
JOURNAL OF NUMERICAL ANALYSIS AND APPROXIMATION THEORY
J. Numer. Anal. Approx. Theory, vol. 53 (2024) no. 1, pp. 26–53, doi.org/10.33993/jnaat531-1392

ictp.acad.ro/jnaat

ADAPTATION OF THE COMPOSITE FINITE ELEMENT
FRAMEWORK FOR SEMILINEAR PARABOLIC PROBLEMS
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Abstract. In this article, we discuss one type of finite element method (FEM),
known as the composite finite element method (CFE). Dimensionality reduction
is the primary benefit of CFE as it helps to reduce the complexity of the domain
space. The number of degrees of freedom is greater in standard FEM compared
to CFE. We consider the semilinear parabolic problem in a 2D convex polygonal
domain. The analysis of the semidiscrete method for the problem is carried out
initially in the CFE framework. Here, the discretization is carried out only in
space. Then, the fully discrete problem is taken into account, where both the
spatial and time components get discretized. In the fully discrete case, the back-
ward Euler method and the Crank-Nicolson method in the CFE framework are
adapted for the semilinear problem. The properties of convergence are derived
and the error estimates are examined. It is verified that the order of convergence
is preserved. The results obtained from the numerical computations are also
provided.
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1. INTRODUCTION

In the present article, we are concerned about the approximate solution
of the model semilinear initial-boundary value problem, for u = u(x, t) and
I = (0, t̄ ]:

ut(x, t) − ∆u(x, t) = f(u(x, t)) in Ω, t ∈ I,

u(x, t) = 0 on ∂Ω, t ∈ I,

u(x, 0) = v in Ω,

(1)

where Ω is a bounded domain in R2 with sufficiently smooth boundary ∂Ω,

and f is a smooth function on R, ut represents ∂u
∂t and ∆ represents

d∑
j=1

∂2

∂x2
j
.
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We assume the boundedness condition of f as follows: for u ∈ R,
|f ′(u)| ≤ B.(2)

Following the above condition (2), which is also referred to as the Lipschitz
constant of f , we assume that the problem possesses a sufficiently smooth
unique solution.

Our aim is to study the error analysis in the L∞(L2) and L∞(H1)-norms
for semidiscrete case and error analysis in the L∞(L2)-norm for fully discrete
case and also to check for optimal results. In our error analysis, the main
components consist of the estimation for the corresponding elliptic projection
within the context of the CFE method (see Lemma 4). Here, we take H and
h as the mesh-size of the coarser mesh and finer mesh, respectively. The time
step is taken as k. The main advantage is that only the coarser grid contains
degrees of freedom. So for the analysis purpose, we need to consider only
coarser mesh. This helps in reducing the amount of variables and thereby
reducing the dimension of the domain, hence known as dimensionality reduc-
tion. The standard FEM depends on the number of elements, which is more
complex as it involves each and every node of the domain. In CFE method,
since we take only the coarser mesh points, the number of elements is lesser.
The method helps in reducing the complexity and thereby the computational
effort. We aim to establish an optimal order convergence for both the above-
mentioned norms. The numerical experiments will be presented corresponding
to theoretical error estimates. A comparison with the standard FEM is shown
numerically in order to establish that the composite FEM gives a less dimen-
sional approach than the standard FEM. We discuss the basic notations and
required preliminaries in Section 3. The succeeding Section 4 discusses the
problem and the semidiscrete error estimates in detail. The fully discrete er-
ror estimates for both the backward Euler and the Crank-Nicolson scheme are
given in Section 5. Section 6 discusses the numerical results. Thereafter, Sec-
tion 7 discusses the concluding remarks. The last section gives the references
for this research work.

2. LITERATURE REVIEW

Parabolic equations are formulated during the simulation of real-world prob-
lems involving time dependent variables, especially in physical problems such
as thermal diffusion, climate science, propagation of flames etc., cf. [4, 5, 6,
7, 9, 10]. Examples of these equations can be considered as heat equations.
The authors of [4] have analyzed a new variational method for approximat-
ing the heat equation of a linear model using continuous finite elements in
space and time. In the case of linear elements in time, they used the Crank-
Nicolson Galerkin method with time average data. In our paper, we examine
the semilinear parabolic problem, where the complexity is greater than the
linear problem, cf. [3, 11, 15, 16, 17, 18, 19, 20]. The authors of [3] have
addressed diffusion-reaction equations and proved the global existence and
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uniqueness of the solution without any restriction for the Lewis number and
the Biot numbers. In [11], the authors have modeled the chemical reactions
and diffusion and hence termed as reaction-diffusion equations, or convection-
diffusion equations. The error estimates for the semidiserete Galerkin method
for abstract semilinear evolution equations with non-smooth initial data are
studied in [16]. The authors have shown an optimal order of convergence for
linear finite elements. Henry-Labordere et al. [17] looked into the representa-
tion result of parabolic semilinear partial differential equations (PDEs) with
polynomial nonlinearity, where they used branching diffusion processes. The
main ingredient is the automatic differentiation technique based on the Malli-
avin integration by parts, which allows for the accounting of nonlinearities in
the gradient. A novel set of numerical algorithms designed by Hutzenthaler et
al. [19] to approximate solutions of general high-dimensional semilinear par-
abolic PDEs at single space-time points. For semilinear heat equations with
gradient-independent nonlinearities, the authors have proved that the compu-
tational complexity of the proposed algorithm is bounded. To the best of our
knowledge, the dimensionality reduction approach by using the CFE method
for semilinear heat equation is introduced for the first time in this literature.

To analyze the problem, two scale CFE method is considered. The idea
of the CFE method was initially introduced by Hackbusch and Sauter (see
[12, 13, 14]) for the coarse level discretizations. In [12], the authors consider
a particular case of PDEs with rough boundaries or the case where there is a
jump in the coefficients. For the analysis, the authors have used the discrete
homogenization technique which gives lesser degrees of freedom and thereby
gets an asymptotic approximation property. In [13], the physical domains
having small geometric details and the non-periodic situations are considered.
The results show that the new class of elements with lesser dimension is in-
dependent of the small details of the domain. The paper [14] discusses the
method of coarsening the domain space of finite elements. This method helps
in resolving the complex domain to lesser degrees of freedom. The approxi-
mation property of the generalised finite element spaces is also proved in this
paper.

In the CFE method, we discretize the domain using two types of meshes -
one mesh with a large distance between the nodes (coarse mesh) and the other
mesh with a small distance between the nodes (fine mesh), e.g. [21, 26, 28, 25].
The paper [21] discusses image based computing, modeling and simulation us-
ing PDEs with the composite finite elements. The image data that has been
segmented already is used to define the computational geometry. In [25], a
non-conforming CFE method is introduced. Here, the elliptic problems are
considered with boundary conditions of the Dirichlet type. The approxima-
tion space will have minimal dimension and this becomes the advantage for
more complex domains. The author has shown an optimal order convergence.
In [26], Rech et al. interpret the composite finite elements (CFEs) as the gen-
eralisation of the standard finite elements. This is done by approximating the
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given boundary conditions that are Dirichlet type. An adaptive approach is
taken for this approximation. Later the convergence properties of CFEs in the
framework of a priori analysis are done. Over the past few years there has been
significant research on the CFE method for parabolic problems, as evidenced
by the studies conducted, see [22, 23, 24]. The authors have conducted a study
on the error analysis of the CFE method for linear parabolic type problems
and presented numerical examples in support of the theoretical error analysis.
In [27], Sarraf. et al. have introduced the algebraic composite mesh technique.
The discretization of the PDEs is carried out and the obtained linear operator
is redefined over the given mesh.

3. PRELIMINARIES

Some basic notations are introduced in this section. The domain of con-
sideration Ω is an open subset of R2. The standard Sobolev space functions
in L2(Ω) are denoted by Hm(Ω), where m denotes the maximum order of the
weak derivatives. These functions are in the Hilbert space L2(Ω) (cf. [1, 2])
which has the norm ∥·∥ = ∥·∥L2(Ω). The norm in the considered space Hm(Ω)
is given by ∥ · ∥Hm(Ω) = ∥ · ∥m,Ω = ∥ · ∥m (cf. [30]). For a given Banach space
B and for 1 ≤ p < +∞, we define

Lp(0, T ; B) =

=
{

v : (0, T ) → B : v(t) ∈ B for almost all t ∈ (0, T ) and
∫ T

0
∥v(t)∥p

Bdt < ∞
}

with the norm

∥v∥Lp(0,T ;B) :=
(∫ T

0
∥v(t)∥p

B

)1/p

,

with the standard modification for p = ∞. For easiness, we denote ∥v∥Lp(0,T ;B) =
∥v∥Lp(B).

3.1. Composite Finite Element Discretization. In the CFE method, the
domain Ω is discretized using coarse-scale and fine-scale grids as shown, see
[26].

3.1.1. Refinement of the two-scaled grid: Let TH = {T1, T2, . . . , Tn} denote the
larger grid consisting of regular triangles of conforming shape, known as coarse-
scale grid. The idea for this discretization is given by Ciarlet [8]. For every
triangle T ∈ TH , int(T ) indicates the interior of T . Since TH is a grid with
overlapping elements, we have ∀T ∈ TH , Ω ⊂

⋃
T ∈TH

T with int(T )∩Ω ̸= ∅.

Next, we denote the smaller grid, known as fine-scale grid using the notation
Th. The boundary Γ of the domain is discretized by the fine-scale grid and
it exclusively consists of the slave nodes, which are employed to conform the
shape functions to satisfy the Dirichlet boundary conditions. The coarse-scale
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grid TH contains the degrees of freedom and the fine-scale grid Th contains the
slave nodes only.

3.1.2. Boundary adaptation: The diameter of any given triangle T within TH

is represented by the notation hT . The size of the coarse-scale mesh given by
H is defined as H := max{hT : T ∈ TH}. i.e., it indicates the largest diameter
of the triangle. Let TH,h be the two-scale triangulation. In the neighborhood
of Γ, the triangles near the boundary will be refined. The refinement by the
finer-scale is carried out for several iterations and the stopping criteria is given
as

dist(T, Γ) ≤ σdisthT ∀T ∈ TH,h \ Tin
H ,(3)

where the positive parameter σdist governs the width of this particular neigh-
borhood. For any T ∈ TH , sons(T ) which indicates the set of sons, is specified
by sons(T ) := {τ ∈ TH,h : τ ⊂ T}. To obtain τ (sons of T ), we divide
each T into four triangles by connecting the mid points of the edges of T and
define nT := ♯ sons(T ). This process yields a new grid that exhibits a higher
level of refinement than TH , conforming and shape regular. Also, in the inte-
rior of Ω, it does not differ from TH . The fine-scale grid size h is defined as
h := min{hτ : τ ∈ TH,h}, h ≤ H. In the neighborhood of Γ, the fine-scale
parameter h serves as a defining characteristic of the two-scale mesh TH,h.

3.1.3. Degrees of freedom. Next, we establish the submesh Tin
H within the in-

terior part of the domain, at a certain distance from Γ, using the following
definition

Tin
H := {τ ∈ sons(T ) : T ∈ TH \ TΓ} ⊂ TH,h,

by considering the coarse-scale parameter H and the fine-scale parameter h,
where TΓ is a subset of TH which consists of all the triangles near the boundary.
In order to locate the degrees of freedom, we check on the free nodes. It is
calculated based on the corresponding vertices in the coarse mesh Tin

H , which
means that it relies on the inner mesh Tin

H . Suppose ϑH be the set of all vertices
in TH . Then we define the degrees of freedom as follows

ϑd := {x ∈ G(T ) : T ∈ Tin
H}.

The values at the nodes x ∈ ϑd gives the values of the CFE functions. Thus,
the minimal number of unknowns in the CFE method remains unaffected by
the count of the geometric details or their size. In short, the dimension of the
CFE space is not affected by the finer-scale grid.

3.1.4. Indicating slave nodes. We now know that the function values are con-
strained at the slave nodes. For the given Dirichlet boundary conditions, we
use the grid points and form the triangles for adapting the shape of the CFE
functions. All the nodes in TH,h, apart from the free nodes are termed as slave
nodes (Refer to Fig. 1). As mentioned above, let the set of all vertices of the
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two scale mesh be denoted by the notation ϑH,h. Then we define the slave
nodes as follows

ϑs := ϑH,h \ ϑd.

Since the degrees of freedom are located at the inner mesh Tin
H , we use ex-

trapolation method to determine the values at the slave nodes of the two-scale
mesh.

Ωin Γ

Fig. 1. Discretization using the CFE method
for the two-scale grid TH,h.The inner triangula-
tion Tin

H comprises the degrees of freedom. It is
denoted by the dark shaded triangles. The trian-
gles near the boundary are represented with the
dotted lines which consists of the slave nodes.

x

∆x

xΓyΓ

y

∆y

Γ

Fig. 2. The black line indicate the boundary
Γ. The selection of the closest inner simplex
∆x and ∆y , and the closest boundary point
xΓ and yΓ, respectively for the slave nodes x

and y is shown.

3.1.5. Extrapolation operator. As mentioned above, in order to calculate slave
node values, we define an extrapolation operator. On the boundary, each slave
node x ∈ ϑs depends on the closer coarse grid triangle ∆x ∈ Tin

H and the closest
point xΓ on the boundary Γ (see Fig. 2).

As the inner nodes ϑd contain the degrees of freedom, we first assume a
grid function Φ : ϑd → R to define the extrapolation operator. For any
triangulation T ∈ TH , there exists a linear function ϕT ∈ P1(R2) which is
uniquely determined and interpolates Φ in the vertices of T , where P1(R2)
denotes the space of bivariate polynomials on R2 of maximal degree 1. The
extension value of Φ at a slave node x ∈ ϑs is defined by (EΦ)x := ϕ∆x(x) −
ϕ∆x(xΓ). The extrapolation operator E : Rϑd → RϑH,h for the grid functions
is defined as

(EΦ)x :=


Φx, x ∈ ϑd,

ϕ∆x(x) − ϕ∆x(xΓ), x ∈ ϑs ∧ dist(x, ∆x) ≤ σdsh∆x ,

0, otherwise,

(4)
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where σds > 0 is some parameter. We now summarize the notations and their
precise definitions below:

TH,h The two-scale grid triangulation, with grid size H and h
ϑH,h The set of mesh points corresponding to the two-scale grid
TH The coarse grid triangulations that initially overlap
ϑH The set of vertices corresponding to the coarse grid triangulations
σdist Positive width control parameter
sons(T ) Refined triangles of T
Tin

H The inner portion of the grid of the two-scaled triangulation TH,h

ϑd The set of vertices which corresponds to Tin
H (degrees of freedom)

TΓ The set of all triangles near to the boundary, TΓ ⊂ TH

ϑs The set of all slave nodes acquired as ϑd removed from ϑH,h

E Extrapolation operator
T Triangle (closed)
τ sons(T )
∆x For x ∈ ϑs, ∆x ∈ Tin

H has minimum distance to x
xΓ For x ∈ ϑs, xΓ ∈ Γ has minimum distance to x
G(T ) The set of vertices of a triangle T
nT Number of sub-triangles in T ∈ TΓ
σds Distance control parameter

Due to the domain discretization, some geometric constants will be involved
in our context, such as σuni, Tol(τ), Col,1, Col,2 and σext. For details about
these constants, please refer to [23].

Remark 1. One-scale CFE method: In this method T is not subdivided,
i.e., nT = 1 and then the two-scale grid TH,h corresponds to the coarse mesh
TH (h = O(H)). In the case where h ≪ H, this is called two-scale CFE
method.

3.2. The domain and the solution space. We define the space S which is
continuous. The piecewise linear finite element space S is defined on the
mesh TH,h as S := {v ∈ C0(ΩH,h) : v|T ∈ P1 ∀T ∈ TH,h}, where
ΩH,h := int

(⋃
T ∈TH,h

T
)
. Now, considering the two-scale approximation of

the Dirichlet boundary condition on the triangulations TH,h, the CFE space
denoted by SCFE (which is a subspace of S) can be defined as follows

SCFE := {v ∈ S : ∃ Φ ∈ Rϑd with v(x) = (EΦ)x ∀x ∈ ϑH,h}.

3.3. CFE Basis Function. Considering the solution space SCFE, we need
to define the basis function. For that, let Sin be the piecewise linear finite
element space which is continuous. Let Sin be defined on the inner grid Tin

H .

Sin :=
{

u ∈ C0(Ωin) | u|T ∈ P1 ∀T ∈ Tin
H

}
,
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where the interior Ωin := int
(⋃

T ∈Tin
H

T
)
. According to (4), the extrapolation

operator is a mapping E : Sin → S. Corresponding to this extrapolation
operator, the CFE space can be written as

SCFE = E(Sin) ⊂ S.

For the finite element space Sin, we define the standard nodal basis function
{ϱi}NCFE

i=1 along with the property

ϱi(xj) = δij ∀ 1 ≤ i, j ≤ NCFE, with δij =
{

1, if i = j,

0, if i ̸= j.

where the dimension of solution space SCFE is given by NCFE and the degrees
of freedom (free nodes in Tin

H) is given by ϑd = {xj : 1 ≤ j ≤ NCFE}. Now,
we consider the CFE Solution space SCFE.
For this space we define the nodal basis functions as

ϕCFE
i := E[ϱi] ∈ SCFE ∀ 1 ≤ i ≤ NCFE.

Here also, we assume CFE basis function ϕCFE
i corresponding to each free

node xi ∈ ϑd as
ϕCFE

i (xj) = δij ∀ 1 ≤ i, j ≤ NCFE.

Remark 2. NCFE is determined by the degrees of freedom, i.e., the number
of nodes in ϑdof. It is independent of the slave nodes ϑs. Hence, dimension of
SCFE ≪ dimension of S.

4. SEMILINEAR PROBLEM

The weak or variational formulation of the problem described in (1) is writ-
ten as: For each t ∈ I, find u(t) ∈ H1

0 (Ω) such that
(ut, ϕ) + (∇u, ∇ϕ) = (f(u), ϕ) ∀ϕ ∈ H1

0 (Ω), t ∈ I,(5)
u(0) = v(x).

Let uCFE : Ī → SCFE be the solution of the given problem, defined as
(uCFE

t , χ) + (∇uCFE, ∇χ) = (f(uCFE), χ) ∀χ ∈ SCFE, t ∈ I,(6)
uCFE(0) = vCFE,

where vCFE is a suitable approximation of v in SCFE.

4.1. CFE solution: Existence and uniqueness. We have already intro-
duced the CFE basis functions

{
ϕCFE

j ; 1 ≤ j ≤ NCFE
}

. Since the solution
uCFE(·, t) belongs to the space SCFE, it can be represented in terms of the
basis functions as

uCFE(x, t) =
NCFE∑
j=1

αj(t)ϕCFE
j (x).
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The semidiscrete CFE approximation is to find the coefficients αj ’s such
that (6) become

NCFE∑
j=1

α′
j(t)(ϕCFE

j , ϕCFE
k ) +

NCFE∑
j=1

αj(t)(∇ϕCFE
j , ∇ϕCFE

k )

=

f

NCFE∑
j=1

αj(t)ϕCFE
j

 , ϕCFE
k

 ,

αj(0) = γj

(7)

for χ = ϕCFE
k , k = 1, 2, 3, . . . , NCFE and γj , j = 1, 2, . . . , NCFE are the

components of the given initial approximation vCFE. Setting α as the vector
of unknowns

αj(t) = [α1(t), α2(t), . . . , αNCFE(t)]T

and considering the mass matrix B = (bjk) and the stiffness matrix A =
(ajk) with the elements bjk = (ϕCFE

j , ϕCFE
k ) and ajk = (∇ϕCFE

j , ∇ϕCFE
k ).

The vector f̃(α) = (f̃k(α)) with entries f̃k(α) = (f(
∑NCFE

j=1 αj(t)ϕCFE
j ), ϕCFE

k )
and let γ = (γk).

Then Equation (7) becomes

Bα′(t) + Aα(t) = f̃(α), for t ∈ I, with α(0) = γ.

A and B are positive definite matrices and f̃(α) is Lipschitz continuous on
RNCFE . We determine αn = αn(t), n = 1, 2, . . . from the given iterative
scheme as

Bα′
n+1(t) + Aαn+1(t) = f̃(αn) for t ∈ I, with αn+1(0) = γ, for n ≥ 0,

α0(t) ≡ γ on Ī .

This follows that for any t ∈ I, the system posseses a unique and bounded
solution αn.

4.2. Error Estimation. In this section, we examine the semidiscrete error
analysis in CFE framework for smooth initial data. The discretization is car-
ried out only for the space coordinates. For the analysis of the error, we
define the Elliptic projection also known as Ritz projection RCFE onto the so-
lution space SCFE. The orthogonal projection RCFE with respect to the inner
product (∇v, ∇w) defined as(

∇RCFE v, ∇χ
)

= (∇v, ∇χ) ∀χ ∈ SCFE, for v ∈ H1
0 .(8)

For χ = RCFEv in (8), we obtain ∥∇RCFE v∥ ≤ ∥∇v∥ ∀v ∈ H1
0 . Therefore,

the elliptic projection is stable in H1 norm.
Before starting the error analysis, we need the estimation of the elliptic pro-

jection (see Lemma 4). For the detailed proof which has been estimated in the
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CFE framework, please refer to [23]. The estimation of the elliptic projection
involves the term ˜log(H/h), which is defined in the following remark.

Remark 3. We define
˜log(H/h) := max{ ˆlog(hT /hmin

T ) : T ∈ TΓ},

where
ˆlog(hT /hmin

T ) := Col,1 max
τ∈sons(T )

(1 + log(hT /hτ )) ≥ Tol(τ), ∀ T ∈ TΓ.

For the proof of the above inequality and the details about ˆlog(hT /hmin
T ), see

[26]. The above inequality will be used in the proof of Lemma 4.

We are now prepared to state Lemma 4, which is given as follows.

Lemma 4. Let v ∈ H1
0 (Ω)∩H2(Ω) and RCFE be defined by (8). Suppose that

the condition (3) holds true. Then there exists a positive constant C depending
on the σdslave, σdist, σuni, Tol(τ), Col,1, Col,2 and σext and the minimal angle
in the triangulation TH,h, such that

∥∇(RCFEv − v)∥ ≤ CH ˜log1/2(H/h)∥v∥2,Ω

and
∥(RCFEv − v)∥ ≤ CH2 ˜log(H/h)∥v∥2,Ω.

4.3. Semidiscrete error estimates. In the present section, we focus on the
semidiscrete error estimates and hence we concentrate on bounding the error
term (uCFE(t) − u(t)) for each t ∈ Ī in both the L2 and H1 norm. The CFE
error estimate for spatially discrete case in the L2 norm (for each time level)
is given as follows.

Theorem 5. Let u(t) and uCFE(t) be the solutions of Equations (1) and
(6), respectively and u(t), ut(t) ∈ H1

0 (Ω) ∩ H2(Ω) for each t. Assume that the
condition (2) holds true. Then there exists a positive constant C = C(u, t̄)
independent of h and H such that for appropriately chosen vCFE, we have

∥uCFE(t) − u(t)∥ ≤ CH2 ˜log(H/h), for t ∈ Ī .

Proof. For estimating the error, we use the Energy Argument. We split the
error term

(
uCFE(t) − u(t)

)
as follows

(9) uCFE(t) − u(t) =
(
uCFE(t) − RCFEu(t)

)
+
(
RCFEu(t) − u(t)

)
.

We put the first part as θ and the second part as ρ, i.e., θ = uCFE(t) −
RCFEu(t) and ρ = RCFEu(t) − u(t). Then Equation (9) becomes

uCFE(t) − u(t) = θ(t) + ρ(t).
From Lemma 4, we get ρ(t) and ρt(t) bounded as follows:

∥ρ(t)∥ ≤ C̄H2 ˜log(H/h)∥u∥2,Ω = CH2 ˜log(H/h),
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and
∥ρt(t)∥ ≤ C̄H2 ˜log(H/h)∥ut∥2,Ω = CH2 ˜log(H/h),

where C is depending on u.
Next we need to bound θ(t). Using Equation (6), we obtain

(θt, χ) + (∇θ, ∇χ) = (uCFE
t − RCFEut, χ) + (∇(uCFE − RCFEu), ∇χ)

= (uCFE
t , χ) + (∇uCFE, ∇χ) − (RCFEut, χ) − (∇RCFEu, ∇χ)

= (f(uCFE), χ) − (RCFEut, χ) − (∇RCFEu, ∇χ),

adding and subtracting the term (ut, χ) together with (5) and the definition
of Ritz projection (8), we have

(θt, χ) + (∇θ, ∇χ) = (f(uCFE) − f(u), χ) − (ρt, χ).(10)

Substituting χ = θ and using (2), together with the usage of Friedrichs’
inequality ∥θ∥ ≤ ∥∇θ∥ (cf. [29]), we obtain

1
2

d
dt∥θ∥2 + ∥∇θ∥2 = (f(uCFE) − f(u), θ) − (ρt, θ)

≤ |f(uCFE) − f(u), θ| + |ρt, θ|
≤ C∥uCFE(t) − u(t)∥ ∥∇θ∥ + ∥ρt∥ ∥θ∥
≤ C(∥θ∥2 + ∥ρ∥2 + ∥ρt∥2) + ∥∇θ∥2,

where in the last step we have used the Hölder’s inequality. This gives
1
2

d
dt∥θ∥2 ≤ C(∥θ∥2 + ∥ρ∥2 + ∥ρt∥2),

integrating we have

∥θ(t)∥2 ≤ ∥θ(0)∥2 + C

∫ t

0
(∥θ∥2 + ∥ρ∥2 + ∥ρt∥2)ds,

using Gronwall’s lemma, the above equation shows

∥θ(t)∥2 ≤ ∥θ(0)∥2 + C

∫ t

0
(∥ρ∥2 + ∥ρt∥2)ds,(11)

where C now depends on t̄ [29]. It is easy to observe that

∥θ(0)∥ ≤ ∥vCFE − v∥ + ∥RCFEv − v∥ ≤ ∥vCFE − v∥ + CH2 ˜log(H/h)∥v∥2,Ω.

Substituting the values of ∥θ(0)∥, (11) gives

∥θ(t)∥2 ≤ C∥vCFE − v∥2 + CH4 ˜log2(H/h),

which shows

∥θ(t)∥ ≤ C∥vCFE − v∥ + CH2 ˜log(H/h).

Therefore, using the bound of θ(t) together with the bound of ρ(t) one can
obtain the required estimate, which completes the proof. □
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Next, our aim is to find the error estimate in the gradient norm. For finding
the estimate in gradient norm, we will use some inequality for the estimation
of (f(uCFE) − f(u)), given as the following remark.

Remark 6. Following the argument of [29], choose q with 2< q < ∞. We
have ∥θ∥Lq ≤ C∥∇θ∥ and the Hölder’s inequality q−1 + (q′)−1 =1,

|f(uCFE) − f(u), θ| ≤ C∥f(uCFE) − f(u)∥Lq′ ∥∇θ∥.

With using the assumption |f ′(u)| ≤ C (1 + |u|p), for u ∈ R (as done in
Thomée [29, Ch. 14, eq. (14.5)] and applying the Hölder’s inequality once
again with exponents 2/q′ and 2/(2 − q′), we obtain

∥f(uCFE) − f(u)∥q′

Lq′ ≤ C

∫
Ω

|uCFE − u|q′ (1 + |uCFE| + |u|
)pq′

dx

≤ C∥uCFE − u∥q′ (1 + ∥uCFE∥Ls + ∥u∥Ls

)pq′

with s = 2pq/(q − 2). Since u is smooth and s < ∞, we have ∥uCFE∥Ls ≤
C∥∇uCFE∥, we can conclude that

∥f(uCFE) − f(u)∥Lq′ ≤ C∥uCFE − u∥
(
1 + ∥∇uCFE∥

)p
.

Note that, the inequality |f ′(u)| ≤ C(1 + |u|p) is more restrictive than the
first inequality (1.2), as it implies an upper bound on |f ′(u)| that depends on
u. Therefore, the value of B should be chosen to accommodate the maximum
possible value of |f ′(u)| for all values of u, considering the more restrictive
inequality. Henceforth, it is enough to choose (1 + |u|p) ≤ B/C, which easily
follows the inequality (1.2)???.

Theorem 7. Let u(t) be the solution of (1) and uCFE(t) be the solution
of Equation (6). Assume u(t) and ut(t) belongs to H1

0 (Ω) ∩ H2(Ω) for each
t. Let the boundedness condition (2) holds. If vCFE = RCFEv, there exists
a positive constant C = C(u, t̄) independent of the mesh parameters (h, H),
such that the inequality holds

∥∇(uCFE(t) − u(t))∥ ≤ CH ˜log1/2(H/h), for t ∈ Ī .

Proof. Computing in the similar manner as in the proof of Theorem 5 and
substituting χ = 2θt in Equation (10), we get

2∥θt∥2 + d
dt∥∇θt∥2 = 2(f(uCFE) − f(u), θt) − 2(ρt, θt),

apply kickback on the term of 2∥θt∥2,
d
dt∥∇θ∥2 ≤ ∥f(uCFE) − f(u)∥2 + ∥ρt∥2

≤ 2∥f(uCFE) − f(RCFEu)∥2 + 2∥f(RCFEu) − f(u)∥2 + CH2 ˜log(H
h ).(12)

Now following the similar estimates of (f(uCFE) − f(u)) as in Remark 6,

∥f(RCFEu) − f(u)∥2 ≤ C

∫
Ω

(
RCFEu − u

)2 (
1 + |RCFEu|

)2p
dx
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= C

∫
Ω

ρ2
(
1 + |RCFEu|

)2p
dx

≤ C

(∫
Ω

ρqdx

)2/q (∫
Ω

(
1 + |RCFEu|

)s
dx

)(q−2)/q

≤ C ∥ρ∥2
Lq

(
1 + ∥RCFEu∥Ls

)2p

≤ C∥∇ρ∥2 ≤ CH2 ˜log(H/h),(13)

here we have used ∥RCFEu∥Ls ≤ C∥∇RCFEu∥ ≤ C∥∇u∥ ≤ C. In the similar
way, we have

∥f(uCFE) − f(RCFEu)∥2 ≤ C∥∇θ∥2
(
1 + ∥∇uCFE∥

)2p

≤ C∥∇θ∥2 (1 + ∥∇θ∥)2p .(14)

Using Equations (13) and (14), we obtain from (12)
d
dt∥∇θ∥2 ≤ C∥∇θ∥2 (1 + ∥∇θ∥)2p + CH2 ˜log(H/h).(15)

Assume tH ∈ Ī is as large as possible with ∥∇θ∥ ≤ 1 on [0, t̄H ]. Then for
t ≤ t̄H , from Equation (15) we have,

d
dt∥∇θ∥2 ≤ C∥∇θ∥2 + CH2 ˜log(H/h),(16)

with C independent of t̄H , this gives

∥∇θ∥ ≤ CH ˜log1/2(H/h)eCt̄ ≤ 1
2 , for H ≤ H0.

It follows that t̄H = t̄ for H ≤ H0 (since h ≪ H and using Remark 3), so
that ∥∇θ∥ ≤ 1 on Ī for these H and therefore,

∥∇uCFE∥ ≤ ∥∇u∥ + 1 on Ī .

Therefore, our claim ∥∇θ∥ ≤ 1 is fulfilled in order to obtain Equation (16).
Now, (16) gives after integration

∥∇θ(t)∥2 ≤ ∥∇θ(0)∥2 + C

∫ t

0

(
∥∇θ∥2 + H2 ˜log(H/h)

)
ds,

using Gronwall’s lemma, the above equation gives

∥∇θ(t)∥2 ≤ ∥∇θ(0)∥2 + C

∫ t

0

(
H2 ˜log(H/h)

)
ds,

where C now depends on t̄. Then for vCFE = RCFEv, we obtain ∥∇θ(t)∥ ≤
CH ˜log1/2(H/h). Altogether the bound of ∇ρ(t) concludes the proof of the
theorem. □

Remark 8. Note that when h = O(H), the two-scale grid TH,h coincides
with the coarse grid TH , and the results of Theorems 5 and 7 coincides with
the standard FEM [29].
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5. FULLY DISCRETE ERROR ESTIMATES

Next, we examine the variation/discretization in both the space and time
constraints. Let UCFE, n = Un be an approximation of u(tn) = un. Here also,
we bound the error term Un −un in the L∞(L2)-norm. We use two approaches
for finding the error estimates- The backward Euler and the Crank-Nicolson
method.

5.1. Backward Euler method. The variational form is similar to Equation
(6), but in both time-space discretization, it is given by

(∂̄Un, χ) + (∇Un, ∇χ) = (f(Un), χ), ∀χ ∈ SCFE, n ≥ 1, U0 = vCFE.

(17)

Using the backward difference quotient for the term ∂̄Un as (Un −Un−1)/k,
Equation (17) gives(

Un−Un−1

k , χ
)

+ (∇Un, ∇χ) = (f(Un), χ),

after simplifying,
(Un, χ) + k(∇Un, ∇χ) = (Un−1, χ) + k(f(Un), χ).(18)

Representing Un =
∑NCFE

j=1 αnϕCFE
j and choosing χ = ϕCFE

k for k = 1, 2, 3,

. . . , NCFE, the Equation (18) becomes
NCFE∑
j=1

αn
(
ϕCFE

j , ϕCFE
k

)
+ k

NCFE∑
j=1

αn
(
∇ϕCFE

j , ∇ϕCFE
k

)
=

=
NCFE∑
j=1

αn−1
(
ϕCFE

j , ϕCFE
k

)
+ k

f

NCFE∑
j=1

αnϕCFE
j

 , ϕCFE
k

 ,

(19)

with α0 = γ given by vCFE. With matrix notation similar to the usage in the
semidiscrete situation, Equation (19) can be written as

(B + kA)αn = Bαn−1 + kf̃(αn), with α0 = γ,(20)

where A, B and f̃(α) as given before. The argument which explains the
existence and uniqueness of the solution for (20) is detailed in [25, ch. 13].
Now we move on to finding the error estimates in the L∞(L2)-norm.

Theorem 9. Let Un and u be the solutions of Equations (17) and (1), re-
spectively and the condition (2) holds true. Assume u being sufficiently smooth.
Then there exists a positive constant C = C(u, t̄) independent of the grid pa-
rameters h, H such that for appropriately chosen vCFE, we have

∥Un − un∥ ≤ C∥vCFE − v∥ + C(u)
(
H2 ˜log(H/h) + k

)
for k ≤ H and tn ∈ I.
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Proof. Proceeding in a similar manner as given in the proof of Theorem 5,
we use Energy Argument and split the error in two terms θn = (Un −RCFEun)
and ρn = (RCFEun − un). Since ρn is bounded by Lemma 4, we proceed with
checking the boundedness of θn.

Using Equation (17) and Ritz projection (8), we write as follows

(∂̄θn, χ) + (∇θn, ∇χ) = (f(Un), χ) − (∂̄RCFEun, χ) − (∇RCFEun, ∇χ)
= (f(Un), χ) − (∂̄RCFEun, χ) − (∇un, ∇χ),

adding and subtracting the terms (un
t , χ) and (∂̄un, χ), and calculating we get

(∂̄θn, χ) + (∇θn, ∇χ) = (f(Un) − f(un), χ) − (∂̄ρn, χ) − (∂un − un
t , χ).

Put χ = θn and using (2),
1
2 ∂̄∥θn∥2 + ∥∇θn∥2 = (f(Un) − f(un), θn) − (∂̄ρn, θn) − (∂̄un − un

t , θn)

≤ C
(
∥Un − un∥ + ∥∂̄ρn∥ + ∥∂̄un − un

t ∥
)

∥θn∥

≤ C
(
∥ρn∥2 + ∥∂̄ρn∥2 + ∥∂̄un − un

t ∥2
)

+ C∥θn∥2

= C∥θn∥2 + CMn,

where Mn = ∥ρn∥2 + ∥∂̄ρn∥2 + ∥∂̄un − un
t ∥2. Since 1

2 ∂̄∥θn∥2 ≤ 1
2 ∂̄∥θn∥2 +

∥∇θn∥2, therefore we have

∂̄∥θn∥2 ≤ C(∥θn∥2 + Mn),

using ∂̄∥θn∥2 = (∥θn∥2 − ∥θn−1∥2)/k,

(1 − Ck)∥θn∥2 ≤ ∥θn−1∥2 + CkMn,

and for small k,

∥θn∥2 ≤ (1 + Ck)∥θn−1∥2 + CkMn,

...
...

≤ (1 + Ck)n∥θ 0∥2 + Ck
N∑

j=1
(1 + Ck)n−jMj ,

≤ C∥θ 0∥2 + Ck
N∑

j=1
Mj .(21)

For θn to be bounded, we have to show Mj is bounded. By Lemma 4, ρj is
bounded. Now,

∥∂̄ρj∥ = ∥k−1
∫ tj

tj−1
ρt ds∥ ≤ C(u) H2 ˜log(H/h),
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and

∥∂̄un − un
t ∥ = ∥k−1

∫ tj

tj−1
(s − tj−1)utt(s)ds∥ ≤ C(u)k.

Altogether we have Mj ≤ C(u)(H2 ˜log(H/h) + k)2. Using the estimation of
θ0, we have from (21),

∥θn∥ ≤ C∥vCFE − v∥ + C(u)(H2 ˜log(H/h) + k),
together with the estimation of ρn completes the proof. □

Remark 10. It can be noted that the estimate in the L∞(L2)-norm is second
order convergence in space and first order convergence in time.

In order to avoid the disadvantage of producing system of equations of
nonlinear behaviour at each time step, we consider the linearized form of (17)

(∂̄Un, χ) + (∇Un, ∇χ) = (f(Un−1), χ). ∀χ ∈ SCFE, n ≥ 1, U0 = vCFE.

(22)

Applying the backward difference method to the term ∂̄Un, we get

(Un−Un−1

k , χ) + (∇Un, ∇χ) = (f(Un−1), χ)
(Un, χ) + k(∇Un, ∇χ) = (Un−1, χ) + k(f(Un−1), χ).

Taking Un =
∑NCFE

j=1 αnϕCFE
j and using the positive definiteness property

of the matrices A, B we get the unique solution

αn = (B + kA)−1
(
αn−1B + kf̃(αn−1)

)
.

Theorem 11. Let Un be the solution of Equation (22) and u be the solution
of Equation (1). Let the condition (2) holds true. Assume u being sufficiently
smooth. Then there exists a positive constant C = C(u, t̄) independent of the
grid parameters h, H such that for appropriately chosen vCFE, we have

∥Un − un∥ ≤ C∥vCFE − v∥ + C(u)(H2 ˜log(H/h) + k)
for small k, where k ≤ H and tn ∈ I.

Proof. We first concentrate on the boundedness of θn. This time we obtain
the following equation

(∂̄θn, χ) + (∇θn, ∇χ) = (f(Un−1) − f(un), χ) − (∂̄ρn, χ) − (∂̄un − un
t , χ),

and substituting χ = θn we obtain
1
2 ∂̄∥θn∥2 + ∥∇θn∥2 ≤ C

(
∥Un−1 − un∥ + ∥∂̄ρn∥ + ∥∂̄un − un

t ∥
)

∥θn∥.(23)

Now we focus on estimating the term ∥Un−1 − un∥. In order to estimate,
we add and subtract RCFEun−1 and un−1 to get ∥Un−1 − un∥ ≤ ∥θn−1∥ +
∥ρn−1∥ + k∥∂̄un∥. Using the Friedrich’s inequality, Equation (23) becomes

1
2 ∂̄∥θn∥2 + ∥∇θn∥2 ≤
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≤ C
(
∥θn−1∥ + ∥ρn−1∥ + k∥∂̄un∥ + ∥∂̄ρn∥ + ∥∂̄un − un

t ∥
)

∥∇θn∥,

this gives

∂̄∥θn∥2 ≤ C∥θn−1∥2 + C
(
∥ρn−1∥2 + k2∥∂̄un∥2 + ∥∂̄ρn∥2 + ∥∂̄un − un

t ∥2
)

≤ C∥θn−1∥2 + C(u)
(
H2 ˜log(H/h) + k

)2
,

using ∂̄∥θn∥2 = (∥θn∥2 − ∥θn−1∥2)/k,

∥θn∥2 ≤ (1 + Ck)∥θn−1∥2 + C(u)k
(
H2 ˜log(H/h) + k

)2
,

after repeated applications and for small k,

∥θn∥2 ≤ (1 + Ck)n∥θ 0∥2 + C(u)k
N∑

j=1
(1 + Ck)n−j(H2 ˜log(H/h) + k)2,

≤ C∥θ 0∥2 + C(u)(H2 ˜log(H/h) + k)2.

Using the estimation of ∥θ 0∥ together with the estimation of ρn, the proof
is completed. □

Now, we move on to Crank-Nicolson method to check for obtaining higher
accuracy in time.

5.2. Crank-Nicolson method. Here we take Ũn = (Un +Un−1)/2. The vari-
ational form is similar to Equation (6), but in both time-space discretization,
it is given by

(∂̄Un, χ) + (∇Ũn, ∇χ) = (f(Ũn), χ), ∀χ ∈ SCFE, n ≥ 1, tn ∈ I, U0 = vCFE.

(24)

Using the definition of both the terms ∂̄Un and Ũn, Equation (24) gives(
Un−Un−1

k , χ
)

+
(
∇
(

Un+Un−1

2

)
, ∇χ

)
= (f(Ũn), χ).

It is to be noted that the equation is symmetric around the point t = tn−1/2,
which indicates the accuracy of second order in time. Multiplying by 2k and
re-arranging,

2(Un, χ) + k(∇Un, ∇χ) = 2(Un−1, χ) − k(∇Un−1, ∇χ) + 2k(f(Ũn), χ),
therefore similar to the backward Euler method, the nonlinear equation (24)
is solvable for Un in terms of Un−1 for small k. To avoid the disadvantage of
producing nonlinear system of equations at each time step, we consider the
linearized modification on the term Ũn as Ūn = 3

2Un−1 − 1
2Un−2, for n ≥ 2.

Then Equation (24) becomes

(∂̄Un, χ) + (∇Ūn, ∇χ) = (f(Ūn), χ), ∀χ ∈ SCFE, tn ∈ I,(25)

with U0 = vCFE. The linearized form (25) is always solvable for Un for the
given values of Un−1 and Un−2.
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Now before moving on to the error estimate we define the lemma below.
The proof easily follows from [25, ch. 13].

Lemma 12. Let RCFE be defined in (8). Assuming the regularity for u, we
have

∥∇RCFEutt∥ ≤ C(u), for t ∈ Ī .

Using this, we find the error estimate.

Theorem 13. Let Un be the solution of Equation (24) and u be the solu-
tion of Equation (1). Assume that the condition (2) holds true. Then under
the regularity assumptions of u, there exists a positive constant C = C(u, t̄)
independent of the grid parameters h, H such that for appropriately chosen
vCFE, we have

∥Un − un∥ ≤ C ∥vCFE − v∥ + C(u)(H2 ˜log(H/h) + k2)
for small k, where k ≤ H and tn ∈ Ī.

Proof. The error term is partitioned into two as in the previous cases and
ρn is bounded. It remains to check for θn. While checking the boundedness,
this time we use (∇θ̃n, ∇χ) instead of (∇θn, ∇χ). Using the Ritz projection,
we write

(∂̄θn, χ) + (∇θ̃n, ∇χ) = (f(Ũn), χ) − (∂̄RCFEun, χ) − (∇RCFEũn, ∇χ),

by adding and subtracting the term (un− 1
2

t , χ) to the RHS and rearranging by
taking the common terms together, we get as follows.

(∂̄θn, χ) + (∇θ̃n, ∇χ) =

= (f(Ũn), χ) − (un− 1
2

t , χ) − (∂̄RCFEun − u
n− 1

2
t , χ) − (∇RCFEũn, ∇χ),

adding and subtracting (∇RCFEun− 1
2 , ∇χ),

(∂̄θn, χ) + (∇θ̃n, ∇χ) =

= (f(Ũn), χ) −
(
∂̄RCFEun − u

n− 1
2

t , χ
)

−
(
∇RCFE(ũn − un− 1

2 ), ∇χ
)

−
(
u

n− 1
2

t , χ
)

−
(
∇RCFEun− 1

2 , ∇χ
)

=
(
f(Ũn) − f(un− 1

2 ), χ
)

−
(
∂̄RCFEun − u

n− 1
2

t , χ
)

−
(
∇RCFE(ũn − un− 1

2 ), ∇χ
)
.

Substituting χ = θ̄n, this gives
(∂̄θn, θ̄n) + ∥∇θ̄n∥2 =

=
(
f(Ũn) − f(un− 1

2 ), θ̄n
)

−
(
∂̄RCFEun − u

n− 1
2

t , θ̄n
)

−
(
∇RCFE(ũn − un− 1

2 ), ∇θ̄n
)
,
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using (2) and the Friedrich’s inequality, we obtain
1
2 ∂̄∥θn∥2 + ∥∇θ̄n∥2 =???

≤ C

(
∥Ũn − un− 1

2 ∥ + ∥∂̄RCFEun − u
n− 1

2
t ∥ + ∥∇RCFE(ũn − un− 1

2 )∥
)

∥∇θ̄n∥,

and hence,

∂̄∥θn∥2 ≤ C
(∥∥∥Ũn − un− 1

2

∥∥∥2
+
∥∥∥∂̄RCFEun − u

n− 1
2

t

∥∥∥2
+
∥∥∥∇RCFE(ũn − un− 1

2 )
∥∥∥2)

.

(26)

We have the first term

∥Ũn − un− 1
2 ∥ ≤ ∥θ̃n∥ + ∥ρ̃n∥ + ∥ũn − un− 1

2 ∥
≤ ∥θ̃n∥ + C(u)(H2 ˜log(H/h) + k2).

The second term

∥∂̄RCFEun − u
n− 1

2
t ∥ ≤ ∥∂̄ρn∥ + |∂̄un − u

n− 1
2

t ∥ ≤ C(u)(H2 ˜log(H/h) + k2),

and by Lemma 12, the last term

∥∇RCFE(ũn − un− 1
2 )∥2 ≤ Ck

∫ tn

tn−1
∥∇RCFEutt∥ds ≤ C(u)k2.

Finally (26) becomes

∂̄∥θn∥2 ≤ C∥θ̃n∥2 + C(u)(H2 ˜log(H/h) + k2)2,

using θ̃n = (θn + θn−1)/2,

(1 − Ck)∥θn∥2 ≤ (1 + Ck)∥θn−1∥2 + C(u)k(H2 ˜log(H/h) + k2)2,

for small k, and by repeating iterations, we get

∥θn∥ ≤ ∥vCFE − v∥ + C(u)(H2 ˜log(H/h) + k2),

where we have used the value of θ0. Along with the estimation of ρn the proof
is now completed. □

Now we consider the linearized modification of the Crank-Nicolson method,
where U1 need to be calculated separately. For this purpose we use the
predictor-corrector method. Consider the first approximation U1,0 which is
determined for the case n = 1 in Equation (25), by replacing Ū1 with U0.
Then in the final approximation Ū1 is replaced by

(
U1,0+U0

2

)
in the result of

the same equation with

U0 = vCFE(27)

(
U1,0−U0

k , χ
)

+
(
∇
(

U1,0+U0

2

)
, ∇χ

)
= (f(U0), χ), ∀χ ∈ SCFE.(28)
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Since U1,0 and U0 are known values from the previous equations, the ob-
jective is to find U1. Hence we have the following equation(

U1−U0

k , χ
)

+ (∇Ū1, ∇χ) =
(
f
(

U1,0+U0

2

)
, χ
)

, ∀χ ∈ SCFE.(29)

Next we proceed to finding the error estimate.

Theorem 14. Let Un be the solution of (25), with U0 and U1 defined
by (27)–(29). Let u be the solution of (1). Then under the assumptions
of regularity of the solution u, there exists a positive constant C = C(u, t̄)
independent of the grid parameters h, H such that for appropriately chosen
vCFE, we have

∥Un − un∥ ≤ C ∥vCFE − v∥ + C(u)(H2 ˜log(H/h) + k2),
for small k, where k ≤ H and for tn ∈ I.

Proof. On estimation of θn, this time we obtain
(∂̄θn, χ) + (∇θ̄n, ∇χ) =

= (f(Ūn) − f(un− 1
2 ), χ) − (∂̄RCFEun − u

n− 1
2

t , χ) − (∇RCFE(ūn − un− 1
2 ), ∇χ),

substituting χ = θ̄n and after calculations, this gives

∂̄∥θn∥2 ≤ C

(
∥Ūn − un− 1

2 ∥2 + ∥∂̄RCFEun − u
n− 1

2
t ∥2 + ∥∇RCFE(ūn − un− 1

2 )∥2
)

≤ C∥Ūn − un− 1
2 ∥2 + C(u)(H2 ˜log(H/h) + k2)2.

Now, ∥Ūn − un− 1
2 ∥ ≤ ∥θ̄n∥ + ∥ρ̄n∥ + ∥ūn − un− 1

2 ∥

≤ C
(
∥θn−1∥ + ∥θn−2∥

)
+ C(u)(H2 ˜log(H/h) + k2),

hence finally we obtain
∥θn∥2 ≤ (1 + Ck)∥θn−1∥2 + Ck∥θn−2∥2 + C(u)k(H2 ˜log(H/h) + k2)2,

after iterations,
∥θn∥2 ≤ C∥θ1∥2 + Ck∥θ0∥2 + C(u)(H2 ˜log(H/h) + k2)2, for n ≥ 2.(30)

Now our aim is to estimate the value of ∥θ1∥ with the help of Equations
(28) and (29). Substituting θ1,0 = U1,0 − RCFEu1 and θ0,0 = θ0 in (28), we
obtain

∂̄∥θ1,0∥2 ≤ C∥U0 − u
1
2 ∥2 + C(u)(H2 ˜log(H/h) + k2)2.

Since
∥U0 − u

1
2 ∥ ≤ ∥θ0∥ + ∥ρ0∥ + ∥u0 − u

1
2 ∥

≤ ∥θ0∥ + C(u)(H2 ˜log(H/h) + k),
which obviously shows that ∂̄∥θ1,0∥2 ≤ C∥θ0∥2 + C(u)(H4 ˜log2(H/h) + k2),
and hence

∥θ1,0∥2 ≤ (1 + Ck)∥θ0∥2 + C(u)k(H4 ˜log2(H/h) + k2)
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≤ C∥θ0∥2 + C(u) (H4 ˜log2(H/h) + k3).

Applying (29) to get

∂̄∥θ1∥2 ≤ C∥1
2(U1,0 + U0) − u

1
2 ∥2 + C(u)(H2 ˜log(H/h) + k2)2,

here, by previous technique,

∥1
2(U1,0 + U0) − u

1
2 ∥2 ≤ 1

2(∥θ1,0∥ + ∥θ0∥) + C(u) (H2 ˜log(H/h) + k2)

≤ C∥θ0∥ + C(u) (H2 ˜log(H/h) + k3/2),
hence, we obtain

∥θ1∥2 ≤ (1 + Ck)∥θ0∥2 + C(u)k(H4 ˜log2(H/h) + k3)
≤ C∥θ0∥2 + C(u)(H2 ˜log(H/h) + k2)2.

Altogether this estimate, (30) gives
∥θn∥ ≤ C∥θ0∥ + C(u) (H2 ˜log(H/h) + k2)

≤ C ∥vCFE − v∥ + C(u)(H2 ˜log(H/h) + k2).
The estimate θn, together with the estimate of ρn completes the proof. □

6. NUMERICAL RESULTS

In this section we consider two examples. In the first example we consider
a two dimensional test problem in smooth domain for homogeneous bound-
ary condition and second example considers a two dimensional test problem
with non-homogeneous boundary condition for a highly complicated zig-zag
domain. We use the numerical experiments after choosing two mesh sizes- one
for coarse-scale and the other for fine-scale. We consider the backward Euler
scheme and then the Crank-Nicolson scheme to evaluate the error estimates
and the corresponding rate of convergence (ROC). The numerical results are
computed using the software FreeFEM++, which are in unison with the the-
oretical results.

Example 15. Let the domain of the solution space be Ω × (0, 1], where Ω
denotes the square (0, 1)× (0, 1). Consider the initial-boundary value problem:

ut − ∆u = 1 + u2 in Ω × (0, 1],
u = 0 on Γ × (0, 1],

u(x, y, 0) = xy in Ω.

(31)

We validate the characteristics of the error estimates for the linearized back-
ward Euler and Crank-Nicolson schemes presented in Theorem 11 and Theo-
rem 14 for the problem (31). The degrees of freedom ϑH lies in Ωin. So, the
nodal values of the inner triangulation Tin

H corresponding to the domain Ωin is
computed. We have discretized the domain space using the two-scale grid, H
being the coarse mesh size and h being the fine mesh size and h ≪ H. Also,
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k is chosen as the time step for time discretization. In order to check the
optimal order accuracy in space we take different time steps in both schemes,
k = H2 in Backward Euler scheme and k = H in Crank-Nicolson scheme.

Let i denote the number of iterations. For each iteration i, let Ei denote
the error which corresponds to L∞(L2)-norm and Hi denote the coarse grid
size. We calculate the ROC as follows

ROC(Ei) = log(Ei+1/Ei)
log(Hi+1/Hi)

.

We have computed the ROC for both the spatial grid size and time step
size. Here, we have fixed the time discretizations as N = 2187 to check the
convergence w.r.t. space. Also, we fix space discretizations with 7728 degrees
of freedom for checking the convergence with respect to the time. For conve-
nience, we use the notation CFEerror and FEerror to denote the composite finite
element errors and the finite element errors in the L∞(L2)-norm, respectively.

Tables 1 and 3 give the results for the Backward difference scheme and
Crank-Nicolson scheme, respectively. It is shown that optimal order conver-
gence is achieved. Tables 2 and 4 give the respective results from the calcula-
tions for the standard FEM.

ϑd CFEerror ROC N CFEerror ROC
27 5.232520e-01 – 3 6.565751e-01 –
92 1.382621e-01 1.9201 9 1.697086e-01 1.9519
360 3.611840e-02 1.9366 27 4.480898e-02 1.9212
1280 9.291181e-03 1.9588 81 1.163433e-02 1.9454
2942 2.330536e-03 1.9952 243 2.981867e-03 1.9641
7728 5.840493e-04 1.9965 729 7.618697e-04 1.9686

Table 1. CFE error in L∞(L2)-norm for backward Euler method.

ϑd FEerror ROC N FEerror ROC
39 7.792012e-01 – 3 5.938930e-01 –
141 2.054512e-01 1.9232 9 1.523725e-01 1.9626
520 5.314463e-02 1.9508 27 3.774357e-02 2.0133
1986 1.354841e-02 1.9718 81 9.341532e-03 2.0145
5225 3.360677e-03 2.0113 243 2.305467e-03 2.0186
18641 8.155538e-04 2.0429 729 5.691414e-04 2.0182

Table 2. FE error in L∞(L2)-norm for backward Euler method.
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ϑd CFEerror ROC N CFEerror ROC
27 3.722538e-01 – 3 6.831887e-01 –
92 9.928079e-02 1.9067 9 1.821319e-01 1.9073
360 2.620631e-02 1.9216 27 4.713870e-02 1.9500
1280 5.705062e-03 2.1996 81 1.227660e-02 1.9410
2942 1.464129e-03 1.9622 243 3.101874e-03 1.9847
7728 3.696528e-04 1.9858 729 7.648985e-04 2.0198

Table 3. CFE error in L∞(L2)-norm for Crank-Nicolson method.

ϑd FEerror ROC N FEerror ROC
39 6.804915e-01 – 3 6.603572e-01 –
141 1.722587e-01 1.9820 9 1.730689e-01 1.9319
520 4.279390e-02 2.0091 27 4.363164e-02 1.9879
1986 1.082153e-02 1.9835 81 1.093364e-02 1.9966
5225 2.643653e-03 2.0333 243 2.699145e-03 2.0182
18641 6.526734e-04 2.0181 729 6.555613e-04 2.0417

Table 4. FE error in L∞(L2)-norm for Crank-Nicolson method.

From Tables 1 and 3 it is obvious that ROC is attained at lesser degrees
of freedom as compared to that of Tables 2 and 4 respectively, which is very
beneficial as the computational time and cost is very less for the CFE method.
We establish that this is the advantage of the CFE method and it is more
efficient.

Now we consider the plots using the software FreeFEM++ and the results
are given in respective figures. Fig. 3 demonstrates the CFE solution which is
computed using the backward Euler method at the time level t = 1 whereas
Fig. 4 demonstrates the CFE solution computed using the Crank-Nicolson
method.

Fig. 3. CFE solution computed using the back-
ward Euler method at the time level t = 1.

Fig. 4. CFE solution using the Crank-Nicolson
method at the time level t = 1.
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Example 16. Consider the following problem in Ω, which is now a compu-
tational domain with many geometric details. Assume that the domain Ω is a
zig-zag domain with 220 re-entering corners as shown in Fig. 5. Earlier the
numerical experiments for linear model problem on zig-zag domain has been
extensively studied, see e.g. [24]. In the present experiment, let us consider
the model non-homogeneous problem as

ut − ∆u = u3 in Ω × (0, 0.5],
u = 1 on Γ × (0, 0.5],

u(x, y, 0) = x2y2 in Ω.

(32)

Fig. 5. Zig-zag domain having 220 re-entering
corners.

Fig. 6. CFE solution computed at the time level
t = 0.5 corresponding to the mesh sizes H =
0.015, h = 0.009 with the maximum value 1.0666.

Fig. 7. Zoom view into boundary region (zig-zag segments) of the CFE solution depicted in Fig. 6.

Due to the presence of nonlinearity in u on the right hand side, finding
the analytical solution of the problem is highly challenging and hence we find
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the approximate solution numerically. Here we consider variable time step
scheme. Let 0 = t0 < t1 < t2 < · · · < tN = T be a partition of the positive
time axis and set kj = tj − tj−1. Here we have chosen t0 = 0, t1 = 0.07, t2 =
0.16, t3 = 0.24, t4 = 0.33, t5 = 0.43, t6 = 0.5 and the corresponding variable
time step sizes are calculated as k1 = 0.07, k2 = 0.09, k3 = 0.08, k4 =
0.09, k5 = 0.1 and k6 = 0.07. Also let Un be the approximation of the exact
solution given by u(tn), who values are calculated using the backward difference
formula (22), where we have used the backward Euler quotient as ∂̄nUn =
1

kn
(Un −Un−1) for variable time steps. In this example we determine the CFE

solution and the errors for the backward Euler method at every time level (cf.
Table 5) and then obtain the L∞(L2) errors and the corresponding ROC (cf.
Table 6). The CFE solution is depicted in Fig. 6 and the zoom view of the
solution is depicted in Fig. 7. From Table 6 one can observe that our scheme is
providing an optimal order convergence which strongly supports our theoretical
results.

H h Time level (t) uCFE ∥uCFE(t) − u(t)∥L2

0.12 0.072 0.07 0.96463 8.78541e-02
0.16 0.97312 7.81550e-02
0.24 0.98633 6.76764e-02
0.33 0.98690 5.66721e-02
0.43 1.06280 5.19924e-02
0.50 1.06618 3.79710e-02

0.06 0.036 0.07 0.97039 2.49758e-02
0.16 0.97539 2.00712 e-02
0.24 0.98712 1.97321 e-02
0.33 0.98792 1.71348 e-02
0.43 1.06391 0.87562 e-02
0.50 1.06642 0.68914 e-02

0.03 0.018 0.07 0.97507 6.91038e-03
0.16 0.97719 6.04581e-03
0.24 0.98781 4.88367e-03
0.33 0.98996 3.88814e-03
0.43 1.06445 2.66917e-03
0.50 1.06653 2.00493e-03

0.015 0.009 0.07 0.98102 1.75991e-03
0.16 0.98124 1.49616e-03
0.24 0.99476 0.99715e-03
0.33 0.99876 0.75984e-03
0.43 1.06546 0.58582e-03
0.50 1.06657 3.21776e-04

Table 5. CFE solution and error in different coarse-scale mesh sizes H for varying time levels.
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H h ϑdof ∥uCFE − u∥L∞(L2) ROC
0.12 0.072 42 8.78541e-02 –
0.06 0.036 141 2.49758e-02 1.8146
0.03 0.018 488 6.91038e-03 1.8537
0.015 0.009 1640 1.75991e-03 1.9733

Table 6. ROC in the L∞(L2)-norm.

7. CONCLUSION

In this paper we have put forward the idea of a variant of the finite element
method, known as the composite finite element method. This is a two-scale
method where we have two types of grids - coarse grid and fine grid. The
primary benefit of the method is that the dimension depends on the coarser
grids only, thereby reducing computational complexity. We considered the
semilinear parabolic problem and derived the optimal order error estimates
initially for the semidiscrete case and then for the fully discrete case. We
have shown the theoretical proofs and, for validation, numerical experiments
are carried out. We have used the backward Euler method and thereafter
the Crank-Nicolson approach. We compared the obtained results with the
standard FEM to show that the dimension of CFE space is much smaller than
the standard FE space, which is very much beneficial. We have established
that the proposed method gives efficient and optimal results.
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de l’Institut Henri Poincaré, Probabilités et Statistiques, 55 (2019) no. 1, pp. 184–210.
https://doi.org/10.1214/17-AIHP880

[18] M. Hutzenthaler, A. Jentzen, T. Kruse, T.A. Nguyen and P.V. Wurstem-
berger, Overcoming the curse of dimensionality in the numerical approximation of
semilinear parabolic partial differential equations, Proc. R. Soc. A, Math. Phys. Eng.
Sci., 476: 2244, 202), pp. 20190630. ?? https://doi.org/10.1098/rspa.2019.0630

[19] M. Hutzenthaler, A. Jentzen, T. Kruse, Multilevel Picard iterations for solving
smooth semilinear parabolic heat equations, Partial Differential Eq. Appl., 2 (2021) no.
6, pp. 1–31. https://doi.org/10.1007/s42985-021-00089-5

[20] S. Larsson, Semilinear parabolic partial differential equations: thoery, approximation
and applications, New Trends in the Mathematical and Computer Sciences, 3 (2006),
pp. 153–194.

[21] F. Liehr, T. Preusser, M. Rumpf, S. Sauter and L.O. Schwen, Composite finite
elements for 3D image based computing, Comput. Visualization Sci. 12 (2009) no. 4,
pp. 171–188. https://doi.org/10.1007/s00791-008-0093-1

[22] T. Pramanick, R.K. Sinha, Two-scale composite finite element method for parabolic
problems with smooth and nonsmooth initial data, J. Appl. Math. Comput., 58 (2018)
nos. 1–2, pp. 469–501. https://doi.org/10.1007/s12190-017-1153-9

[23] T. Pramanick and R.K. Sinha, Error estimates for two-scale composite finite el-
ement approximations of parabolic equations with measure data in time for convex

https://doi.org/10.1090/S0025-5718-1980-0572848-X
https://doi.org/10.1090/S0025-5718-1980-0572848-X
https://doi.org/10.1090/S0025-5718-1980-0572848-X
https://doi.org/10.1090/S0025-5718-1980-0572848-X
https://doi.org/10.1090/S0025-5718-1980-0572848-X
https://doi.org/10.1137/1.9780898719208
https://doi.org/10.1137/1.9780898719208
https://doi.org/10.1137/1.9780898719208
https://doi.org/10.1137/1.9780898719208
https://doi.org/10.1137/1.9780898719208
https://doi.org/10.1137/0707048
https://doi.org/10.1137/0707048
https://doi.org/10.1137/0707048
https://doi.org/10.1051/m2an/1985190406111
https://doi.org/10.1051/m2an/1985190406111
https://doi.org/10.1051/m2an/1985190406111
https://doi.org/10.1051/m2an/1985190406111
https://doi.org/10.1090/memo/0696
https://doi.org/10.1090/memo/0696
https://doi.org/10.1090/memo/0696
https://doi.org/10.1090/memo/0696
https://doi.org/10.1007/s007910050002
https://doi.org/10.1007/s007910050002
https://doi.org/10.1007/s007910050002
https://doi.org/10.1007/s007910050002
https://doi.org/10.1007/s002110050248
https://doi.org/10.1007/s002110050248
https://doi.org/10.1007/s002110050248
https://doi.org/10.1007/s002110050248
https://doi.org/10.1007/BF01400356
https://doi.org/10.1007/BF01400356
https://doi.org/10.1007/BF01400356
https://doi.org/10.1007/BF01400356
https://doi.org/10.1214/17-AIHP880 
https://doi.org/10.1214/17-AIHP880 
https://doi.org/10.1214/17-AIHP880 
https://doi.org/10.1214/17-AIHP880 
https://doi.org/10.1214/17-AIHP880 
https://doi.org/10.1098/rspa.2019.0630
https://doi.org/10.1098/rspa.2019.0630
https://doi.org/10.1098/rspa.2019.0630
https://doi.org/10.1098/rspa.2019.0630
https://doi.org/10.1098/rspa.2019.0630
https://doi.org/10.1007/s42985-021-00089-5
https://doi.org/10.1007/s42985-021-00089-5
https://doi.org/10.1007/s42985-021-00089-5
https://doi.org/10.1007/s42985-021-00089-5
https://doi.org/10.1007/s00791-008-0093-1
https://doi.org/10.1007/s00791-008-0093-1
https://doi.org/10.1007/s00791-008-0093-1
https://doi.org/10.1007/s00791-008-0093-1
https://doi.org/10.1007/s12190-017-1153-9
https://doi.org/10.1007/s12190-017-1153-9
https://doi.org/10.1007/s12190-017-1153-9
https://doi.org/10.1007/s12190-017-1153-9
https://doi.org/10.1016/j.apnum.2019.03.009
https://doi.org/10.1016/j.apnum.2019.03.009
https://doi.org/10.1016/j.apnum.2019.03.009


28 Composite finite element framework for semilinear parabolic problems 53

and nonconvex polygonal domains, Appl. Numer. Math., 143 (2019), pp. 112–132.
https://doi.org/10.1016/j.apnum.2019.03.009

[24] T. Pramanick, R.K. Sinha, Composite finite element approximation for parabolic
problems in nonconvex polygonal domains, Comp. Methods Appl. Math., 20 (2020) no.
2, pp. 361–378. https://doi.org/10.1515/cmam-2018-0155

[25] M. Rech, Composite finite elements: An adaptive two-scale approach to the non-
conforming approximation of Dirichlet problems on complicated domains, PhD thesis,
Universität Zürich, 2006.
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