only the first derivative exists on [0, 1]. Thus, the parameter s in the FCC+
rules cannot exceed 1. In Figure 2.2, we have plotted the accuracy d versus
the machine run-time (in milliseconds) for the FCC rules and the FCC+ rules
of order 1. Because in this example the degree of regularity is low, the rules
reach a given accuracy only for larger N .Acce
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Fig. 2.2. Accuracy vs execution time (in miliseconds) when the FCC
rules and the FCC+ rules with s = 1 are applied to Ik(f) for f(x) =
x3/2, x ∈ [0, 1], and some wave numbers k that range from small to
quite large values.
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Fig. 2.3. Accuracy vs execution time (in miliseconds) when the FCC
rules and the FCC+ rules with s = 1 are applied to I10(f) for func-
tions f of Experiment 3.
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Fig. 2.4. Accuracy vs execution time (in miliseconds) when the FCC
rules and the FCC+ rules with s = 1 are applied to I1000(f) for
functions f of Experiment 3.

Experiment 3. In order to see if the above experimental results hold for other
amplitude functions f , here we choose a set of elementary and non-elementary
functions of various types on [0, 1]:

xα, α = 2.5, 3.5, 4.5,

xn log(x), n = 2, 3, 4,

x2H
(1)
0 (x), xH

(1)
1 (x),

Iν(x), ν = 0, 1,

x2K0(x), xK1(x).

Here, H
(1)
ν , Iν , and Kν are the Hankel function of the first kind, the modified

Bessel function of the first kind, and the modified Bessel function of the second
kind of order ν, respectively. Iν(x) is smooth on [0, 1] while each of the other
functions has one and only one singularity at zero. The singularity is bounded
and of algebraic or logarithmic type.

In Figures 2.3 and 2.4, we have compared the efficiency of the FCC rules
and FCC+ rules of order one for computing I10(f) and I1000(f), respectively.
As it is seen, the FCC rules are most often the winner, especially for the larger
wave number.
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8 Hassan Majidian 8

3. FCC VS ADAPTIVE FCC+

In this section, we compare the efficiency in practice of the FCC and the
adaptive FCC+ rules of [13]. An adaptive FCC+ rule and its correspond-
ing FCC+ rule always have the same asymptotic order while the former is
derivative-free and less complex. We will see, however, that in the race to
achieve a given accuracy, the adaptive FCC+ rules are still overtaken by the
corresponding FCC rules. At first, we give a brief review of [13], where the
concept of adaptive FCC+ rules has been introduced for the first time.

3.1. A review of the adaptive FCC+ rules. The (N + 2s + 1)-point adap-
tive FCC+ rule of order s is defined by
(12) IAFCC+

k,N,s (f) := Ik(pN+2s),
where pN+2s is the Lagrange interpolant of f at tn,N , for n = 0, . . . , N , and
2s extra points t′

m(k), t′′
m(k), m = 1, . . . , s, that should be near the endpoints

±1 and are defined as follows:

(13) t′
m(k) := cos(ηm(k)) with ηm(k) :=

√
m

k + 1 , t′′
m(k) := −t′

m(k).

As mentioned above, an adaptive FCC+ rule preserves the asymptotic order
of the corresponding FCC+ rule. More precisely, we have the following result
proved in [13]:

Theorem 1. Assume that f ∈ CN+2s+1([−1, 1]). Then,

(14)
∣∣∣Ik(f) − IAFCC+

k,N,s (f)
∣∣∣ = O

(
k−s−2

)
,

as k → ∞.

In contrast to the FCC+ rules, there are error bounds for the adaptive
FCC+ rules that are explicit in all the three parameters k, N , and s.

Corollary 2. Assume that f ∈ CN+2s+1([−1, 1]), and k + 1 ≥ 2s. Then,

(15)
∣∣∣IAFCC+

k,N,s (f) − Ik(f)
∣∣∣ ≤ k−22−N 17

(N+2s−4)!

∥∥∥f (N+2s+1)
∥∥∥

∞
,

for all N > 1.

Proof. For N > 1,
2Ns! k−s

(N+2s+1)! + γN,s

(N+2s−1)! < 2
(N+2s−4)!

(
N−4k−ss! + 2

)
< 2(1/8+2)

(N+2s−4)! ,

where γN,s := s(4N + 2s − 1) + N(2N2 + 1)/3. Now, the result is followed by
Theorem 2.2 of [13]. ■

In [13], it was shown numerically that, adaptive FCC+ is always more
efficient than FCC+. However, our numerical experiments in the next section
show that it is still overtaken by FCC is the race to achieve a given accuracy.
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9 A comparative study 9

Fig. 3.5. Accuracy vs execution time (in milliseconds) when the FCC
rules and the adaptive FCC+ rules with s = 1, 2, 3 are applied to
Ik(f) for f(x) = (1 + x)/(1 + x2) and some wave numbers k that
range from small to quite large values.
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Fig. 3.6. Accuracy vs execution time (in milliseconds) when the FCC
rules and the adaptive FCC+ rules with s = 1 are applied to Ik(f)
for f(x) = x3/2, x ∈ [0, 1], and some wave numbers k that range from
small to quite large values.

3.2. The race for convergence speed. In this section, we repeat the nu-
merical experiments of §2.2, now by the adaptive FCC+ instead of the FCC+
rules. The same discussion is applicable here, too. In Figures 3.5–3.8, we
compare convergence rates of the adaptive FCC+ rules and the corresponding
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Fig. 3.7. Accuracy vs execution time (in miliseconds) when the FCC
rules and the adaptive FCC+ rules with s = 1 are applied to I10(f)
for functions f of Experiment 3.

FCC rules. The results are the same as in Figures 2.1–2.4, and FCC is always
the winner.

4. OTHER ADVANTAGES OF FCC RULES

The FCC rules have further advantages over the FCC+ and adaptive FCC+
rules. In this section, we account some of them.

(1) Composite FCC rules can readily be developed [4] while the composite
versions of the (adaptive) FCC+ rules require many data within the
integration interval. In the case of FCC+ rules, one should compute
derivatives of the amplitude function at some (or many) internal points
in addition to the endpoints. This can increase the computational cost
most largely.

(2) One can apply composite FCC rules with suitably graded meshes and
treat oscillatory integrals with algebraic or logarithmic endpoint sin-
gularities [4]. Trying to apply this idea to the FCC+ rules, one should
compute derivatives of the amplitude function at some (or many)
points clustered near the singular endpoint. In the case of adaptive
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Fig. 3.8. Accuracy vs execution time (in miliseconds) when the FCC
rules and the adaptive FCC+ rules with s = 1 are applied to I1000(f)
for functions f of Experiment 3.

FCC+ rules, we will have a bunch of points clustered near the end-
points of each subinterval. Thus, in the vicinity of the singular end-
point, the density of the points may become so high that rounding
error pollutes the total accuracy.

(3) When estimating the computational cost of the FCC+ rules in [14], it is
assumed that the derivatives of the amplitude function have been pre-
calculated. This is also the case in the numerical experiments of §2.2.
However, in many situations it is impossible or awkward to differen-
tiate manually [10]. It is well-known that computing derivatives (es-
pecially of high-order) by finite differences is subject to cancellation.
For that reason, many special numerical differentiation methods has
been developed, e.g. automatic differentiation [9, 18, 19], complex and
multicomplex step differentiation [12, 16, 17], differentiation rules base
on Cauchy integrals [1, 2], etc. Thus, computing the derivatives is not
necessarily a trivial task and imposes an extra computational cost.

(4) One can study the stability of the FCC rules [15], but such study can
be sophisticated for (adaptive) FCC+ rules.
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5. CONCLUSIONS

In this work, we carried out a benchmark of numerical experiments and
observed that the (adaptive) FCC+ rules are most often overtaken by the plain
FCC rules in the speed race to achieve a given accuracy. Availability of error
estimates when the amplitude function is of confined regularity, capability
to develop efficient composite rules, availability of a stability analysis, and
being derivative-free are other features that make the FCC rules the most-
efficient decisive-choice ones among other Filon-type methods for oscillatory
integrals (1).
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