
JOURNAL OF NUMERICAL ANALYSIS AND APPROXIMATION THEORY
J. Numer. Anal. Approx. Theory, vol. 53 (2024) no. 1, pp. 63–77, doi.org/10.33993/jnaat531-1408

ictp.acad.ro/jnaat

PRESERVING PROPERTIES
OF SOME SZÁSZ-MIRAKYAN TYPE OPERATORS

JORGE BUSTAMANTE∗

Abstract. For a family of Szász-Mirakyan type operators we prove that they
preserve convex-type functions and that a monotonicity property verified by
Cheney and Sharma in the case Szász-Mirakyan operators holds for the variation
study here. We also verify that several modulus of continuity are preserved.
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1. INTRODUCTION

Throughout the work N is the set of all positive integers, N0 = N ∪ {0},
and Pn is the family of all algebraic polynomials of degree non greater than
n. Moreover, for each j ∈ N0, we use the notations

ej(x) = xj , x ∈ R,

and I = [0, ∞). Let C(I) the family of all continuous functions f : I → R.
The Szász-Mirakyan operators are defined by (see [5] and the references

therein)

Sn(f, x) = e−nx
∞∑

k=0

nk

k! f
(

k
n

)
xk, x ∈ I.

It is known that Sn(e0, x) = 1 and Sn(e1, x) = x (see [5]).
For a fixed real p ≥ 0 and n ∈ N, Schurer defined ([26] and [27])

(1) Sn,p(f, x) = e−(n+p)x
∞∑

k=0

(n+p)k

k! f
(

k
n

)
xk, x ∈ I.

Some studies concerning these operators were given by Sikkema in [28] and
[29] (see also [25]).

It is known that (see [25, p. 82]), for each x ≥ 0 and n ∈ N, Sn,p(e0, x) = 1
and

Sn,p(e1, x) = x + p x
n .
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Hence one has Sn,p(e1, x) = x only when p = 0.
In this work we study properties of a modification Mn,p of Schurer operators

satisfying Mn,p(e0, x) = 1 and Mn,p(e1, x) = x.
Let {β(n)} be an strictly increasing sequence of positive real numbers such

that limn→∞ β(n) = ∞. For p ≥ 0, n ∈ N, x ≥ 0, and a function f ∈ C(I)
consider the operator

(2) Mn,p(f, x) = e−(β(n)+p)x
∞∑

k=0

(β(n)+p)k

k! f
(

k
β(n)+p

)
xk,

whenever the series converges absolutely. Let L(I) be the family of all func-
tions f ∈ C(I) such that, for each n ∈ N, the series Mn,p(f) converges abso-
lutely.

Notice that Mn,p can be considered a more natural extension of Szász-
Mirakyan operators. This modification appeared in [7] and [8]. In [7] they
were studied in spaces defined by the weight ϱm(x) = 1/(1 + x)m, with m ∈ N
and in [8] some weighted space of bounded functions were considered.

There is a long list of papers devoted to study properties of Szász-Mirakyan
operators. Here we recall some of them: [1], [3], [4], [5], [10], [17], [20], [21],
[22], [32], [33], [34], [35], and [36]. It is worth asking when the results presented
in the cited articles can be extended to the case Mn,p operators.

For a fixed p ≥ 0, n ∈ N, and x ≥ 0 we use the notations
(3) gn,p(x) = e−(β(n)+p)x and an,p = β(n) + p.

For r ∈ N0, Cr(I) is the family of all f ∈ C(I) such that

(4) ∥f∥r = sup
x∈I

|f(x)|
(1+x)r < ∞.

For r ∈ N0, let Cr,∞(I) be the class of all functions f ∈ Cr(I) such that
f(x)/(1 + x)r has a finite limit as x → ∞.

In Section 2 we present some general properties of operators Mn,p. In Sec-
tion 3 we show that some known properties related with monotone and convex
functions and Szász-Mirakyan operators also holds for the operators Mn,p. In
Section 4 we prove that several modulus of continuity are preserved (up to a
constant) by the operators Mn,p.

2. SOME BASIC PROPERTIES

Since the series

(5)
∞∑

k=0

ak
n,p

k! xk = e(β(n)+p)x = gn,p(x),

converges uniformly on each interval [0, a], a > 0, it can be differentiated term
by term. For i ∈ N, we will use several times the equations

(6) g(i)
n,p(x) =

∞∑
k=i

ak
n,p

(k−i)!x
k−i =

∞∑
k=0

ak+i
n,p

k! xk = ai
n,pgn,p(x).
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Theorem 1. If i ∈ N0 and

(7) Pi+1(x) = x
(
x − 1

an,p

)
· · ·

(
x − i

an,p

)
, x ≥ 0,

then
(8) Mn,p(Pi+1, x) = xi+1.

In particular, for each n ∈ N and i ∈ N0, ei ∈ L[0, ∞) and Mn,p(ei, x) ∈ Pi.

Proof. Notice that Pi+1(x) ∈ Pi+1 and, for k ∈ N0,

ai+1
n,p Pi+1

(
k

an,p

)
= k(k − 1) · · · (k − i).

In particular Pi+1(k/an,p)) = 0 for 0 ≤ k ≤ i. Therefore, for each fixed x > 0,

ai+1
n,p gn,p(x)Mn,p(Pi+1, x) =

∞∑
k=i+1

ak
n,pxk

(k−i−1)! = xi+1
∞∑

k=i+1

ak
n,pxk−i−1

(k−i−1)!

= xi+1
∞∑

k=0

ak+i+1
n,p

k! xk = xi+1g(i+1)
n (x),

where we use (6). Therefore Mn,p(Pi+1, x) = xi+1 ∈ Pi+1, for each i ≥ 0.
Since, for i ≥ 0, xi can be written as a linear combination of the polynomials

P1, . . . , Pi, we know that ei ∈ L[0, ∞) and Mn,p(ei, x) ∈ Pi. For i = 0 it is a
simple assertion because Mn,p(e0, x) = 1. □

For the case of Szász-Mirakyan operators the last assertion in Theorem 1
was verified by Becker in [5, Lemma 3].

Proposition 2. If r ∈ N, there exists a constant C(r) ≥ 1 such that, for
every real a > 0,

Mn,p((a + e1)r, x) ≤ C(r)(1 + a + x)r.

Proof. From Theorem 1 we know that, for each i ∈ N, there is an algebraic
polynomial Pi ∈ Pn, say Pi(x) =

∑i
k=0 bi,kxk, such that

Mn,p(ei, x) =
i∑

k=0
bi,kxk.

If 0 ≤ x ≤ 1, then∣∣∣∣∣
i∑

k=0
bi,kxk

∣∣∣∣∣ ≤
i∑

k=0
| bi,k |≤ (1 + x)i

i∑
k=0

| bi,k | .

If 1 ≤ x, then ∣∣∣∣∣
i∑

k=0
bi,kxk

∣∣∣∣∣ ≤ xi
i∑

k=0
| bi,k |≤ (1 + x)i

i∑
k=0

| bi,k | .

Therefore 0 ≤ Mn,p(ei, x) ≤ Ci(1 + x)i, where the constant Ci depends only
on i.
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If a > 0,

Mn,p

(
(a + e1)r, s

)
=

r∑
j=0

(r
j

)
ar−jMn,p(ej , s)

≤ C
(
ar +

r∑
j=1

(r
j

)
ar−j(1 + x)j = C(1 + a + x)r.□

Theorem 3 was proved in [8] when β(n) = n, but it can be easily extended
to the case of a general β(n).

Theorem 3. The operators Mn,p has the following properties:
(i) Mn,p : L(I) → C1(I).
(ii) Mn,p(e0, x) = 1
(iii) For every n, m ∈ N, f ∈ L(I) and x > 0,

(9) 1
am

n,p
M (m)

n,p (f, x) = Mn,p

(
∆m

1/an,p
f(t), x

)
,

where ∆k
hg(u) stands the usual k-th forward difference of the function g at u

with step h.

The following result can be proved as Theorem 1 in [30] (it is a consequence
of the Korovkin theorem).

Theorem 4. If f ∈ L(I) and a > 0 then Mn,p(f, x) converges uniformly to
f(x) on [0, a].

3. MONOTONICITY AND CONVEX FUNCTIONS

For k ∈ N, a function g : I → R is said to be k-convex, if ∆k
hg(u) ≥ 0 for

each h > 0. In particular, 2-convexity agrees with the usual notion of convex
functions.

For each k ∈ N, Szász-Mirakyan operators preserve k-convexity [24]. That
is, if ∆k

hg(u) ≥ 0 and Sn(g, x) is well defined, then ∆k
hSn(g, u) ≥ 0. If follows

from (9) that the operators Mn,p share this property Szász-Mirakyan opera-
tors. But the assertion must be presented in a more convenient form. Let us
explain why we need that. In [38, Th. 1], Zhen proved that, if f ′(x) > 0, then
S′

n(f, x) > 0, and if f ′′(x) > 0, then S′′
n(f, x) > 0. Theorem 5 shows that these

types of results are trivial.

Theorem 5. (i) If f ∈ L(I) increases, then M ′
n,p(f, x) ≥ 0.

(ii) If f ∈ L(I) is convex, then M ′′
n,p(f, x) ≥ 0.

Proof. It follows directly from (9). □
Cheney and Sharma proved in [9] that, if f is convex, for each x and every

n ∈ N, Sn+1(f, x) ≤ Sn(f, x). Horová [14] obtained a converse theorem. In
Theorem 6 we verify that a similar result holds for the operators Mn,p. A
converse result can also be proved (see [14] and [18]). But we do not want to
consider that problem here.



5 Preserving properties of some Szász-Mirakyan type operators 67

Theorem 6. (i) If f ∈ L(I) is convex then, for each x ≥ 0 and n ∈ N,

f(x) ≤ Mn+1,p(f, x) ≤ Mn,p(f, x).

(ii) If f ∈ L(I) is concave then, for each x ≥ 0 and n ∈ N,

Mn,p(f, x) ≤ Mn+1,p(f, x) ≤ f(x).

Proof. Assume f is convex. If we set

cn,k = (β(n + 1) − β(n))k and bn,p = an,p

β(n+1)−β(n) ,

then

cn,k

k∑
r=0

(k
r

)
br

n,p = (β(n + 1) − β(n))k
(

β(n)+p
(β(n+1)−β(n)) + 1

)k
= ak

n+1,p.

That is
cn,k

ak
n+1,p

k!
k∑

r=0

1
r!

br
n,p

(k−r)! = 1.

Therefore

cn,k

ak
n+1,p

k!
k∑

r=0

r
an,p

1
r!

br
n,p

(k−r)! = k
ak

n+1,p

cn,k

(β(n+1)−β(n))

k∑
r=1

(k−1
r

)
br−1

n,p

= k
ak

n+1,p

cn,k

(β(n+1)−β(n))

(
β(n)+p

(β(n+1)−β(n)) + 1
)k−1

= k
ak

n+1,p

(
β(n + 1) + p

)k−1
= k

an+1,p
.

This proves that k/an+1,p is a convex combination of the points {r/an,p : 0 ≤
r ≤ k}.

If f is convex, then

f
(

k
an+1,p

)
≤ cn,k

ak
n+1,p

k!
k∑

r=0
f

(
r

an,p

)
1
r!

br
n,p

(k−r)! = k!
ak

n+1,p

k∑
r=0

ck−r
n,k f

(
r

an,p

)
1
r!

ar
n,p

(k−r)! .

By the Cauchy multiplication rule for product of series,

e(β(n+1)−β(n))x
∞∑

k=0

ak
n,p

k! f
(

k
an,p

)
xk =

∞∑
k=0

{ ∑
m+r=k

((β(n+1)−β(n))x)m

m!
ar

n,p

r! f
(

r
an,p

)
xr

}

=
∞∑

k=0

{ k∑
r=0

(β(n+1)−β(n))k−r

(k−r)!
ar

n,p

r! f
(

r
an,p

)}
xk.

Therefore

ean+1,px
(
Mn,p(f, x) − Mn+1,p(f, x)

)
=

= e(β(n+1)−β(n))x
∞∑

k=0

ak
n,p

k! f
(

k
an,p

)
xk −

∞∑
k=0

ak
n+1,p

k! f
(

k
an+1,p

)
xk
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=
∞∑

k=0

{ k∑
r=0

(β(n+1)−β(n))k−r

(k−r)!
ar

n,p

r! f
(

r
an,p

)
− ak

n+1,p

k! f
(

k
an+1,p

)}
xk ≥ 0.

This proves that Mn,p(f, x) ≥ Mn+1,p(f, x). From Theorem 4 we know that
Mn,p(f, x) → f(x) as n → ∞ (pointwise convergence). Thus Mn+1,p(f, x) ≥
f(x).

The concave functions follows by changing f by −f . □

Fix n ∈ N and let f ∈ Cr(I) be a non-negative function (see (4)).
For a non-negative function f ∈ Cr(I), in [37], Zhao proved that if f(x)/x is

non-increasing on (0, ∞), then for each n ≥ 1, Sn(f, x)/x is non-increasing. A
similar result can be proved for the operators Mn,p by modifying the arguments
of Zhao. Since the work [37] is not well known, we include the complete proof.
Notice that the condition f ∈ Cr(I) (assumed by Zhao) will be replaced by
the more general f ∈ L(I).

Theorem 7. Let f ∈ L(I) be a non-negative function. If f(x)/x is non-
increasing on (0, ∞), then for each n ∈ N, Mn,p(f, x)/x is non-increasing.

Proof. We will prove that (d/dx)(Mn,p(f, x)/x) ≤ 0. We use the notations
in (3).

Since
Mn,p(f,x)

x = f(0)gn,p(x)
x + gn,p(x)

∞∑
k=1

ak
n,p

k! f
(

k
an

)
xk−1

and
d

dx
gn,p(x)

x = gn,p(x)
x2

(
− an,px − 1

)
< 0,

we should consider the derivative of the previous series. Note that
∞∑

k=1

ak
n,p

k! f
(

k
an,p

)
d

dx

(
gn,p(x)xk−1

)
=

= gn,p(x)
∞∑

k=2

ak
n,p(k−1)

k! f
(

k
an,p

)
xk−2 − gn,p(x)

∞∑
k=1

ak+1
n,p

k! f
(

k
an

)
xk−1

= gn,p(x)
∞∑

k=1

ak+1
n,p k

(k+1)!f
(

k+1
an,p

)
xk−1 − gn,p(x)

∞∑
k=1

ak+1
n,p

k! f
(

k
an,p

)
xk−1

= gn,p(x)
∞∑

k=1

{
an,p

k+1 f
(

k+1
an,p

)
− an

k f
(

k
an

)}
ak

n,p xk−1

(k−1)! ≤ 0.

The result is proved. □

4. PRESERVATION OF MODULUS OF CONTINUITY

Definition 8. A function ω : I → R+ is called a modulus of continuity if
ω(0) = 0, limt→0 ω(t) = 0, ω is non-negative and non-decreasing in I and ω(t)
is continuous in R+.
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Definition 9. A function ω : I → R+ is called subadditive if for any
s, t ≥ 0

ω(s + t) ≤ ω(s) + ω(t).
If a subadditive function ω : I → R+ is continuous at zero and ω(0) = 0,

then it is continuous. If ω is subadditive, then ω(2t) ≤ 2ω(t) and it follows
from standard arguments that, if t, λ > 0, then
(10) ω(λt) ≤ (1 + λ) ω(f, t).

It is known that (see [11, p. 43]), for any modulus of continuity ω on I,
there exists a concave modulus of continuity (the least concave majorant) ω̃
such that
(11) ω(t) ≤ ω̃(t) ≤ 2ω(t).

For Szász-Mirakyan operators preservation of the usual modulus of conti-
nuity has been considered in [31], [15] and [3]. For instance, if ω(t) is a concave
modulus of continuity and

Λ(ω, A) =
{

f ∈ C(I) : ω(f, t) ≤ Aω(t)
}

,

it is asserted in [15] that f ∈ Λ(ω, A) if and only if Sn(f) ∈ Λ(ω, A), for each
each n ∈ N. On the other hand, in [3] the authors considered functions f such
that 0 < ω(f, 1) < ∞, where ω(f, t) is the usual modulus of continuity. Of
course the condition 0 < ω(f, 1) holds whenever f is not a constant function.

Of course, since the usual modulus of continuity is not well defined for all
f ∈ C(I), such a result must be handled with care. In fact in [13] Hermann
presented a negative result. Let

C0 =
{

f ∈ C(I) : sup
x∈I

| f(x + δ) − f(x) |< ∞ for any δ > 0
}

.

Notice that for any f ∈ C0 the usual modulus of continuity is well defined,
but the conditions f ∈ C0 and δ → 0 does not necessarily imply ω(f, δ) → 0.

Set C∗
0 = {f ∈ C0 : ω(f, t) > 0}. In [13] Hermann proved that

sup
f∈C∗

0

∥Sn(f)−f∥C

ω(f,1/n) = ∞.

In this section we prove some results related with preservation of some mo-
dulus of continuity by the operators Mn,p.

Although Theorem 3 is sufficient to prove the preservation of convexity of
different order by the operators Mn,p, we need other kind of representations
for studying modulus of continuity.

The ideas for the proof of Proposition 10 have been used for different authors
in the case of Szász-Mirakyan operators (see [31] and [15]).

Proposition 10. If f ∈ L(I), n ∈ N, x ∈ I and s > 0, then

Mn,p(f, x + s)−Mn,p(f, x)=e−an,p(x+s)
∞∑

k=0

ak
n,pxk

k!

∞∑
i=1

ai
n,p

i! si
(
f

(
k+i
an,p

)
−f

(
k

an,p

))
.
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Proof. Notice that
ean,p(x+s)Mn,p(f, x + s) =

=
∞∑

j=0
f

(
j

an,p

)
aj

n,p

j! (x + s)j =
∞∑

j=0
f

(
j

an,p

)
aj

n,p

j!

j∑
k=0

(j
k

)
xksj−k =

=
∞∑

k=0

∞∑
j=k

(j
k

)
f

(
j

an,p

)
aj

n,p

j! xksj−k =
∞∑

k=0

xk

k!

∞∑
j=k

f
(

j
an,p

)
aj

n,p

(j−k)!s
j−k

=
∞∑

k=0

xk

k!

∞∑
i=0

f
(

i+k
an,p

)
ai+k

n,p

i! si.

On the other hand,

ean,p(x+s)Mn,p(f, x)=ean,ps
∞∑

k=0
f

(
k

an,p

)
ak

n,p

k! xk =
∞∑

k=0

ak
n,pxk

k!

( ∞∑
i=0

ai
n,p

i! sif
(

k
an,p

))
.

It follows from the equation given above the announced result. □

Let UCb(I) the class of all bounded uniformly continuous functions f : I →
R. For f ∈ UCb(I) and t ≥ 0, define
(12) ω(f, t) = sup

0≤h≤t
sup
x≥0

| f(x + h) − f(x) | .

It can be proved that ω(f, t) is subadditive modulus of continuity in the
sense of Definition 8.

Theorem 11. If f ∈ UCb(I), n ∈ N, and s > 0, then Mn,p(f, x) is uni-
formly continuous and

ω(Mn,p(f), s) ≤ 2 ω(f, s).

Proof. Let ω̃(f, t) be the least concave majorant of ω(f, t).
If f ∈ UCb(I), then f ∈ L(I). From Proposition 10 one has

| Mn,p(f, x + s) − Mn,p(f, x) |≤

≤ e−an,p(x+s)
∞∑

k=0

ak
n,pxk

k!

∞∑
i=0

ai
n,p

i! si | f
(

k+i
an,p

)
− f

(
k

an,p

)
|

≤ e−an,p(x+s)
∞∑

k=0

ak
n,pxk

k!

∞∑
i=0

ai
n,p

i! siω
(
f, i

an,p

)
= Mn,p(ω(f, e1), s) ≤ Mn,p(ω̃(f, e1), s).

Since ω̃(f, t) is a concave function, it follows from Theorem 6 that
Mn,p(ω̃(f), s) ≤ ω̃(f, s) ≤ 2 ω(f, s).

In particular if ε > 0, ω(f, s) ≤ ε/2, 0 ≤ y < x, x − y ≤ s and we set
x = y + t

| Mn,p(f, x) − Mn,p(f, y) |=| Mn,p(f, y + t) − Mn,p(f, y) |≤ ε.



9 Preserving properties of some Szász-Mirakyan type operators 71

This proves that Mn,p(f) is uniformly continuous. □

For f ∈ UCb(I), 0 < α ≤ 1, and t > 0 define

θα(f, t) = sup
0<s≤t

sup
x∈I, 0<h≤s

|f(x+h)−f(x)|
hα ,

θα(f, 0) = 0, and
Kα(f) = sup

0≤t
θα(f, t).

For 0 < α ≤ 1, let us set Lipα(I) for the family of all f ∈ UCb(I) such that
Kα(f) < ∞.

For 0 < α < 1, we also we consider the subspace

(13) lipα(I) =
{

f ∈ Lipα(I) : lim
t→0

θα(f, t) = 0
}

.

This type of spaces appears when we study the approximation in Hölder
type norms (see [6]).

We will analyze the problem of the preservation of the constants Kα(f) and
the class lipα(I) by the operators Mn,p.

For an analogous of Theorem 12 for Szász-Mirakyan operators see [15] and
[12].

Theorem 12. (i) If 0 < α ≤ 1 and f ∈ Lipα(I), then Mn,p(f) ∈ Lipα(I),
and
(14) Kα(Mn,p(f)) ≤ Kα(f),
for each n ∈ N.

(ii) If 0 < α ≤ 1, f ∈ L(I), Mn,p(f) ∈ Lipα(I), for each n ∈ N, and
K := sup

n∈N
Kα(Mn,p(f)) < ∞,

then f ∈ Lipα(I).

Proof. (i) Set g(x) = xα. Since the function g(x) is concave function and
Mn,p(g, x) → g(x) (Theorem 4) and it follows Theorem 6 that Mn,p(g, x) ≤
g(x).

For any k ∈ N0 and i ∈ N,

| f
(

k+i
an,p

)
− f

(
k

an,p

)
|≤ ω

(
f, i

an,p

)
≤ θα

(
f, i

an,p

)(
i

an,p

)α
≤ Kα(f)g

(
i

an,p

)
.

From Proposition 10 we know that, for x ∈ I and h > 0,
| Mn,p(f, x + h) − Mn,p(f, x) |≤ Kα(f)Mn,p(g, h) ≤ Kα(f)hα.

(ii) From Theorem 4 we know that, for each fixed x ∈ I, Mn,p(f, x) → f(x),
as n → ∞.

For x ≥ 0, h > 0 fixed, and each n ∈ N, one has
| f(x + h) − f(x) | ≤| f(x + h) − Mn,p(f, x + h) |
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+ | Mn,p(f, x + h) − Mn,p(f, x) | + | Mn,p(f, x) − f(x) |
≤| f(x + h) − Mn,p(f, x + h) | +Khα+ | Mn,p(f, x) − f(x) | .

The result follows by taking n → ∞. □
For the preservation of the class lipα(I) we need some previous results.

Proposition 13. For 0 < α < 1 and each f ∈ lipα(I),

θα(f, t) = sup
0<s≤t

sup
0<h≤s

ω(f,h)
hα ,

where ω(f, t) is defined by (12).

Proof. By definition, if f ∈ UCb(I), then ω(f, s) is well defined. It is clear
that

sup
x∈I, 0<h≤s

|f(x+h)−f(x)|
hα ≤ sup

0<h≤s

ω(f,h)
hα .

On the other hand, given ε > 0, for any 0 < h ≤ s, there exists xh ∈ I such
that

ω(f, h) ≤ εhα+ | f(xh + h) − f(xh) | .

Therefore
ω(f,h)

hα ≤ ε + |f(xh+h)−f(xh)|
hα ≤ ε + sup

x∈I, 0<h≤s

|f(x+h)−f(x)|
hα .□

Proposition 14. If 0 < α < 1, for each f ∈ lipα(I), the functional θα(f, t)
is a subadditive modulus of continuity.

Proof. (a) By definition θα(f, 0) = 0 and θα(f, t) → 0 as t → 0. Moreover
it is clear that θα(f, t) is non-negative and non-decreasing in I

(b) Let us verify that θα(f, t) is subadditive. Assume 0 < v ≤ t and fix any
s and h such that 0 < s ≤ v + t and 0 < h ≤ s.

If x ∈ I and h ≤ t it is clear that
|f(x+h)−f(x)|

hα ≤ sup
0<u≤t

sup
y∈I, 0<w≤u

|f(y+w)−f(y)|
wα = θα(f, t).

We still have to consider the case v ≤ t < h. Since t < h and 0 < h − t < h,
one has

|f(x+h)−f(x)|
hα ≤ |f(x+h−t+t)−f(x+h−t)|

tα + |f(x+h−t)−f(x)|
(h−t)α

≤ θα(f, t) + θα(f, h − t) ≤ θα(f, t) + θα(f, v),
because θα(f, t) increases and h − t ≤ s − t ≤ v. Therefore

θα(f, t + v) ≤ θα(f, t) + θα(f, v).
(c) Taking into account that θα(f, 0) = 0 and θ(f, t) is subadditive, it is a

continuous function. □

Theorem 15. If 0 < α < 1, f ∈ lipα(I), n ∈ N, and t > 0, then
θα(Mn,p(f), t) ≤ 2θα(f, t).
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Proof. If 0 < s ≤ t, taking into account Theorem 11, one has

| Mn,p(f, x+s)−Mn,p(f, x) |≤ 2 ω(f, s) = 2 ω(f,s)
sα sα ≤ 2 θα(f, s)sα ≤ 2 θα(f, t)sα.

This is sufficient to prove the result. □

For each r ≥ 0, f ∈ Cr(I) (see (4)), and t ≥ 0, define

Ωr(f, t) = sup
0≤s≤t

sup
x≥0

|f(x+s)−f(x)|
(1+x+s)r .

We will use this modulus only in the case f ∈ Cr,∞(I).
Before proving some properties of this modulus, let us compare them with

others that have been used previously.
The following functional was considered by Kratz and Stadtmüller in [19].

For r ∈ N and a function f ∈ Cr(I) set

Ω̃r(f, t) = sup
s,v∈I,|s−v|≤t

|f(s)−f(v)|
(1+s+v)r = sup

x≥0
sup

0<s≤t

|f(x+s)−f(x)|
(1+2x+s)r .

Taking into account that 1 + x + s ≤ 1 + 2x + s ≤ 2(1 + x + s), we know
that

1
2r Ωr(f, t) ≤ Ω̃r(f, t) ≤ Ωr(f, t).

Kratz and Stadtmüller proved that, for Szász-Mirakyan operators, there
exists a constant C such that, for all f ∈ Cr(I), every t ≥ 0 and each n ∈ N,

Ω̃r(Sn(f), t) ≤ CΩ̃r(f, t).

They did not proved that limt→0+ Ω̃r(f, t) = 0. We will verify that, if f ∈
Cr,∞(I), then limt→0+ Ωr(f, t) = 0.

For f ∈ C2,∞(I), another modulus was considered in [2] by setting

Ω(f, t) = sup
0≤s≤t

sup
x∈I

|f(x+s)−f(x)|
(1+s)2(1+x)2 .

For 0 ≤ t ≤ 1, Ω(f, t) and Ω2(f, t) are equivalent. In fact, suppose that
s ≤ 1. First one has

(1 + s2)(1 + x2) = 1 + s2 + x2 + s2x2 ≤ 2(1 + s2 + x2) ≤ 2(1 + x + s)2.

On the other hand, if x ≤ 1,

(1 + s + x)2 = 1 + 2x + 2s + x2 + 2xs + s2 ≤ 7(1 + s2 + x2) ≤ 7(1 + s2)(1 + x2).

and, if x > 1,

(1 + s + x)2 ≤ 3 + 5x2 + s2 ≤ 5(1 + s2 + x2) ≤ 5(1 + s2)(1 + x2).

Therefore
1
2Ω2(f, t) ≤ Ω(f, t) ≤ 7Ω2(f, t).

Proposition 16. If r is a non negative real and f ∈ Cr,∞(I), then Ωr(f, t)
is a subadditive modulus of continuity in the sense of Definition 8.
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Proof. It is clear that Ωr(f, 0) = 0 and Ωr(f, t) is non-negative and non-
decreasing in I

(a) We consider first the case r = 0. As in the case of the classical modulus
of continuity, it is easy to prove that the functional Ωr(f, t) is a subadditive.
In order to prove continuity, it is sufficient to verify continuity a zero, but if
follows from the condition limx→∞ f(x) = 0.

(b) Assume r > 0. Denote A = limx→∞ f(x)/(1 + x)r. Given ε > 0, there
exists x0 such that ∣∣∣ f(x)

(1+x)r − A
∣∣∣ < ε

2 , x ≥ x0.

If t > 0 and 0 < s ≤ t ≤ 1, then

sup
x≥0

|f(x+s)−f(x)|
(1+x+s)r ≤ sup

0≤x≤x0

|f(x+s)−f(x)|
(1+x+s)r + sup

x≥x0

|f(x+s)−f(x)|
(1+x+s)r

≤ sup
0≤x≤x0

| f(x + s) − f(x) | + sup
x≥x0

|f(x+s)−A|
(1+x+s)r + sup

x≥x0

|f(x)−A|
(1+x)r

≤ ω1(f, t)[0,x0+1] + ε,

where ω1(f, t)[0,x0+1] is the usual modulus of continuity in the interval [0, x0 +
1].

This is sufficient to prove that limt→0 Ωr(f, t) → 0 = 0.
(c) Let us verify that Ωr(f, t) is subadditive: Ωr(f, v + t) ≤ Ωr(f, v) +

Ωr(f, t). Without losing generality we assume that 0 < v ≤ t.
Fijemos x ≥ 0 and 0 < s ≤ t + v.
If s ≤ t, it is clear that

|f(x+s)−f(x)|
1+(x+s)r ≤ sup

0<s≤t

|f(x+s)−f(x)|
1+(x+s)r = Ωr(f, t).

Let us consider the case v ≤ t < s. Since 0 < s− t, one has (1+x+s− t)r <
(1 + x + s)r. Therefore

|f(x+s)−f(x)|
(1+x+s)r ≤ |f(x+s−t+t)−f(x+s−t)|

(1+(x+s−t)+t)r + |f(x+s−t)−f(x)|
(1+x+s−t)r

≤ Ωr(f, t) + Ωr(f, s − t) ≤ Ωr(f, t) + Ωr(f, v).
It is sufficient to prove that Ωr(f, t) is a modulus of continuity. □

Theorem 17. If r is a non negative real, there exists a constant C such
that, for f ∈ Cr,∞(I), n ∈ N, and t > 0,

Ωr(Mn,p(f), t) ≤ CΩr(f, t).

Proof. Notice that, for s > 0, taking into account (10), with t = s and
λ = i/(san,p),∣∣∣f(

k+i
an,p

)
− f

(
k

an,p

)∣∣∣ ≤ Ωr

(
i

an,p

)(
1 + k

an,p
+ i

an,p

)r

≤ Ωr(f, s)
(
1 + i

an,ps

)(
1 + k

an,p
+ i

an,p

)r
,

because Ωr(f, s) is a subadditive modulus.
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Therefore (see Proposition 10)
| Mn,p(f, x + s) − Mn,p(f, x) |=

=
∣∣∣∣∣e−an,p(x+s)

∞∑
k=0

ak
n,pxk

k!

∞∑
i=0

ai
n,p

i! si
(
f

(
k+i
an,p

)
− f

(
k

an,p

))∣∣∣∣∣
≤ Ωr(f,s)

ean,p(x+s)

∞∑
k=0

ak
n,pxk

k!

∞∑
i=0

ai
n,p

i! si
(
1 + i

an,ps

)(
1 + k

an,p
+ i

an,p

)r
.

Taking into account Proposition 2 (with a = 1 + k/an,p), we obtain

e−an,ps
∞∑

i=0

ai
n,p

i! si
(
1 + k

an,p
+ i

an,p

)r
=

= Mn,p

((
1 + k

an,p
+ e1

)r
, s

)
≤ C(r)

(
2 + k

an,p
+ s

)r
≤ 2rC(r)

(
1 + k

an,p
+ s

)r
.

On the other hand

e−an,ps

s

∞∑
i=1

ai
n,p

i! si i
an,p

(
1 + k

an,p
+ i

an,p

)r
=

= e−an,ps
∞∑

i=1

ai−1
n,p

(i−1)!s
i−1

(
1 + k

an,p
+ i

an,p

)r

= Mn,p

((
1 + 1

an,p
+ k

an,p
+ e1

)r
, s

)
≤ Mn,p

((
2 + k

an,p
+ e1

)r
, s

)
≤ C(r)

(
3 + k

an,p
+ s

)r
≤ 3rC(r)

(
1 + k

an,p
+ s

)r
.

From the estimates given above one has

| Mn,p(f, x + s) − Mn,p(f, x) | ≤ 3rC(r)Ωr(f,s)
ean,px

∞∑
k=0

ak
n,pxk

k!

(
1 + k

an,p
+ s

)r

≤ 6rC(r)Ωr(f, s)(1 + x + s)r,

where we use again Proposition 2. □
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