JOURNAL OF NUMERICAL ANALYSIS AND APPROXIMATION THEORY

J. Numer. Anal. Approx. Theory, vol. 53 (2024) no. 1, pp. 65-79, doi.org/10.33993/jnaat531-1408 ictp.acad.ro/jnaat

PRESERVING PROPERTIES
 OF SOME SZÁSZ-MIRAKYAN TYPE OPERATORS

JORGE BUSTAMANTE ${ }^{1}$

Abstract

For a family of Szász-Mirakyan type operators we prove that they preserve convex-type functions and that a monotonicity property verified by Cheney and Sharma in the case Szász-Mirakyan operators holds for the variation study here. We also verify that several modulus of continuity are preserved.

MSC. 41A36, 41A99. Keywords. Szász-Mirakyan type operators, positive linear operators, shape preserving properties.

1. INTRODUCTION

Throughout the work \mathbb{N} is the set of all positive integers, $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$, and \mathbb{P}_{n} is the family of all algebraic polynomials of degree non greater than n. Moreover, for each $j \in \mathbb{N}_{0}$, we use the notations

$$
e_{j}(x)=x^{j}, \quad x \in \mathbb{R},
$$

and $I=[0, \infty)$. Let $C(I)$ the family of all continuous functions $f: I \rightarrow \mathbb{R}$. The Szász-Mirakyan operators are defined by (see [5] and the references therein)

$$
S_{n}(f, x)=e^{-n x} \sum_{k=0}^{\infty} \frac{n^{k}}{k!} f\left(\frac{k}{n}\right) x^{k}, \quad x \in I .
$$

It is known that $S_{n}\left(e_{0}, x\right)=1$ and $S_{n}\left(e_{1}, x\right)=x$ (see [5]).
For a fixed real $p \geq 0$ and $n \in \mathbb{N}$, Schurer defined ([26] and [27])

$$
\begin{equation*}
S_{n, p}(f, x)=e^{-(n+p) x} \sum_{k=0}^{\infty} \frac{(n+p)^{k}}{k!} f\left(\frac{k}{n}\right) x^{k}, \quad x \in I . \tag{1}
\end{equation*}
$$

Some studies concerning these operators were given by Sikkema in [28] and [29] (see also [25]).

It is known that (see [25, p. 82]), for each $x \geq 0$ and $n \in \mathbb{N}, S_{n, p}\left(e_{0}, x\right)=1$ and

$$
S_{n, p}\left(e_{1}, x\right)=x+\frac{p x}{n} .
$$

[^0]Hence one has $S_{n, p}\left(e_{1}, x\right)=x$ only when $p=0$.
In this work we study properties of a modification $M_{n, p}$ of Schurer operators satisfying $M_{n, p}\left(e_{0}, x\right)=1$ and $M_{n, p}\left(e_{1}, x\right)=x$.

Let $\{\beta(n)\}$ be an strictly increasing sequence of positive real numbers such that $\lim _{n \rightarrow \infty} \beta(n)=\infty$. For $p \geq 0, n \in \mathbb{N}, x \geq 0$, and a function $f \in C(I)$ consider the operator

$$
\begin{equation*}
M_{n, p}(f, x)=e^{-(\beta(n)+p) x} \sum_{k=0}^{\infty} \frac{(\beta(n)+p)^{k}}{k!} f\left(\frac{k}{\beta(n)+p}\right) x^{k}, \tag{2}
\end{equation*}
$$

whenever the series converges absolutely. Let $\mathcal{L}(I)$ be the family of all functions $f \in C(I)$ such that, for each $n \in \mathbb{N}$, the series $M_{n, p}(f)$ converges absolutely.

Notice that $M_{n, p}$ can be considered a more natural extension of SzászMirakyan operators. This modification appeared in [7] and [8]. In [7] they were studied in spaces defined by the weight $\varrho_{m}(x)=1 /(1+x)^{m}$, with $m \in \mathbb{N}$ and in [8] some weighted space of bounded functions were considered.

There is a long list of papers devoted to study properties of Szász-Mirakyan operators. Here we recall some of them: [1], [3], [4], [5], [10], [17], [20], [21], [22], [32], [33], [34], [35], and [36]. It is worth asking when the results presented in the cited articles can be extended to the case $M_{n, p}$ operators.

For a fixed $p \geq 0, n \in \mathbb{N}$, and $x \geq 0$ we use the notations

$$
\begin{equation*}
g_{n, p}(x)=e^{-(\beta(n)+p) x} \quad \text { and } \quad a_{n, p}=\beta(n)+p . \tag{3}
\end{equation*}
$$

For $r \in \mathbb{N}_{0}, C_{r}(I)$ is the family of all $f \in C(I)$ such that

$$
\begin{equation*}
\|f\|_{r}=\sup _{x \in I} \frac{|f(x)|}{(1+x)^{r}}<\infty . \tag{4}
\end{equation*}
$$

For $r \in \mathbb{N}_{0}$, let $C_{r, \infty}(I)$ be the class of all functions $f \in C_{r}(I)$ such that $f(x) /(1+x)^{r}$ has a finite limit as $x \rightarrow \infty$.

In Section 2 we present some general properties of operators $M_{n, p}$. In Section 3 we show that some known properties related with monotone and convex functions and Szász-Mirakyan operators also holds for the operators $M_{n, p}$. In Section 4 we prove that several modulus of continuity are preserved (up to a constant) by the operators $M_{n, p}$.

2. SOME BASIC PROPERTIES

Since the series

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{a_{n, p}^{k}}{k!} x^{k}=e^{(\beta(n)+p) x}=g_{n, p}(x), \tag{5}
\end{equation*}
$$

converges uniformly on each interval $[0, a], a>0$, it can be differentiated term by term. For $i \in \mathbb{N}$, we will use several times the equations

$$
\begin{equation*}
g_{n, p}^{(i)}(x)=\sum_{k=i}^{\infty} \frac{a_{n, p}^{k}}{(k-i)!} x^{k-i}=\sum_{k=0}^{\infty} \frac{a_{n, p}^{k+i}}{k!} x^{k}=a_{n, p}^{i} g_{n, p}(x) . \tag{6}
\end{equation*}
$$

Theorem 1. If $i \in \mathbb{N}_{0}$ and

$$
\begin{equation*}
P_{i+1}(x)=x\left(x-\frac{1}{a_{n, p}}\right) \cdots\left(x-\frac{i}{a_{n, p}}\right), \quad x \geq 0 \tag{7}
\end{equation*}
$$

then

$$
\begin{equation*}
M_{n, p}\left(P_{i+1}, x\right)=x^{i+1} \tag{8}
\end{equation*}
$$

In particular, for each $n \in \mathbb{N}$ and $i \in \mathbb{N}_{0}$, $e_{i} \in \mathcal{L}[0, \infty)$ and $M_{n, p}\left(e_{i}, x\right) \in \mathbb{P}_{i}$.
Proof. Notice that $P_{i+1}(x) \in \mathbb{P}_{i+1}$ and, for $k \in \mathbb{N}_{0}$,

$$
a_{n, p}^{i+1} P_{i+1}\left(\frac{k}{a_{n, p}}\right)=k(k-1) \cdots(k-i)
$$

In particular $\left.P_{i+1}\left(k / a_{n, p}\right)\right)=0$ for $0 \leq k \leq i$. Therefore, for each fixed $x>0$,

$$
\begin{aligned}
a_{n, p}^{i+1} g_{n, p}(x) M_{n, p}\left(P_{i+1}, x\right) & =\sum_{k=i+1}^{\infty} \frac{a_{n, p}^{k} x^{k}}{(k-i-1)!}=x^{i+1} \sum_{k=i+1}^{\infty} \frac{a_{n, p}^{k} x^{k-i-1}}{(k-i-1)!} \\
& =x^{i+1} \sum_{k=0}^{\infty} \frac{a_{n, p}^{k+i+1}}{k!} x^{k}=x^{i+1} g_{n}^{(i+1)}(x)
\end{aligned}
$$

where we use (6). Therefore $M_{n, p}\left(P_{i+1}, x\right)=x^{i+1} \in \mathbb{P}_{i+1}$, for each $i \geq 0$.
Since, for $i \geq 0, x^{i}$ can be written as a linear combination of the polynomials P_{1}, \ldots, P_{i}, we know that $e_{i} \in \mathcal{L}[0, \infty)$ and $M_{n, p}\left(e_{i}, x\right) \in \mathbb{P}_{i}$. For $i=0$ it is a simple assertion because $M_{n, p}\left(e_{0}, x\right)=1$.

For the case of Szász-Mirakyan operators the last assertion in Theorem 1 was verified by Becker in [5, Lemma 3].

Proposition 2. If $r \in \mathbb{N}$, there exists a constant $C(r) \geq 1$ such that, for every real $a>0$,

$$
M_{n, p}\left(\left(a+e_{1}\right)^{r}, x\right) \leq C(r)(1+a+x)^{r} .
$$

Proof. From Theorem 1 we know that, for each $i \in \mathbb{N}$, there is an algebraic polynomial $P_{i} \in \mathbb{P}_{n}$, say $P_{i}(x)=\sum_{k=0}^{i} b_{i, k} x^{k}$, such that

$$
M_{n, p}\left(e_{i}, x\right)=\sum_{k=0}^{i} b_{i, k} x^{k}
$$

If $0 \leq x \leq 1$, then

$$
\left|\sum_{k=0}^{i} b_{i, k} x^{k}\right| \leq \sum_{k=0}^{i}\left|b_{i, k}\right| \leq(1+x)^{i} \sum_{k=0}^{i}\left|b_{i, k}\right|
$$

If $1 \leq x$, then

$$
\left|\sum_{k=0}^{i} b_{i, k} x^{k}\right| \leq x^{i} \sum_{k=0}^{i}\left|b_{i, k}\right| \leq(1+x)^{i} \sum_{k=0}^{i}\left|b_{i, k}\right|
$$

Therefore $0 \leq M_{n, p}\left(e_{i}, x\right) \leq C_{i}(1+x)^{i}$, where the constant C_{i} depends only on i.

If $a>0$,

$$
\begin{aligned}
M_{n, p}\left(\left(a+e_{1}\right)^{r}, s\right) & =\sum_{j=0}^{r}\binom{r}{j} a^{r-j} M_{n, p}\left(e_{j}, s\right) \\
& \leq C\left(a^{r}+\sum_{j=1}^{r}\binom{r}{j} a^{r-j}(1+x)^{j}=C(1+a+x)^{r} .\right.
\end{aligned}
$$

Theorem 3 was proved in $[8]$ when $\beta(n)=n$, but it can be easily extended to the case of a general $\beta(n)$.

Theorem 3. The operators $M_{n, p}$ has the following properties:
(i) $M_{n, p}: \mathcal{L}(I) \rightarrow C^{1}(I)$.
(ii) $M_{n, p}\left(e_{0}, x\right)=1$
(iii) For every $n, m \in \mathbb{N}, f \in \mathcal{L}(I)$ and $x>0$,

$$
\begin{equation*}
\frac{1}{a_{n, p}^{m}} M_{n, p}^{(m)}(f, x)=M_{n, p}\left(\Delta_{1 / a_{n, p}}^{m} f(t), x\right), \tag{9}
\end{equation*}
$$

where $\Delta_{h}^{k} g(u)$ stands the usual k-th forward difference of the function g at u with step h.

The following result can be proved as Theorem 1 in [30] (it is a consequence of the Korovkin theorem).

Theorem 4. If $f \in \mathcal{L}(I)$ and $a>0$ then $M_{n, p}(f, x)$ converges uniformly to $f(x)$ on $[0, a]$.

3. MONOTONICITY AND CONVEX FUNCTIONS

For $k \in \mathbb{N}$, a function $g: I \rightarrow \mathbb{R}$ is said to be k-convex, if $\Delta_{h}^{k} g(u) \geq 0$ for each $h>0$. In particular, 2-convexity agrees with the usual notion of convex functions.

For each $k \in \mathbb{N}$, Szász-Mirakyan operators preserve k-convexity [24]. That is, if $\Delta_{h}^{k} g(u) \geq 0$ and $S_{n}(g, x)$ is well defined, then $\Delta_{h}^{k} S_{n}(g, u) \geq 0$. If follows from (9) that the operators $M_{n, p}$ share this property Szász-Mirakyan operators. But the assertion must be presented in a more convenient form. Let us explain why we need that. In [38, Th. 1], Zhen proved that, if $f^{\prime}(x)>0$, then $S_{n}^{\prime}(f, x)>0$, and if $f^{\prime \prime}(x)>0$, then $S_{n}^{\prime \prime}(f, x)>0$. Theorem 5 shows that these types of results are trivial.

Theorem 5. (i) If $f \in \mathcal{L}(I)$ increases, then $M_{n, p}^{\prime}(f, x) \geq 0$.
(ii) If $f \in \mathcal{L}(I)$ is convex, then $M_{n, p}^{\prime \prime}(f, x) \geq 0$.

Proof. It follows directly from (9).
Cheney and Sharma proved in [9] that, if f is convex, for each x and every $n \in \mathbb{N}, S_{n+1}(f, x) \leq S_{n}(f, x)$. Horová [14] obtained a converse theorem. In Theorem 6 we verify that a similar result holds for the operators $M_{n, p}$. A converse result can also be proved (see [14] and [18]). But we do not want to consider that problem here.

Theorem 6. (i) If $f \in \mathcal{L}(I)$ is convex then, for each $x \geq 0$ and $n \in \mathbb{N}$,

$$
f(x) \leq M_{n+1, p}(f, x) \leq M_{n, p}(f, x) .
$$

(ii) If $f \in \mathcal{L}(I)$ is concave then, for each $x \geq 0$ and $n \in \mathbb{N}$,

$$
M_{n, p}(f, x) \leq M_{n+1, p}(f, x) \leq f(x) .
$$

Proof. Assume f is convex. If we set

$$
c_{n, k}=(\beta(n+1)-\beta(n))^{k} \quad \text { and } \quad b_{n, p}=\frac{a_{n, p}}{\beta(n+1)-\beta(n)},
$$

then

$$
c_{n, k} \sum_{r=0}^{k}\binom{k}{r} b_{n, p}^{r}=(\beta(n+1)-\beta(n))^{k}\left(\frac{\beta(n)+p}{(\beta(n+1)-\beta(n))}+1\right)^{k}=a_{n+1, p}^{k} .
$$

That is

$$
\frac{c_{n, k}}{a_{n+1, p}^{k}} k!\sum_{r=0}^{k} \frac{1}{r!} \frac{b_{n, p}^{r}}{(k-r)!}=1 .
$$

Therefore

$$
\begin{aligned}
\frac{c_{n, k}}{a_{n+1, p}^{k}} k!\sum_{r=0}^{k} \frac{r}{a_{n, p}} \frac{1}{r!} \frac{b_{n, p}^{r}}{(k-r)!} & =\frac{k}{a_{n+1, p}^{k}} \frac{c_{n, k}}{(\beta(n+1)-\beta(n))} \sum_{r=1}^{k}\binom{k-1}{r} b_{n, p}^{r-1} \\
& =\frac{k}{a_{n+1, p}^{k}} \frac{c_{n, k}}{(\beta(n+1)-\beta(n))}\left(\frac{\beta(n)+p}{(\beta(\beta+1)-\beta(n))}+1\right)^{k-1} \\
& =\frac{k}{a_{n+1, p}^{k}}(\beta(n+1)+p)^{k-1}=\frac{k}{a_{n+1, p}} .
\end{aligned}
$$

This proves that $k / a_{n+1, p}$ is a convex combination of the points $\left\{r / a_{n, p}: 0 \leq\right.$ $r \leq k\}$.

If f is convex, then

$$
f\left(\frac{k}{a_{n+1, p}}\right) \leq \frac{c_{n, k}}{a_{n+1, p}^{k}} k!\sum_{r=0}^{k} f\left(\frac{r}{a_{n, p}}\right) \frac{1}{r!} \frac{b_{n, p}^{r}}{(k-r)!}=\frac{k!}{a_{n+1, p}^{k}} \sum_{r=0}^{k} c_{n, k}^{k-r} f\left(\frac{r}{a_{n, p}}\right) \frac{1}{r!} \frac{a_{n, p}^{r}}{(k-r)!} .
$$

By the Cauchy multiplication rule for product of series,

$$
\begin{aligned}
e^{(\beta(n+1)-\beta(n)) x} \sum_{k=0}^{\infty} \frac{a_{n, p}^{k}}{k!} f\left(\frac{k}{a_{n, p}}\right) x^{k} & =\sum_{k=0}^{\infty}\left\{\sum_{m+r=k} \frac{((\beta(n+1)-\beta(n)) x)^{m}}{m!} \frac{a_{n, p}^{r}}{r!} f\left(\frac{r}{a_{n, p}}\right) x^{r}\right\} \\
& =\sum_{k=0}^{\infty}\left\{\sum_{r=0}^{k} \frac{(\beta(n+1)-\beta(n))^{k-r}}{(k-r)!} \frac{a_{n, p}^{r}}{r!} f\left(\frac{r}{a_{n, p}}\right)\right\} x^{k} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& e^{a_{n+1, p} x}\left(M_{n, p}(f, x)-M_{n+1, p}(f, x)\right)= \\
& =e^{(\beta(n+1)-\beta(n)) x} \sum_{k=0}^{\infty} \frac{a_{n, p}^{k}}{k!} f\left(\frac{k}{a_{n, p}}\right) x^{k}-\sum_{k=0}^{\infty} \frac{a_{n+1, p}^{k}}{k!} f\left(\frac{k}{a_{n+1, p}}\right) x^{k}
\end{aligned}
$$

$$
=\sum_{k=0}^{\infty}\left\{\sum_{r=0}^{k} \frac{(\beta(n+1)-\beta(n))^{k-r}}{(k-r)!} \frac{a_{n, p}^{r}}{r!} f\left(\frac{r}{a_{n, p}}\right)-\frac{a_{n+1, p}^{k}}{k!} f\left(\frac{k}{a_{n+1, p}}\right)\right\} x^{k} \geq 0 .
$$

This proves that $M_{n, p}(f, x) \geq M_{n+1, p}(f, x)$. From Theorem 4 we know that $M_{n, p}(f, x) \rightarrow f(x)$ as $n \rightarrow \infty$ (pointwise convergence). Thus $M_{n+1, p}(f, x) \geq$ $f(x)$.

The concave functions follows by changing f by $-f$.
Fix $n \in \mathbb{N}$ and let $f \in C_{r}(I)$ be a non-negative function (see (4)).
For a non-negative function $f \in C_{r}(I)$, in [37], Zhao proved that if $f(x) / x$ is non-increasing on $(0, \infty)$, then for each $n \geq 1, S_{n}(f, x) / x$ is non-increasing. A similar result can be proved for the operators $M_{n, p}$ by modifying the arguments of Zhao. Since the work [37] is not well known, we include the complete proof. Notice that the condition $f \in C_{r}(I)$ (assumed by Zhao) will be replaced by the more general $f \in \mathcal{L}(I)$.

Theorem 7. Let $f \in \mathcal{L}(I)$ be a non-negative function. If $f(x) / x$ is nonincreasing on $(0, \infty)$, then for each $n \in \mathbb{N}, M_{n, p}(f, x) / x$ is non-increasing.

Proof. We will prove that $(d / d x)\left(M_{n, p}(f, x) / x\right) \leq 0$. We use the notations in (3).

Since

$$
\frac{M_{n, p}(f, x)}{x}=f(0) \frac{g_{n, p}(x)}{x}+g_{n, p}(x) \sum_{k=1}^{\infty} \frac{a_{n, p}^{k}}{k!} f\left(\frac{k}{a_{n}}\right) x^{k-1}
$$

and

$$
\frac{d}{d x} \frac{g_{n, p}(x)}{x}=\frac{g_{n, p}(x)}{x^{2}}\left(-a_{n, p} x-1\right)<0
$$

we should consider the derivative of the previous series. Note that

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \frac{a_{n, p}^{k}}{k!} f\left(\frac{k}{a_{n, p}}\right) \frac{d}{d x}\left(g_{n, p}(x) x^{k-1}\right)= \\
& =g_{n, p}(x) \sum_{k=2}^{\infty} \frac{a_{n, p}^{k}(k-1)}{k!} f\left(\frac{k}{a_{n, p}}\right) x^{k-2}-g_{n, p}(x) \sum_{k=1}^{\infty} \frac{a_{n, p}^{k+1}}{k!} f\left(\frac{k}{a_{n}}\right) x^{k-1} \\
& =g_{n, p}(x) \sum_{k=1}^{\infty} \frac{a_{n, p}^{k+1} k}{(k+1)!} f\left(\frac{k+1}{a_{n, p}}\right) x^{k-1}-g_{n, p}(x) \sum_{k=1}^{\infty} \frac{a_{n, p}^{k+1}}{k!} f\left(\frac{k}{a_{n, p}}\right) x^{k-1} \\
& =g_{n, p}(x) \sum_{k=1}^{\infty}\left\{\frac{a_{n, p}}{k+1} f\left(\frac{k+1}{a_{n, p}}\right)-\frac{a_{n}}{k} f\left(\frac{k}{a_{n}}\right)\right\} \frac{a_{n, p}^{k} x^{k-1}}{(k-1)!} \leq 0 .
\end{aligned}
$$

The result is proved.

4. PRESERVATION OF MODULUS OF CONTINUITY

DEFINITION 8. A function $\omega: I \rightarrow \mathbb{R}^{+}$is called a modulus of continuity if $\omega(0)=0, \lim _{t \rightarrow 0} \omega(t)=0, \omega$ is non-negative and non-decreasing in I and $\omega(t)$ is continuous in \mathbb{R}^{+}.

Definition 9. A function $\omega: I \rightarrow \mathbb{R}^{+}$is called subadditive if for any $s, t \geq 0$

$$
\omega(s+t) \leq \omega(s)+\omega(t) .
$$

If a subadditive function $\omega: I \rightarrow \mathbb{R}^{+}$is continuous at zero and $\omega(0)=0$, then it is continuous. If ω is subadditive, then $\omega(2 t) \leq 2 \omega(t)$ and it follows from standard arguments that, if $t, \lambda>0$, then

$$
\begin{equation*}
\omega(\lambda t) \leq(1+\lambda) \omega(f, t) . \tag{10}
\end{equation*}
$$

It is known that (see [11, p. 43]), for any modulus of continuity ω on I, there exists a concave modulus of continuity (the least concave majorant) $\widetilde{\omega}$ such that

$$
\begin{equation*}
\omega(t) \leq \widetilde{\omega}(t) \leq 2 \omega(t) . \tag{11}
\end{equation*}
$$

For Szász-Mirakyan operators preservation of the usual modulus of continuity has been considered in [31], [15] and [3]. For instance, if $\omega(t)$ is a concave modulus of continuity and

$$
\Lambda(\omega, A)=\{f \in C(I): \omega(f, t) \leq A \omega(t)\}
$$

it is asserted in [15] that $f \in \Lambda(\omega, A)$ if and only if $S_{n}(f) \in \Lambda(\omega, A)$, for each each $n \in \mathbb{N}$. On the other hand, in [3] the authors considered functions f such that $0<\omega(f, 1)<\infty$, where $\omega(f, t)$ is the usual modulus of continuity. Of course the condition $0<\omega(f, 1)$ holds whenever f is not a constant function.

Of course, since the usual modulus of continuity is not well defined for all $f \in C(I)$, such a result must be handled with care. In fact in [13] Hermann presented a negative result. Let

$$
C_{0}=\left\{f \in C(I): \sup _{x \in I}|f(x+\delta)-f(x)|<\infty \text { for any } \delta>0\right\} .
$$

Notice that for any $f \in C_{0}$ the usual modulus of continuity is well defined, but the conditions $f \in C_{0}$ and $\delta \rightarrow 0$ does not necessarily imply $\omega(f, \delta) \rightarrow 0$.

Set $C_{0}^{*}=\left\{f \in C_{0}: \omega(f, t)>0\right\}$. In [13] Hermann proved that

$$
\sup _{f \in C_{0}^{*}} \frac{\left\|S_{n}(f)-f\right\|_{C}}{\omega(f, 1 / n)}=\infty
$$

In this section we prove some results related with preservation of some modulus of continuity by the operators $M_{n, p}$.

Although Theorem 3 is sufficient to prove the preservation of convexity of different order by the operators $M_{n, p}$, we need other kind of representations for studying modulus of continuity.

The ideas for the proof of Proposition 10 have been used for different authors in the case of Szász-Mirakyan operators (see [31] and [15]).

Proposition 10. If $f \in \mathcal{L}(I), n \in \mathbb{N}, x \in I$ and $s>0$, then

$$
M_{n, p}(f, x+s)-M_{n, p}(f, x)=e^{-a_{n, p}(x+s)} \sum_{k=0}^{\infty} \frac{a_{n, p}^{k} x^{k}}{k!} \sum_{i=1}^{\infty} \frac{a_{n, p}^{i}}{i!} s^{i}\left(f\left(\frac{k+i}{a_{n, p}}\right)-f\left(\frac{k}{a_{n, p}}\right)\right) .
$$

Proof. Notice that

$$
\begin{aligned}
& e^{a_{n, p}(x+s)} M_{n, p}(f, x+s)= \\
& =\sum_{j=0}^{\infty} f\left(\frac{j}{a_{n, p}}\right) \frac{a_{n, p}^{j}}{j!}(x+s)^{j}=\sum_{j=0}^{\infty} f\left(\frac{j}{a_{n, p}}\right) \frac{a_{n, p}^{j}}{j!} \sum_{k=0}^{j}\binom{j}{k} x^{k} s^{j-k}= \\
& =\sum_{k=0}^{\infty} \sum_{j=k}^{\infty}\binom{j}{k} f\left(\frac{j}{a_{n, p}}\right) \frac{a_{n, p}^{j}}{j!} x^{k} s^{j-k}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!} \sum_{j=k}^{\infty} f\left(\frac{j}{a_{n, p}}\right) \frac{a_{n, p}^{j}}{(j-k)!} s^{j-k} \\
& =\sum_{k=0}^{\infty} \frac{x^{k}}{k!} \sum_{i=0}^{\infty} f\left(\frac{i+k}{a_{n, p}}\right) \frac{a_{n, p}^{i+k}}{i!} s^{i} .
\end{aligned}
$$

On the other hand,
$e^{a_{n, p}(x+s)} M_{n, p}(f, x)=e^{a_{n, p} s} \sum_{k=0}^{\infty} f\left(\frac{k}{a_{n, p}}\right) \frac{a_{n, p}^{k}}{k!} x^{k}=\sum_{k=0}^{\infty} \frac{a_{n, p}^{k} x^{k}}{k!}\left(\sum_{i=0}^{\infty} \frac{a_{n, p}^{i}}{i!} s^{i} f\left(\frac{k}{a_{n, p}}\right)\right)$.
It follows from the equation given above the announced result.
Let $U C_{b}(I)$ the class of all bounded uniformly continuous functions $f: I \rightarrow$ \mathbb{R}. For $f \in U C_{b}(I)$ and $t \geq 0$, define

$$
\begin{equation*}
\omega(f, t)=\sup _{0 \leq h \leq t} \sup _{x \geq 0}|f(x+h)-f(x)| \tag{12}
\end{equation*}
$$

It can be proved that $\omega(f, t)$ is subadditive modulus of continuity in the sense of Definition 8 .

THEOREM 11. If $f \in U C_{b}(I), n \in \mathbb{N}$, and $s>0$, then $M_{n, p}(f, x)$ is uniformly continuous and

$$
\omega\left(M_{n, p}(f), s\right) \leq 2 \omega(f, s)
$$

Proof. Let $\widetilde{\omega}(f, t)$ be the least concave majorant of $\omega(f, t)$.
If $f \in U C_{b}(I)$, then $f \in \mathcal{L}(I)$. From Proposition 10 one has

$$
\begin{aligned}
& \left|M_{n, p}(f, x+s)-M_{n, p}(f, x)\right| \leq \\
& \leq e^{-a_{n, p}(x+s)} \sum_{k=0}^{\infty} \frac{a_{n, p}^{k} x^{k}}{k!} \sum_{i=0}^{\infty} \frac{a_{n, p}^{i}}{i!} s^{i}\left|f\left(\frac{k+i}{a_{n, p}}\right)-f\left(\frac{k}{a_{n, p}}\right)\right| \\
& \leq e^{-a_{n, p}(x+s)} \sum_{k=0}^{\infty} \frac{a_{n, p}^{k} x^{k}}{k!} \sum_{i=0}^{\infty} \frac{a_{n, p}^{i}}{i!} s^{i} \omega\left(f, \frac{i}{a_{n, p}}\right) \\
& =M_{n, p}\left(\omega\left(f, e_{1}\right), s\right) \leq M_{n, p}\left(\widetilde{\omega}\left(f, e_{1}\right), s\right) .
\end{aligned}
$$

Since $\widetilde{\omega}(f, t)$ is a concave function, it follows from Theorem 6 that

$$
M_{n, p}(\widetilde{\omega}(f), s) \leq \widetilde{\omega}(f, s) \leq 2 \omega(f, s)
$$

In particular if $\varepsilon>0, \omega(f, s) \leq \varepsilon / 2,0 \leq y<x, x-y \leq s$ and we set $x=y+t$

$$
\left|M_{n, p}(f, x)-M_{n, p}(f, y)\right|=\left|M_{n, p}(f, y+t)-M_{n, p}(f, y)\right| \leq \varepsilon
$$

This proves that $M_{n, p}(f)$ is uniformly continuous.
For $f \in U C_{b}(I), 0<\alpha \leq 1$, and $t>0$ define

$$
\theta_{\alpha}(f, t)=\sup _{0<s \leq t} \sup _{x \in I, 0<h \leq s} \frac{|f(x+h)-f(x)|}{h^{\alpha}}
$$

$\theta_{\alpha}(f, 0)=0$, and

$$
K^{\alpha}(f)=\sup _{0 \leq t} \theta_{\alpha}(f, t)
$$

For $0<\alpha \leq 1$, let us set $\operatorname{Lip}^{\alpha}(I)$ for the family of all $f \in U C_{b}(I)$ such that

$$
K^{\alpha}(f)<\infty
$$

For $0<\alpha<1$, we also we consider the subspace

$$
\begin{equation*}
\operatorname{lip}^{\alpha}(I)=\left\{f \in \operatorname{Lip}^{\alpha}(I): \lim _{t \rightarrow 0} \theta_{\alpha}(f, t)=0\right\} \tag{13}
\end{equation*}
$$

This type of spaces appears when we study the approximation in Hölder type norms (see [6]).

We will analyze the problem of the preservation of the constants $K^{\alpha}(f)$ and the class $\operatorname{lip}^{\alpha}(I)$ by the operators $M_{n, p}$.

For an analogous of Theorem 12 for Szász-Mirakyan operators see [15] and [12].

Theorem 12. (i) If $0<\alpha \leq 1$ and $f \in \operatorname{Lip}^{\alpha}(I)$, then $M_{n, p}(f) \in \operatorname{Lip}^{\alpha}(I)$, and

$$
\begin{equation*}
K^{\alpha}\left(M_{n, p}(f)\right) \leq K^{\alpha}(f) \tag{14}
\end{equation*}
$$

for each $n \in \mathbb{N}$.
(ii) If $0<\alpha \leq 1, f \in \mathcal{L}(I), M_{n, p}(f) \in \operatorname{Lip}^{\alpha}(I)$, for each $n \in \mathbb{N}$, and

$$
K:=\sup _{n \in \mathbb{N}} K^{\alpha}\left(M_{n, p}(f)\right)<\infty
$$

then $f \in \operatorname{Lip}^{\alpha}(I)$.
Proof. (i) Set $g(x)=x^{\alpha}$. Since the function $g(x)$ is concave function and $M_{n, p}(g, x) \rightarrow g(x)$ (Theorem 4) and it follows Theorem 6 that $M_{n, p}(g, x) \leq$ $g(x)$.

For any $k \in \mathbb{N}_{0}$ and $i \in \mathbb{N}$,
$\left|f\left(\frac{k+i}{a_{n, p}}\right)-f\left(\frac{k}{a_{n, p}}\right)\right| \leq \omega\left(f, \frac{i}{a_{n, p}}\right) \leq \theta_{\alpha}\left(f, \frac{i}{a_{n, p}}\right)\left(\frac{i}{a_{n, p}}\right)^{\alpha} \leq K^{\alpha}(f) g\left(\frac{i}{a_{n, p}}\right)$.
From Proposition 10 we know that, for $x \in I$ and $h>0$,

$$
\left|M_{n, p}(f, x+h)-M_{n, p}(f, x)\right| \leq K^{\alpha}(f) M_{n, p}(g, h) \leq K^{\alpha}(f) h^{\alpha}
$$

(ii) From Theorem 4 we know that, for each fixed $x \in I, M_{n, p}(f, x) \rightarrow f(x)$, as $n \rightarrow \infty$.

For $x \geq 0, h>0$ fixed, and each $n \in \mathbb{N}$, one has

$$
|f(x+h)-f(x)| \leq\left|f(x+h)-M_{n, p}(f, x+h)\right|
$$

$$
\begin{aligned}
& \quad+\left|M_{n, p}(f, x+h)-M_{n, p}(f, x)\right|+\left|M_{n, p}(f, x)-f(x)\right| \\
& \leq\left|f(x+h)-M_{n, p}(f, x+h)\right|+K h^{\alpha}+\left|M_{n, p}(f, x)-f(x)\right| .
\end{aligned}
$$

The result follows by taking $n \rightarrow \infty$.
For the preservation of the class lip ${ }^{\alpha}(I)$ we need some previous results.
Proposition 13. For $0<\alpha<1$ and each $f \in \operatorname{lip}^{\alpha}(I)$,

$$
\theta_{\alpha}(f, t)=\sup _{0<s \leq t} \sup _{0<h \leq s} \frac{\omega(f, h)}{h^{\alpha}},
$$

where $\omega(f, t)$ is defined by (12).
Proof. By definition, if $f \in U C_{b}(I)$, then $\omega(f, s)$ is well defined. It is clear that

$$
\sup _{x \in I, 0<h \leq s} \frac{|f(x+h)-f(x)|}{h^{\alpha}} \leq \sup _{0<h \leq s} \frac{\omega(f, h)}{h^{\alpha}} .
$$

On the other hand, given $\varepsilon>0$, for any $0<h \leq s$, there exists $x_{h} \in I$ such that

$$
\omega(f, h) \leq \varepsilon h^{\alpha}+\left|f\left(x_{h}+h\right)-f\left(x_{h}\right)\right| .
$$

Therefore

$$
\frac{\omega(f, h)}{h^{\alpha}} \leq \varepsilon+\frac{\left|f\left(x_{h}+h\right)-f\left(x_{h}\right)\right|}{h^{\alpha}} \leq \varepsilon+\sup _{x \in I, 0<h \leq s} \frac{|f(x+h)-f(x)|}{h^{\alpha}} . \square
$$

Proposition 14. If $0<\alpha<1$, for each $f \in \operatorname{lip}^{\alpha}(I)$, the functional $\theta_{\alpha}(f, t)$ is a subadditive modulus of continuity.

Proof. (a) By definition $\theta_{\alpha}(f, 0)=0$ and $\theta_{\alpha}(f, t) \rightarrow 0$ as $t \rightarrow 0$. Moreover it is clear that $\theta_{\alpha}(f, t)$ is non-negative and non-decreasing in I
(b) Let us verify that $\theta_{\alpha}(f, t)$ is subadditive. Assume $0<v \leq t$ and fix any s and h such that $0<s \leq v+t$ and $0<h \leq s$.

If $x \in I$ and $h \leq t$ it is clear that

$$
\frac{|f(x+h)-f(x)|}{h^{\alpha}} \leq \sup _{0<u \leq t y \in I, 0<w \leq u} \sup \frac{|f(y+w)-f(y)|}{w^{\alpha}}=\theta_{\alpha}(f, t) .
$$

We still have to consider the case $v \leq t<h$. Since $t<h$ and $0<h-t<h$, one has

$$
\begin{aligned}
\frac{|f(x+h)-f(x)|}{h^{\alpha}} & \leq \frac{|f(x+h-t+t)-f(x+h-t)|}{t^{\alpha}}+\frac{|f(x+h-t)-f(x)|}{(h-t)^{\alpha}} \\
& \leq \theta_{\alpha}(f, t)+\theta_{\alpha}(f, h-t) \leq \theta_{\alpha}(f, t)+\theta_{\alpha}(f, v),
\end{aligned}
$$

because $\theta_{\alpha}(f, t)$ increases and $h-t \leq s-t \leq v$. Therefore

$$
\theta_{\alpha}(f, t+v) \leq \theta_{\alpha}(f, t)+\theta_{\alpha}(f, v) .
$$

(c) Taking into account that $\theta_{\alpha}(f, 0)=0$ and $\theta(f, t)$ is subadditive, it is a continuous function.

Theorem 15. If $0<\alpha<1, f \in \operatorname{lip}^{\alpha}(I), n \in \mathbb{N}$, and $t>0$, then

$$
\theta_{\alpha}\left(M_{n, p}(f), t\right) \leq 2 \theta_{\alpha}(f, t) .
$$

Proof. If $0<s \leq t$, taking into account Theorem 11, one has

$$
\left|M_{n, p}(f, x+s)-M_{n, p}(f, x)\right| \leq 2 \omega(f, s)=2 \frac{\omega(f, s)}{s^{\alpha}} s^{\alpha} \leq 2 \theta_{\alpha}(f, s) s^{\alpha} \leq 2 \theta_{\alpha}(f, t) s^{\alpha} .
$$

This is sufficient to prove the result.
For each $r \geq 0, f \in C_{r}(I)$ (see (4)), and $t \geq 0$, define

$$
\Omega_{r}(f, t)=\sup _{0 \leq s \leq t} \sup _{x \geq 0} \frac{|f(x+s)-f(x)|}{(1+x+s)^{r}} .
$$

We will use this modulus only in the case $f \in C_{r, \infty}(I)$.
Before proving some properties of this modulus, let us compare them with others that have been used previously.

The following functional was considered by Kratz and Stadtmüller in [19]. For $r \in \mathbb{N}$ and a function $f \in C_{r}(I)$ set

$$
\widetilde{\Omega}_{r}(f, t)=\sup _{s, v \in I,|s-v| \leq t} \frac{|f(s)-f(v)|}{(1+s+v)^{r}}=\sup _{x \geq 0} \sup _{0<s \leq t} \frac{|f(x+s)-f(x)|}{(1+2 x+s)^{r}} .
$$

Taking into account that $1+x+s \leq 1+2 x+s \leq 2(1+x+s)$, we know that

$$
\frac{1}{2^{r}} \Omega_{r}(f, t) \leq \widetilde{\Omega}_{r}(f, t) \leq \Omega_{r}(f, t)
$$

Kratz and Stadtmüller proved that, for Szász-Mirakyan operators, there exists a constant C such that, for all $f \in C_{r}(I)$, every $t \geq 0$ and each $n \in \mathbb{N}$,

$$
\widetilde{\Omega}_{r}\left(S_{n}(f), t\right) \leq C \widetilde{\Omega}_{r}(f, t)
$$

They did not proved that $\lim _{t \rightarrow 0^{+}} \widetilde{\Omega}_{r}(f, t)=0$. We will verify that, if $f \in$ $C_{r, \infty}(I)$, then $\lim _{t \rightarrow 0^{+}} \Omega_{r}(f, t)=0$.

For $f \in C_{2, \infty}(I)$, another modulus was considered in [2] by setting

$$
\Omega(f, t)=\sup _{0 \leq s \leq t} \sup _{x \in I} \frac{|f(x+s)-f(x)|}{(1+s)^{2}(1+x)^{2}} .
$$

For $0 \leq t \leq 1, \Omega(f, t)$ and $\Omega_{2}(f, t)$ are equivalent. In fact, suppose that $s \leq 1$. First one has

$$
\left(1+s^{2}\right)\left(1+x^{2}\right)=1+s^{2}+x^{2}+s^{2} x^{2} \leq 2\left(1+s^{2}+x^{2}\right) \leq 2(1+x+s)^{2} .
$$

On the other hand, if $x \leq 1$,

$$
(1+s+x)^{2}=1+2 x+2 s+x^{2}+2 x s+s^{2} \leq 7\left(1+s^{2}+x^{2}\right) \leq 7\left(1+s^{2}\right)\left(1+x^{2}\right) .
$$

and, if $x>1$,

$$
(1+s+x)^{2} \leq 3+5 x^{2}+s^{2} \leq 5\left(1+s^{2}+x^{2}\right) \leq 5\left(1+s^{2}\right)\left(1+x^{2}\right) .
$$

Therefore

$$
\frac{1}{2} \Omega_{2}(f, t) \leq \Omega(f, t) \leq 7 \Omega_{2}(f, t) .
$$

Proposition 16. If r is a non negative real and $f \in C_{r, \infty}(I)$, then $\Omega_{r}(f, t)$ is a subadditive modulus of continuity in the sense of Definition 8 .

Proof. It is clear that $\Omega_{r}(f, 0)=0$ and $\Omega_{r}(f, t)$ is non-negative and nondecreasing in I
(a) We consider first the case $r=0$. As in the case of the classical modulus of continuity, it is easy to prove that the functional $\Omega_{r}(f, t)$ is a subadditive. In order to prove continuity, it is sufficient to verify continuity a zero, but if follows from the condition $\lim _{x \rightarrow \infty} f(x)=0$.
(b) Assume $r>0$. Denote $A=\lim _{x \rightarrow \infty} f(x) /(1+x)^{r}$. Given $\varepsilon>0$, there exists x_{0} such that

$$
\left|\frac{f(x)}{(1+x)^{r}}-A\right|<\frac{\varepsilon}{2}, \quad x \geq x_{0} .
$$

If $t>0$ and $0<s \leq t \leq 1$, then

$$
\begin{aligned}
\sup _{x \geq 0} \frac{|f(x+s)-f(x)|}{(1+x+s)^{r}} & \leq \sup _{0 \leq x \leq x_{0}} \frac{|f(x+s)-f(x)|}{(1+x+s)^{r}}+\sup _{x \geq x_{0}} \frac{|f(x+s)-f(x)|}{(1+x+s)^{r}} \\
& \leq \sup _{0 \leq x \leq x_{0}}|f(x+s)-f(x)|+\sup _{x \geq x_{0}} \frac{|f(x+s)-A|}{(1+x+s)^{r}}+\sup _{x \geq x_{0}} \frac{|f(x)-A|}{(1+x)^{r}} \\
& \leq \omega_{1}(f, t)_{\left[0, x_{0}+1\right]}+\varepsilon,
\end{aligned}
$$

where $\omega_{1}(f, t)_{\left[0, x_{0}+1\right]}$ is the usual modulus of continuity in the interval $\left[0, x_{0}+\right.$ $1]$.

This is sufficient to prove that $\lim _{t \rightarrow 0} \Omega_{r}(f, t) \rightarrow 0=0$.
(c) Let us verify that $\Omega_{r}(f, t)$ is subadditive: $\Omega_{r}(f, v+t) \leq \Omega_{r}(f, v)+$ $\Omega_{r}(f, t)$. Without losing generality we assume that $0<v \leq t$.

Fijemos $x \geq 0$ and $0<s \leq t+v$.
If $s \leq t$, it is clear that

$$
\frac{|f(x+s)-f(x)|}{1+(x+s)^{r}} \leq \sup _{0<s \leq t} \frac{|f(x+s)-f(x)|}{1+(x+s)^{r}}=\Omega_{r}(f, t) .
$$

Let us consider the case $v \leq t<s$. Since $0<s-t$, one has $(1+x+s-t)^{r}<$ $(1+x+s)^{r}$. Therefore

$$
\begin{aligned}
\frac{|f(x+s)-f(x)|}{(1+x+s)^{r}} & \leq \frac{|f(x+s-t+t)-f(x+s-t)|}{(1+(x+s-t)+t)^{r}}+\frac{|f(x+s-t)-f(x)|}{(1+x+s-t)^{r}} \\
& \leq \Omega_{r}(f, t)+\Omega_{r}(f, s-t) \leq \Omega_{r}(f, t)+\Omega_{r}(f, v) .
\end{aligned}
$$

It is sufficient to prove that $\Omega_{r}(f, t)$ is a modulus of continuity.
Theorem 17. If r is a non negative real, there exists a constant C such that, for $f \in C_{r, \infty}(I), n \in \mathbb{N}$, and $t>0$,

$$
\Omega_{r}\left(M_{n, p}(f), t\right) \leq C \Omega_{r}(f, t) .
$$

Proof. Notice that, for $s>0$, taking into account (10), with $t=s$ and $\lambda=i /\left(s a_{n, p}\right)$,

$$
\begin{aligned}
\left|f\left(\frac{k+i}{a_{n, p}}\right)-f\left(\frac{k}{a_{n, p}}\right)\right| & \leq \Omega_{r}\left(\frac{i}{a_{n, p}}\right)\left(1+\frac{k}{a_{n, p}}+\frac{i}{a_{n, p}}\right)^{r} \\
& \leq \Omega_{r}(f, s)\left(1+\frac{i}{a_{n, p} s}\right)\left(1+\frac{k}{a_{n, p}}+\frac{i}{a_{n, p}}\right)^{r},
\end{aligned}
$$

because $\Omega_{r}(f, s)$ is a subadditive modulus.

Therefore (see Proposition 10)

$$
\begin{aligned}
& \left|M_{n, p}(f, x+s)-M_{n, p}(f, x)\right|= \\
& =\left|e^{-a_{n, p}(x+s)} \sum_{k=0}^{\infty} \frac{a_{n, p}^{k} x^{k}}{k!} \sum_{i=0}^{\infty} \frac{a_{n, p}^{i}}{i!} s^{i}\left(f\left(\frac{k+i}{a_{n, p}}\right)-f\left(\frac{k}{a_{n, p}}\right)\right)\right| \\
& \leq \frac{\Omega_{r}(f, s)}{e^{a_{n, p}(x+s)}} \sum_{k=0}^{\infty} \frac{a_{n, p}^{k} x^{k}}{k!} \sum_{i=0}^{\infty} \frac{a_{n, p}^{i}}{i!} s^{i}\left(1+\frac{i}{a_{n, p} s}\right)\left(1+\frac{k}{a_{n, p}}+\frac{i}{a_{n, p}}\right)^{r} .
\end{aligned}
$$

Taking into account Proposition 2 (with $a=1+k / a_{n, p}$), we obtain

$$
\begin{aligned}
& e^{-a_{n, p} s} \sum_{i=0}^{\infty} \frac{a_{n, p}^{i}}{i!} s^{i}\left(1+\frac{k}{a_{n, p}}+\frac{i}{a_{n, p}}\right)^{r}= \\
& =M_{n, p}\left(\left(1+\frac{k}{a_{n, p}}+e_{1}\right)^{r}, s\right) \leq C(r)\left(2+\frac{k}{a_{n, p}}+s\right)^{r} \leq 2^{r} C(r)\left(1+\frac{k}{a_{n, p}}+s\right)^{r}
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
& \frac{e^{-a_{n, p} s}}{s} \sum_{i=1}^{\infty} \frac{a_{n, p}^{i}}{i!} s^{i} \frac{i}{a_{n, p}}\left(1+\frac{k}{a_{n, p}}+\frac{i}{a_{n, p}}\right)^{r}= \\
& =e^{-a_{n, p} s} \sum_{i=1}^{\infty} \frac{a_{n, p}^{i-1}}{(i-1)!} s^{i-1}\left(1+\frac{k}{a_{n, p}}+\frac{i}{a_{n, p}}\right)^{r} \\
& =M_{n, p}\left(\left(1+\frac{1}{a_{n, p}}+\frac{k}{a_{n, p}}+e_{1}\right)^{r}, s\right) \leq M_{n, p}\left(\left(2+\frac{k}{a_{n, p}}+e_{1}\right)^{r}, s\right) \\
& \leq C(r)\left(3+\frac{k}{a_{n, p}}+s\right)^{r} \leq 3^{r} C(r)\left(1+\frac{k}{a_{n, p}}+s\right)^{r} .
\end{aligned}
$$

From the estimates given above one has

$$
\begin{aligned}
\left|M_{n, p}(f, x+s)-M_{n, p}(f, x)\right| & \leq 3^{r} C(r) \frac{\Omega_{r}(f, s)}{e^{a_{n, p}} \sum_{k=0}^{\infty}} \sum_{k, p}^{\infty} \frac{a_{n, p}^{k} x^{k}}{k!}\left(1+\frac{k}{a_{n, p}}+s\right)^{r} \\
& \leq 6^{r} C(r) \Omega_{r}(f, s)(1+x+s)^{r}
\end{aligned}
$$

where we use again Proposition 2.

REFERENCES

[1] U. Abel, M. Ivan and X. M. Zeng, Asymptotic expansion for Szász-Mirakyan operators, AIP Conference Proceedings, 936, 2007, pp. 779-782. https://doi.org/0. 1063/1.2790269
[2] T. Acar, A. Aral and I. Rasa, The new forms of Voronovskaya's theorem in weighted spaces, Positivity, 20 2015, 1, pp. 25-40. https://doi.org/10.1007/ s11117-015-0338-4
[3] J. A. Adell and A. Lekuona, Best constants in preservation of global smoothness for Szász-Mirakyan operators, J. Math. Anal. Appl., 338 2008, pp. 753-757. https: //doi.org/10.1016/j.jmaa.2007.05.064 [
[4] N. T. Amanov, On the uniform weighted approximation by Szász-Mirakjan operators, Analysis Mathematica, 18 1992, pp. 167-184. https://doi.org/10.1007/BF019110 84 줄
[5] M. Becker, Global approximation theorems for Szász-Mirakjan and Baskakov operators in polynomial weight spaces, Indiana Univ. Math. J., 271978 no. 1, pp. 127-142.
[6] J. Bustamante and C. Castañeda Roldán, Direct and inverse results in Hölder norms, J. Approx. Theory, 138 2006, pp. 112-123. https://doi.org/10.1016/j.ja t.2005.10.004 주
[7] J. Bustamante, J. M. Quesada and L. Morales de la Cruz, Direct estimate for positive linear operators in polynomial weighted spaces, J. Approx. Theory, 162 2010, pp. 1495-1508. urlhttps://doi.org/10.1016/j.jat.2010.04.001 주
[8] J. Bustamante, A. Carrillo-Zentella and J. M. Quesada, Direct and strong converse theorems for a general sequence of positive linear operators, Acta Math. Hungar., 1362012 nos. 1-2, pp. 90-106. https://doi.org/10.1007/s10474-012-0 196-5 즈즐
[9] E. Cheney and A. Sharma, Bernstein power series, Canad. J. Math., 16 1964, pp. 241-252.
[10] M. Chu, On the Szász operators Voronoskaja type theorem, J. Anhui Normal Univ. (Nat. Sci.), 181995 no. 1, pp. 20-23.
[11] R. A. DeVore and G. G. Lorentz, Constructive Approximation, Springer-Verlag, Berlin Heidelberg New York, 1993.
[12] H. Dong and Q. Qi, Shape preserving properties of parametric Szász type operators on unbounded intervals, Symmetry, 15 2023, art. no. 1755. https://doi.org/10. 339 0/sym15091755 주
[13] T. Hermann, On the Szász-Mirakian operators, Acta Math. Acad, Sci. Hungar, 32 1978 nos. 1-2, pp. 163-173. https://doi.org/10.1007/BF01902211 즞
[14] I. Horová, Linear positive operators of convex functions, Mathematica, 10 1968, 33, pp. 275-283.
[15] X.Q. Hou and Y.C. Xue, On the property of some linear positive operators preserving the class $\Lambda_{\omega}(A)$, J. Ningxia Univ. (Nat. Sci. Ed.), 16 (1995), pp. 11-16 (in Chinese).
[16] N. İspir, On Modified Baskakov operators on weighted spaces, Turk. J. Math, 25 2001, pp. 355-365.
[17] G. Jiang, On the inverse theorem for Szász-Mirakjan operators, Liupanshui Normal Univ., 4 1993, pp. 8-10 (in Chinese).
[18] M. K. Khan, B. Della Vecchia, and A. Fassih, On the monotonicity of positive linear operators, J. Approx. Theory, 92 1998, pp. 22-37.
[19] W. Kratz and U. Stadtmüller, On the uniform modulus of continuity of certain discrete approximation operators, J. Approx. Theory, 54 1988, pp. 326-337. https: //doi.org/10.1016/0021-9045(88)90009-3 주
[20] C. Li and Y. ZHAO, Weighted approximation with Szász-Mirakjan operators, Acta Scie. Natur. Univ. Pekinensis 372001 no. 1, pp. 6-11 (in Chinese).
[21] L. Liu, Y. Xue and W. Sun, Strong converse inequalities for Szász-Mirakjian operators with weights, Chi. Quart. Math., 232008 no. 3, pp. 384-389.
[22] L. Liu, G. Yang, and S. Guo, Strong converse inequality for Szász operators, J. Math. Research Expo., 282008 no. 1, pp. 147-155.
[23] A.J. López-Moreno, Weighted simultaneous approximation with Baskakov type operators, Acta Math. Hungar., 1042004 nos. 1-2, pp. 143-151. https://doi.org/10 .1023/B: AMHU. 0000034368.81211 .23 [
[24] A. LUPAŞ, Some properties of the linear positive operators (I), Mathematica Cluj, 9 (1967), pp. 77-83.
[25] D. MIClĂuş and O. T. Pop, The generalization of certain results for Szász-MirakjanSchurer operators, Creat. Math. Inform., 212012 no. 1, pp. 79-85.
[26] F. Schurer, Linear positive operators in approximation theory, Math. Inst. Techn., Univ. Delft Report, 1962.
[27] F. Schurer, On Linear positive operators in approximation theory, Delft University of Technology, Delft, 1965.
[28] P. C. Sikkema, On some linear positive operators, Indag. Math., 32 1970, pp. 327337.
[29] P. C. Sikkema, Über die Schurerschen linearen positiven Operatoren I, Indag. Math., 781975 no. 3, pp. 230-242.
[30] O. SzÁsz, Generalization of S. Bernstein's polynomials to the infinite interval, J. Res. Nat. Bur. Standards, 45 1950, pp. 239-245. https://doi.org/10.6028/JRES.045.0 24
[31] B. D. Vechia, On the preservation of Lipschitz constants for some linear operators, Bollettino Un. Mat. Ita., 161989 no. 1, pp. 125-136.
[32] X. Wang, On the proof of a theorem for Szász-Mirakjan operators, J. Hangzhou Univ. (Nat. Sci.), 191992 no. 2, pp.139-143 (in Chinese).
[33] X. Wang, X. Li, W. Wang and S. Ding, Equivalent description on derivatives of Szász-Mirakjan operators, J. South. West Univ. (Nat. Sci.), 8 2011, pp. 115-118 (in Chinese).
[34] L. Xie, On direct theorems for Szász-Mirakian operators, J. Lishui Teach. Colle., 17 1995 no. 2, pp. 1-2 (in Chinese).
[35] L. Xie, Inverse theorems for Szász-Mirakjian operators, J. Lishui Teach. Colle., 22 2000 no. 2, pp. 1-3 (in Chinese).
[36] Y. Xin, C. Li and Q. Gao, Approximation qualities for the iterated Boolean sums of Szász operators, J. Hebei Normal Univ., 322008 no. 6, pp. 713-717 (in Chinese).
[37] Z. Zhao, On the property of Szász-Mirakyan polynomials preserving the monotonicity, J. Gansu Edu. Coll., 152001 no. 3, pp. 1-3 (in Chinese).
[38] L. Zhen, The shape preserving property and approximation order of Szász-Mirakjan operators, J. Hunan Univ. Tech., 252011 no. 2, pp. 5-9 (in Chinese).

Received by the editors: March 16, 2024; accepted: April 18, 2024; published online: July 11, 2024.

[^0]: ${ }^{1}$ Benemérita Universidad Autónoma de Puebla, Facultad de Ciencias Físico-Matemáticas, Avenida San Claudio y 18 Sur, Colonia San Manuel, Edificio FM1-101B, Ciudad Universitaria, C.P. 72570, Puebla, México. e-mail: jbusta@fcfm.buap.mx.

