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INFLUENCE OF CONTROL PARAMETERS ON THE
STABILIZATION OF AN EULER-BERNOULLI FLEXIBLE BEAM
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Abstract. In this work, we numerically study the influence of control param-
eters on the stabilization of a flexible Euler-Bernoulli beam fixed at one end
and subjected at the other end to a force control and a moment control pro-
portional respectively to velocity and rotating velocity. First, we analyze the
displacement stabilization and the asymptotic behavior of the beam energy us-
ing a stable numerical scheme, resulting from the Crank-Nicholson algorithm for
time discretization and the finite element method based on the approximation
by Hermite’s cubic polynomial functions, for discretization in space. Then, by
means of the finite element method, we represent the spectrum of the operator
associated with this beam problem and we carry out a qualitative study of the
locus of the eigenvalues according to the positive control parameters. From these
studies we conclude that rotating velocity control has more effect on the stabiliza-
tion of the beam compared to velocity control. Finally, this result is confirmed
by a sensitivity study on the control parameters involved in the stabilization of
the beam.
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1. INTRODUCTION

Boundary feedback stabilization of systems modeled by an Euler-Bernoulli
beam equation is an important area of research for engineers and mathemati-
cians alike. Many mechanical systems, such as telecommunications antennas
and flexible robot arms, can be modeled using Euler-Bernoulli beam equations.
In order to control the asymptotic dynamic behavior of these systems, a con-
trol law is associated with them. The aim is to promote energy dissipation in
order to stabilize the system within a reasonable time.
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In our study, we consider a flexible Euler-Bernoulli beam fixed at one end
and subjected, at the other end, to a force control in velocity and a moment
control in rotational velocity. The beam satisfies the Euler-Bernoulli equation

∂2y(x,t)
∂t2 + ∂4y(x,t)

∂x4 = 0, 0 < x < 1, t > 0,

with initial conditions

y(x, 0) = y0(x), ∂y(x,0)
∂t = v0(x), 0 < x < 1.

At the embedded end (x =0), we have the following boundary conditions

y(0, t) = ∂y(0,t)
∂x = 0, t > 0.

At the end x = 1, we apply a force control in velocity and a moment control
in rotating velocity

∂2y(1,t)
∂x2 = −β ∂2y(1,t)

∂x∂t , ∂3y(1,t)
∂x3 = α∂y(1,t)

∂t , t > 0.

Notice that these last two equations indicate that the bending moment (i.e.
∂2y(1,t)

∂x2 ) and lateral force (i.e. ∂3y(1,t)
∂x3 ) of the beam at the free end (x = 1), are

respectively controlled by the feedback laws in rotating velocity (−β ∂2y(1,t)
∂x∂t )

and velocity (α∂y(1,t)
∂t ). Also, we assume that α, β are two positive constants

involved in the boundary controls.
Assembling this together, we obtain the mathematical problem

∂2y(x,t)
∂t2 + ∂4y(x,t)

∂x4 = 0, 0 < x < 1, t > 0,(1)

y(0, t) = ∂y(0,t)
∂x = 0, t > 0,(2)

∂2y(1,t)
∂x2 = −β ∂2y(1,t)

∂x∂t , ∂3y(1,t)
∂x3 = α∂y(1,t)

∂t , t > 0,(3)

y(x, 0) = y0(x), ∂y(x,0)
∂t = v0(x), 0 < x < 1,(4)

where y(x, t) is the transverse deflection of the beam at position x and time t.
Also, the bending stiffness function, mass density function and beam length
are taken to be equal to unity.

In [1], the system (1)–(4) is formulated as an evolution problem and it
is proven that this problem is well posed in the sense of C0-semigroups of
contractions. Also, Mensah E. Patrice in [6], studies the spectrum of the
differential operator appearing in the exponential stabilization of this system.
By means of a numerical scheme obtained by the finite difference method, the
author studies the locus of eigenvalues as a function of the positive feedback
parameters α and β, carrying out a qualitative study of the position of the
spectrum with respect to a vertical asymptote.

In the case of our study, the aim is to determine the influence of each control
parameter on the stabilization of this beam system and, more importantly, to
show which one has the greatest influence. This will enable us to calibrate
these parameters appropriately, so as to stabilize the system more rapidly.
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We begin by developing a numerical scheme equivalent to the system
(1)–(4), using the Crank-Nicholson algorithm for discretization in time and
the finite element method based on approximation by cubic Hermite functions
for discretization in space (see e.g. [3], [7]). Using this numerical scheme,
we graphically analyze the influence of the positive feedback parameters α
and β on displacement stabilization and the asymptotic behavior of beam en-
ergy. Then, using the finite element method, we represent the spectrum of
the differential operator associated with the system (1)–(4) in order to qual-
itatively describe the impact of the control parameters on the positioning of
the spectrum and its asymptote. In this way, we can observe the effect of
each parameter on the energy decay rate and stabilization of the system un-
der study. Finally, the conclusions of these graphical analyses are confirmed
by a sensitivity study on these control parameters.

2. NUMERICAL APPROXIMATION OF THE SYSTEM

Let v(., t) = ∂y(.,t)
∂t and consider the space

H =
{

w = (y, v)⊤ : y ∈ H2
l (0, 1), v ∈ L2(0, 1)

}
,

with
H2

l (0, 1) =
{

y ∈ H2(0, 1) : y(0) = ∂y(0)
∂x = 0

}
,

where ⊤ in superscript represents the transposition.
The system (1)–(4) can be written as the evolution problem

(5)
{

d
dtw(t) = Aw(t),
w(0) = w0 ∈ H.

With w(t) =
(
y(., t), ∂y(.,t)

∂t

)⊤
, w(0) = (y0, v0)⊤ for all t > 0. Note that A is a

linear operator, with domain

D(A) =
(6)

=
{

(f, g) ∈
(
H2

l (0, 1) ∩ H4(0, 1)
)

×H2
l (0, 1) : ∂2f(1)

∂x2 =−β ∂g(1)
∂x , ∂3f(1)

∂x3 =αg(1)
}

and defined by

(7) A

(
f
g

)
=
(

g

−∂4f
∂x4

)
.
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2.1. Discretization.

2.1.1. Time discretization. Let T be a strictly positive real. The interval [0, T ]
is discretized into Nt intervals of the same length ∆t. Then, at each moment
tn = n∆t, we note respectively yn and vn the approximate values of y(tn, x)
and v(tn, x). Thus, we have wn = w(tn) = (yn, vn) with 0 ≤ n ≤ Nt.
Using the Crank-Nicholson scheme for the time discretization of the problem
(5), we obtain the following system

yn+1−yn

∆t = vn+1+vn

2 ,

vn+1−vn

∆t + 1
2

(
∂4

∂x4
(
yn+1 + yn

))
= 0,

with y0 = y0 and v0 = v0.

(8)

Moreover, for all Ψ ∈ L2(0, 1) and ϕ ∈ H2
l (0, 1), the variational formulation

of the problem (8), is written

∫ 1

0
yn+1−yn

∆t Ψ(x)dx =
∫ 1

0
vn+1+vn

2 Ψ(x)dx,∫ 1

0
vn+1−vn

∆t ϕ(x)dx + 1
2

∫ 1

0

((
∂2yn+1

∂x2 + ∂2yn

∂x2

)
∂2ϕ(x)

∂x2

)
dx

+α
2
(
vn+1(1) + vn(1)

)
ϕ(1) + β

2

(
∂vn+1(1)

∂x + ∂vn(1)
∂x

)
∂ϕ(1)

∂x = 0.

(9)

2.1.2. Discretization in space. For discretization in space, we use the finite el-
ement method with Hermite’s cubic polynomial functions.
First, let us subdivide the interval [0, 1] into Ne intervals [xi, xi+1] of the same
length h = xi+1 −xi with xi = ih and Neh = 1. On each node xi, we associate
the approximate values of y and its derivative at the point xi.

Thus, in the same way as in [4], consider the functions (ϕ)1≤k≤4 as refer-
ence functions, from which the polynomial functions, φi

1(x) and φi
2(x), are

constructed such that:
For i = 1, . . . , Ne − 1,

φi
1(x) =


ϕi−1

3 (x), if x ∈ [xi−1, xi] ,

ϕi
1(x), if x ∈ [xi, xi+1] ,

0, otherwise.

φi
2(x) =


ϕi−1

4 (x), if x ∈ [xi−1, xi] ,

ϕi
2(x), if x ∈ [xi, xi+1] ,

0, otherwise.

For i = Ne,

φNe
1 (x) =

{
ϕNe−1

3 (x) if x ∈ [xNe−1, 1] ,

0, otherwise.
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φNe
2 (x) =

{
ϕNe−1

4 (x), if x ∈ [xNe−1, 1] ,

0, otherwise.

with φi
1(0) = φi

2(0) = ∂φi
1

∂x (0) = ∂φi
2

∂x (0) = 0.

We thus obtain a 2Ne-tuple
(
φ1

1, φ1
2, φ2

1, φ2
2, . . . , φNe

1 , φNe
2
)

which we simply
denote in the following

(
Φi
)

1≤i≤2Ne
and which constitutes a basis of dimension

2Ne of the interpolation space Vh. With

Vh =
{

u ∈ C ([0, 1]) : u|[xi,xi+1] ∈ P3, 1 ≤ i ≤ Ne, u(0) = ∂u
∂x(0) = 0

}
.

Thus, we have

yn =
2Ne∑
i=1

yn
i Φi(x), vn =

2Ne∑
i=1

vn
i Φi(x)(10)

and

Y n =
[
yn

1 , yn
2 , . . . , yn

2Ne−1, yn
2Ne

]
,(11)

V n =
[
vn

1 , vn
2 , . . . , vn

2Ne−1, vn
2Ne

]
,(12)

W n = [Y n V n]⊤ ,(13)

with respectively yn
i and vn

i , the approximate values of yn(xi) and vn(xi).
By replacing the expressions (10) in (9), we obtain, for all i, j = 1, . . . , 2Ne,

the following numerical scheme



2Ne∑
i=1

(
2yn+1

i − ∆tvn+1
i

) ∫ 1

0
Φi(x)Φj(x)dx =

2Ne∑
i=1

(2yn
i + ∆tvn

i )
∫ 1

0
Φi(x)Φj(x)dx

2Ne∑
i=1

(
2vn+1

i

∫ 1

0
Φi(x)Φj(x)dx + ∆tyn+1

i

∫ 1

0

∂2ϕi(x)
∂x2

∂2ϕj(x)
∂x2 dx

+∆tαvn+1
i Φi(1)Φj(1) + ∆tβvn+1

i
∂ϕi(1)

∂x
∂ϕj(1)

∂x

)
=

=
2Ne∑
i=1

(
2vn

i

∫ 1

0
Φi(x)Φj(x)dx − ∆tyn

i

∫ 1

0

∂2ϕi(x)
∂x2

∂2ϕj(x)
∂x2 dx

−∆tαvn
i Φi(1)Φj(1) − ∆tβvn

i
∂ϕi(1)

∂x
∂ϕj(1)

∂x

)
.

(14)

2.2. Stability of the numerical scheme. For all, fixed point xj with 1 ≤
j ≤ 2Ne, let us set

a =
∫ 1

0
(Φj(x))2 dx, b =

∫ 1

0

(
∂2ϕj(x)

∂x2

)2
dx, c = (Φj(1))2 , d =

(
∂ϕj(1)

∂x

)2
.

(15)
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Then, the system (14) can be written as the following vector equation:1 −∆t
2

1
2a
∆t

+αc+βd

b


Y n+1

j

V n+1
j

 =

1 ∆t
2

1
−2a
∆t

+αc+βd

b


Y n

j

V n
j

 .(16)

By multiplying (16) by the inverse of the left matrix, we obtain:Y n+1
j

V n+1
j

 = 1
2a
∆t

+αc+βd

b
+ ∆t

2


2a
∆t

+αc+βd

b + ∆t
2

∆t(αc+βd)
b

0
−2a
∆t

+αc+βd

b − ∆t
2


Y n

j

V n
j

 .(17)

Now, to determine the associated Von-Neumann stability condition, let us
consider Y n

j

V n
j

 =

eikxj Ŷ n
j

eikxj V̂ n
j

 .(18)

The system (17) becomes
Ŷ n+1

j

V̂ n+1
j

 =


1 2∆t(αc+βd)+∆t b

4a
∆t

+2(αc+βd)

0 −∆t b+ −4a
∆t +2(αc+βd)

∆t b+ 4a
∆t

+2(αc+βd)




Ŷ n
j

V̂ n
j

 .(19)

The eigenvalues associated with the amplification matrix (19) are λ1 = 1
and λ2 = −∆t b+ −4a

∆t
+2(αc+βd)

∆t b+ 4a
∆t

+2(αc+βd) . It is clear that these eigenvalues satisfy the
Von-Neumann conditions. Indeed, we have | λi |≤ 1, i = 1, 2. We deduce from
this that the numerical scheme (14) is stable.

3. EFFECTS OF CONTROL PARAMETERS ON BEAM STABILIZATION

3.1. Stabilization in motion. For all i, j = 1, . . . , 2Ne, consider the matrices

Mi,j =
∫ 1

0
ΦiΦjdx,

Si,j = αΦi(1)Φj(1) + β(ϕi)x(1)(Φj)x(1),

Ki,j =
∫ 1

0
(Φi)xx(Φj)xxdx.

The system (14) can then be written as follows:
PW n+1 = QW n,(20)

W 0 = W0

with

P =

2I2Ne −∆tI2Ne

∆tK 2M + ∆tS

 ,
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Q =

 2I2Ne ∆tI2Ne

−∆tK 2M − ∆tS

 .

I2Ne denotes the unit matrix of order 2Ne.
For numerical simulations, we consider as initial conditions:

y0(x) = −3x2 + x3,

v0 = 0.

with
T = 10,

Ne = 70,

∆t = 0, 01.

We represent the position and the angle of rotation of the beam at the free
end (i.e. in x = 1), for different values (taken arbitrarily) of the parameters α
and β, in order to highlight their influences on the stabilization of the beam.
The numerical simulations are carried out with MATLAB.

Case 1. We set α = 0.3 and we vary β. Case 2. We set β = 0.3 and we
vary α.

Fig. 1. Position for different values of β. Fig. 2. Rotation angle for different values of β.
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Fig. 3. Position for different values of α. Fig. 4. Rotation angle for different values of α.

3.2. Energy stabilization. Multiply the equation (1) by ∂y(x,t)
∂t ∈ H2

l (0, 1).
After two integrations by parts, we obtain∫ 1

0

∂2y(x,t)
∂t2

∂y(x,t)
∂t dx +

∫ 1

0

∂2y(x,t)
∂x2

∂2

∂x2

(
∂y(x,t)

∂t

)
dx + α

(
∂y(1,t)

∂t

)2
+ β

(
∂2y(1,t)

∂x∂t

)2
= 0.

So,

dE(t)
dt + α

(
∂y(1,t)

∂t

)2
+ β

(
∂2y(1,t)

∂x∂t

)2
= 0.(21)

Or,

E(t) = 1
2

∫ 1

0

(
∂y(x,t)

∂t

)2
dx + 1

2

∫ 1

0

(
∂2y(x,t)

∂x2

)2
dx.(22)

We deduce from the relations (21) and (22) that
dE(t)

dt ≤ 0.(23)

Thus, the energy E(t) defines a Lyapunov function and satisfies 0 ≤ E(t) ≤
E(0) < ∞.

Considering the Crank-Nicholson scheme, we have for 0 ≤ n ≤ Nt, the
following discrete energy:

En = 1
2

∫ 1

0
(vn)2 dx + 1

2

∫ 1

0

(
∂2yn

∂x2

)2
dx.(24)

We then obtain the following result:

Proposition 1. For any integer n, there is a positive real ηn such that
En+1−En

∆t + ηn = 0.(25)
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Proof. According to (24), we have

En+1 − En = 1
2

∫ 1

0

((
vn+1

)2
− (vn)2

)
dx + 1

2

∫ 1

0

((
∂2yn+1

∂x2

)2
−
(

∂2yn

∂x2

)2
)

dx.

(26)

For x ∈ [0; 1], we replace in the first equation of the variational formulation
(9), Ψ(x) by

(
vn+1 − vn

)
. We obtain the following equation∫ 1

0
yn+1−yn

∆t

(
vn+1 − vn

)
dx =

∫ 1

0

(vn+1)2−(vn)2

2 dx.(27)

Furthermore, considering ϕ = yn+1 as a test function in the second equation
of the problem (9), we obtain the following equation:∫ 1

0
vn+1−vn

∆t yn+1dx + 1
2

∫ 1

0

((
∂2yn+1

∂x2 + ∂2yn

∂x2

)
∂2yn+1

∂x2

)
dx(28)

+ α
2

(
vn+1(1) + vn(1)

)
yn+1(1) + β

2

(
∂vn+1(1)

∂x + ∂vn(1)
∂x

)
∂yn+1(1)

∂x = 0.

Analogously, if we choose as test function ϕ = yn in the second equation of
the system (9), we obtain:∫ 1

0
vn+1−vn

∆t yndx + 1
2

∫ 1

0

((
∂2yn+1

∂x2 + ∂2yn

∂x2

)
∂2yn

∂x2

)
dx(29)

+ α
2

(
vn+1(1) + vn(1)

)
yn(1) + β

2

(
∂vn+1(1)

∂x + ∂vn(1)
∂x

)
∂yn(1)

∂x = 0.

Now making the difference between (28) and (29) and considering the rela-
tion

yn+1 − yn = ∆t
2

(
vn+1 + vn

)
(30)

We obtain
En+1−En

∆t + ηn = 0, for all n ∈ N.(31)
With

ηn = α
(

vn+1(1)+vn(1)
2

)2
+ β

(
∂

∂x

(
vn+1(1)+vn(1)

2

))2
.(32)

□

Therefore we have the following result:

Corollary 2. For all n ≥ 1, we have
En+1 ≤ En ≤ E0

We notice that the energy of the discrete system decreases and is controlled
by that of the initial data. From Proposition 1, we deduce the following
equality:

En+1 = En − ∆t
4

[
α
(
vn+1(1) + vn(1)

)2
+ β

(
∂

∂x

(
vn+1(1) + vn(1)

))2
]

,(33)
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0 ≤ n ≤ Nt, with

E0 = 1
2

∫ 1

0

(
v0
)2

dx + 1
2

∫ 1

0

(
∂2y0

∂x2

)2
dx.(34)

Now let us represent the energy of the system (1)–(4) for different values of α
and β.

Case 1. We set α = 0.08 and we vary β.

Fig. 5. Energy dissipation for different values of β.

Case 2. We set β = 0.08 and we vary α.

Fig. 6. Energy dissipation for different values of α.

3.3. Discussion of results. For a fixed value of α and different values of β,
we see in Figs. 1 and 2 that vibrations at the free end of the beam cancel out
at different times. In particular, they cancel faster as we increase the value of
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the β parameter. However, for a fixed value of β and for different values of α,
we see in Figs. 3 and 4 that vibrations at the free end of the beam cancel out
at almost the same time. Furthermore, in Figs. 5 and 6, we see that when we
increase the value of parameter β, the energy decreases and cancels out faster
than when the value of parameter α is increased.

The moment control in rotation velocity therefore seems to have more im-
pact on the stabilization of the beam and energy dissipation.

4. INFLUENCE OF CONTROL PARAMETERS ON THE SYSTEM SPECTRUM

To begin, let us recall the following theoretical result.

Theorem 3 ([6]). The eigenvalues of the unbounded operator A which gov-
erns the system (1)–(4) take asymptotically the form

λn =
(

−
( 1

β + α
)

+ O
( 1

n2
))

+ i
(
π2(n − 1

4
)2)− 2αβ−1−(αβ)2

2πβ2n
+ O

( 1
n2
)
, n ∈ N∗

(35)

and
lim

n→+∞
Re(λn) = −

( 1
β + α

)
.

Notice that −
( 1

β + α
)

is the vertical asymptote of the spectrum in the
complex plane.

Recall that for the numerical study of the spectrum, we use the finite ele-
ment method with the cubic polynomial functions of Hermite defined previ-
ously.

When we multiply the equation (1) by the test function ϕ ∈ H2
l (0, 1), we

obtain after two integrations by parts the following weak formulation:

∫ 1

0

∂2y(x,t)
∂t2 ϕ(x)dx +

∫ 1

0

∂2y(x,t)
∂x2

∂2ϕ(x)
∂x2 + α∂y(1,t)

∂t ϕ(1) + β ∂2y(1,t)
∂x∂t

∂ϕ(1)
∂x = 0.

(36)

Also, by separation of variables, the approximate solution in the base(
Φi
)

1≤i≤2Ne
, can be written as follows:

y(x, t) =
2Ne∑
i=1

yi(t)Φi(x).(37)

We denote Y , a vector representation of the function y(x, t) defined as
follows:

Y = [y1 y2 . . . y2Ne ]⊤ .

Thus, the equation (36) becomes the following second order ordinary differen-
tial equation:

(38) MYtt + SYt + KY = 0.
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Let V = dY
dt and W = [Y V ]⊤. Then the equation (38) becomes dW (t)

dt =
LW (t) with

L =
[

O I
−M−1K −M−1S

]
the spectrum matrix.

Now, by implementing the spectrum matrix L, we represent the spectrum
of the system (1)–(4) for different values of α and β. Note that for greater nu-
merical precision, eigenvalues are calculated using the Advanpix multiprecision
toolbox [2], quadruple precision (34 decimal digits) computation.

Case 1. We set α = 0 and we vary β.

Fig. 7. Effect of the β parameter on the spec-
trum.

Fig. 8. Effect of the parameter β on the asymp-
tote of the spectrum.

Case 2. We set α = 0.08 and we vary β.

Fig. 9. Effect of the β parameter on the spec-
trum.

Fig. 10. Effect of the parameter β on the
asymptote of the spectrum.
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Case 3. We set β = 0.08 and we vary α.

Fig. 11. Effect of the α parameter on the spec-
trum.

Fig. 12. Effect of the parameter α on the
asymptote of the spectrum.

4.1. Discussion of results. Numerical simulations of the spectrum have led
to the following observations.

According to Figs. 9 and 10, for fixed values of α, when we increase the β
value, the spectrum and asymptote shift significantly from left to right in the
left complex half-plane. In addition, the number of low-frequency eigenvalues
(those to the right of the asymptote ) decreases. It can therefore be said that
β significantly improves the energy decay rate and stability of the system.

However, Figs. 11 and 12 show that for a fixed value of β, increasing the
values of α leads to a slight shift in the spectrum and asymptote of the left
complex half-plane. In addition, the number of eigenvalues at low frequencies
remains the same. This means that the α parameter has little impact on the
optimal energy decay rate and system stability.

We can therefore deduce that the moment control of the rotational velocity
β has a greater influence on the optimal rate of energy decay and the stability
of the system

4.2. Sensitivity of parameters α and β on the stability. In this part, we
objectively study the influence of the parameters α and β on the stabilization
of the beam. So, for different values of α and β, we note in the table below,
the damping time δτ of the beam vibrations (i.e. time required to return to
steady state y ≡ 0).

The first-order Sobol sensitivity [5] is written

(39) Si = Var [E(δτ |Yi)]
Var(δτ) ,

where Var(δτ) and E(δτ |Yi)) represent respectively the variance of δτ and the
conditional expectation of δτ obtained by setting Yi = α and Yi = β in (39).
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α

β
0.8 1 5 10 15 20 30

0.1 5.53 6.69 17.07 24.76 26.6 27.62 31.41
0.5 3.67 4.61 8.39 9.17 9.51 9.93 9.86
0.85 4.28 4.18 10.81 15.17 15.53 15.19 12.08

1 4.61 4.91 11.79 16.85 18.22 18.46 18.08
1.5 5.70 5.6 14.39 21.85 24.51 26.77 27.48
2 6.69 7.49 19.44 25.62 28.86 30.88 37.79

Table 1. Beam vibration damping time (in seconds) for different values of α and β.

The calculation of the first order Sobol sensitivity indices gives us the fol-
lowing result:

Sα ≃ 0.36
Sβ ≃ 0.64.

According to the previous result, we have Sα < Sβ. We can deduce that
the control parameter β, has more impact on the stabilization of the beam
compared to the parameter α.

5. CONCLUSION

In this work, we were interested in the influence of control parameters on the
stabilization of a flexible Euler-Bernoulli beam, fixed at one end and subjected
at the other end to a punctual force control and moment control proportional
respectively to the velocity and the rotation velocity. We have developed
a stable numerical scheme by means of which, we have shown by graphical
analysis, that the moment control in rotation velocity β has more influence on
the stabilization of our model in displacement, in energy and on the positioning
of the spectrum, in relation to the force control in velocity α. This result
was then confirmed by a statistical study of the sensitivity of the control
parameters.

REFERENCES

[1] A.P. Abro Goh, G.J.M. Bomisso, K.A. Touré, Coulibaly Adama, A numerical
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