JOURNAL OF NUMERICAL ANALYSIS AND APPROXIMATION THEORY

J. Numer. Anal. Approx. Theory, vol. 53 (2024) no. 1, pp. 63-77, doi.org/10.33993/jnaat531-1408 ictp.acad.ro/jnaat

PRESERVING PROPERTIES OF SOME SZÁSZ-MIRAKYAN TYPE OPERATORS

JORGE BUSTAMANTE*

Abstract. For a family of Szász-Mirakyan type operators we prove that they preserve convex-type functions and that a monotonicity property verified by Cheney and Sharma in the case Szász-Mirakyan operators holds for the variation study here. We also verify that several modulus of continuity are preserved.

MSC. 41A36, 41A99.

Keywords. Szász-Mirakyan type operators, positive linear operators, shape preserving properties.

1. INTRODUCTION

Throughout the work \mathbb{N} is the set of all positive integers, $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$, and \mathbb{P}_n is the family of all algebraic polynomials of degree non greater than n. Moreover, for each $j \in \mathbb{N}_0$, we use the notations

$$e_i(x) = x^j, \qquad x \in \mathbb{R}.$$

and $I = [0, \infty)$. Let C(I) the family of all continuous functions $f : I \to \mathbb{R}$. The Szász-Mirakyan operators are defined by (see [5] and the references therein)

$$S_n(f,x) = e^{-nx} \sum_{k=0}^{\infty} \frac{n^k}{k!} f\left(\frac{k}{n}\right) x^k, \quad x \in I.$$

It is known that $S_n(e_0, x) = 1$ and $S_n(e_1, x) = x$ (see [5]).

For a fixed real $p \ge 0$ and $n \in \mathbb{N}$, Schurer defined ([26] and [27])

(1)
$$S_{n,p}(f,x) = e^{-(n+p)x} \sum_{k=0}^{\infty} \frac{(n+p)^k}{k!} f\left(\frac{k}{n}\right) x^k, \quad x \in I.$$

Some studies concerning these operators were given by Sikkema in [28] and [29] (see also [25]).

It is known that (see [25, p. 82]), for each $x \ge 0$ and $n \in \mathbb{N}$, $S_{n,p}(e_0, x) = 1$ and

$$S_{n,p}(e_1, x) = x + \frac{px}{n}.$$

^{*}Benemérita Universidad Autónoma de Puebla, Facultad de Ciencias Físico-Matemáticas, Avenida San Claudio y 18 Sur, Colonia San Manuel, Edificio FM1-101B, Ciudad Universitaria, C.P. 72570, Puebla, México. e-mail: jbusta@fcfm.buap.mx.

Hence one has $S_{n,p}(e_1, x) = x$ only when p = 0.

In this work we study properties of a modification $M_{n,p}$ of Schurer operators satisfying $M_{n,p}(e_0, x) = 1$ and $M_{n,p}(e_1, x) = x$.

Let $\{\beta(n)\}\$ be an strictly increasing sequence of positive real numbers such that $\lim_{n\to\infty}\beta(n)=\infty$. For $p\geq 0, n\in\mathbb{N}, x\geq 0$, and a function $f\in C(I)$ consider the operator

(2)
$$M_{n,p}(f,x) = e^{-(\beta(n)+p)x} \sum_{k=0}^{\infty} \frac{(\beta(n)+p)^k}{k!} f\left(\frac{k}{\beta(n)+p}\right) x^k,$$

whenever the series converges absolutely. Let $\mathcal{L}(I)$ be the family of all functions $f \in C(I)$ such that, for each $n \in \mathbb{N}$, the series $M_{n,p}(f)$ converges absolutely.

Notice that $M_{n,p}$ can be considered a more natural extension of Szász-Mirakyan operators. This modification appeared in [7] and [8]. In [7] they were studied in spaces defined by the weight $\rho_m(x) = 1/(1+x)^m$, with $m \in \mathbb{N}$ and in [8] some weighted space of bounded functions were considered.

There is a long list of papers devoted to study properties of Szász-Mirakyan operators. Here we recall some of them: [1], [3], [4], [5], [10], [17], [20], [21], [22], [32], [33], [34], [35], and [36]. It is worth asking when the results presented in the cited articles can be extended to the case $M_{n,p}$ operators.

For a fixed $p \ge 0$, $n \in \mathbb{N}$, and $x \ge 0$ we use the notations

(3)
$$g_{n,p}(x) = e^{-(\beta(n)+p)x}$$
 and $a_{n,p} = \beta(n) + p$

For $r \in \mathbb{N}_0$, $C_r(I)$ is the family of all $f \in C(I)$ such that

(4)
$$||f||_r = \sup_{x \in I} \frac{|f(x)|}{(1+x)^r} < \infty.$$

For $r \in \mathbb{N}_0$, let $C_{r,\infty}(I)$ be the class of all functions $f \in C_r(I)$ such that $f(x)/(1+x)^r$ has a finite limit as $x \to \infty$.

In Section 2 we present some general properties of operators $M_{n,p}$. In Section 3 we show that some known properties related with monotone and convex functions and Szász-Mirakyan operators also holds for the operators $M_{n,p}$. In Section 4 we prove that several modulus of continuity are preserved (up to a constant) by the operators $M_{n,p}$.

2. SOME BASIC PROPERTIES

Since the series

(5)
$$\sum_{k=0}^{\infty} \frac{a_{n,p}^k}{k!} x^k = e^{(\beta(n)+p)x} = g_{n,p}(x),$$

converges uniformly on each interval [0, a], a > 0, it can be differentiated term by term. For $i \in \mathbb{N}$, we will use several times the equations

(6)
$$g_{n,p}^{(i)}(x) = \sum_{k=i}^{\infty} \frac{a_{n,p}^{k}}{(k-i)!} x^{k-i} = \sum_{k=0}^{\infty} \frac{a_{n,p}^{k+i}}{k!} x^{k} = a_{n,p}^{i} g_{n,p}(x).$$

THEOREM 1. If $i \in \mathbb{N}_0$ and

(7)
$$P_{i+1}(x) = x \left(x - \frac{1}{a_{n,p}} \right) \cdots \left(x - \frac{i}{a_{n,p}} \right), \quad x \ge 0,$$

then

(8)
$$M_{n,p}(P_{i+1}, x) = x^{i+1}$$

In particular, for each $n \in \mathbb{N}$ and $i \in \mathbb{N}_0$, $e_i \in \mathcal{L}[0, \infty)$ and $M_{n,p}(e_i, x) \in \mathbb{P}_i$. *Proof.* Notice that $P_{i+1}(x) \in \mathbb{P}_{i+1}$ and, for $k \in \mathbb{N}_0$,

$$a_{n,p}^{i+1}P_{i+1}\left(\frac{k}{a_{n,p}}\right) = k(k-1)\cdots(k-i).$$

In particular $P_{i+1}(k/a_{n,p}) = 0$ for $0 \le k \le i$. Therefore, for each fixed x > 0,

$$a_{n,p}^{i+1}g_{n,p}(x)M_{n,p}(P_{i+1},x) = \sum_{k=i+1}^{\infty} \frac{a_{n,p}^{k}x^{k}}{(k-i-1)!} = x^{i+1}\sum_{k=i+1}^{\infty} \frac{a_{n,p}^{k}x^{k-i-1}}{(k-i-1)!}$$
$$= x^{i+1}\sum_{k=0}^{\infty} \frac{a_{n,p}^{k+i+1}}{k!}x^{k} = x^{i+1}g_{n}^{(i+1)}(x),$$

where we use (6). Therefore $M_{n,p}(P_{i+1}, x) = x^{i+1} \in \mathbb{P}_{i+1}$, for each $i \ge 0$.

Since, for $i \ge 0$, x^i can be written as a linear combination of the polynomials P_1, \ldots, P_i , we know that $e_i \in \mathcal{L}[0, \infty)$ and $M_{n,p}(e_i, x) \in \mathbb{P}_i$. For i = 0 it is a simple assertion because $M_{n,p}(e_0, x) = 1$.

For the case of Szász-Mirakyan operators the last assertion in Theorem 1 was verified by Becker in [5, Lemma 3].

PROPOSITION 2. If $r \in \mathbb{N}$, there exists a constant $C(r) \ge 1$ such that, for every real a > 0,

$$M_{n,p}((a+e_1)^r, x) \le C(r)(1+a+x)^r.$$

Proof. From Theorem 1 we know that, for each $i \in \mathbb{N}$, there is an algebraic polynomial $P_i \in \mathbb{P}_n$, say $P_i(x) = \sum_{k=0}^i b_{i,k} x^k$, such that

$$M_{n,p}(e_i, x) = \sum_{k=0}^{i} b_{i,k} x^k.$$

If $0 \le x \le 1$, then

$$\left|\sum_{k=0}^{i} b_{i,k} x^{k}\right| \leq \sum_{k=0}^{i} |b_{i,k}| \leq (1+x)^{i} \sum_{k=0}^{i} |b_{i,k}|.$$

If $1 \leq x$, then

$$\left| \sum_{k=0}^{i} b_{i,k} x^{k} \right| \le x^{i} \sum_{k=0}^{i} |b_{i,k}| \le (1+x)^{i} \sum_{k=0}^{i} |b_{i,k}|.$$

Therefore $0 \leq M_{n,p}(e_i, x) \leq C_i(1+x)^i$, where the constant C_i depends only on *i*.

If a > 0,

$$M_{n,p}\Big((a+e_1)^r,s\Big) = \sum_{j=0}^r {r \choose j} a^{r-j} M_{n,p}(e_j,s)$$

$$\leq C\Big(a^r + \sum_{j=1}^r {r \choose j} a^{r-j} (1+x)^j = C(1+a+x)^r.\Box$$

Theorem 3 was proved in [8] when $\beta(n) = n$, but it can be easily extended to the case of a general $\beta(n)$.

THEOREM 3. The operators $M_{n,p}$ has the following properties:

- (i) $M_{n,p}: \mathcal{L}(I) \to C^1(I).$
- (ii) $M_{n,p}(e_0, x) = 1$

(iii) For every $n, m \in \mathbb{N}$, $f \in \mathcal{L}(I)$ and x > 0,

(9)
$$\frac{1}{a_{n,p}^m} M_{n,p}^{(m)}(f,x) = M_{n,p} \Big(\Delta_{1/a_{n,p}}^m f(t), x \Big),$$

where $\Delta_h^k g(u)$ stands the usual k-th forward difference of the function g at u with step h.

The following result can be proved as Theorem 1 in [30] (it is a consequence of the Korovkin theorem).

THEOREM 4. If $f \in \mathcal{L}(I)$ and a > 0 then $M_{n,p}(f, x)$ converges uniformly to f(x) on [0, a].

3. MONOTONICITY AND CONVEX FUNCTIONS

For $k \in \mathbb{N}$, a function $g: I \to \mathbb{R}$ is said to be k-convex, if $\Delta_h^k g(u) \ge 0$ for each h > 0. In particular, 2-convexity agrees with the usual notion of convex functions.

For each $k \in \mathbb{N}$, Szász-Mirakyan operators preserve k-convexity [24]. That is, if $\Delta_h^k g(u) \geq 0$ and $S_n(g, x)$ is well defined, then $\Delta_h^k S_n(g, u) \geq 0$. If follows from (9) that the operators $M_{n,p}$ share this property Szász-Mirakyan operators. But the assertion must be presented in a more convenient form. Let us explain why we need that. In [38, Th. 1], Zhen proved that, if f'(x) > 0, then $S'_n(f, x) > 0$, and if f''(x) > 0, then $S''_n(f, x) > 0$. Theorem 5 shows that these types of results are trivial.

THEOREM 5. (i) If
$$f \in \mathcal{L}(I)$$
 increases, then $M'_{n,p}(f,x) \ge 0$.
(ii) If $f \in \mathcal{L}(I)$ is convex, then $M''_{n,p}(f,x) \ge 0$.

Proof. It follows directly from (9).

Cheney and Sharma proved in [9] that, if f is convex, for each x and every $n \in \mathbb{N}$, $S_{n+1}(f,x) \leq S_n(f,x)$. Horová [14] obtained a converse theorem. In Theorem 6 we verify that a similar result holds for the operators $M_{n,p}$. A converse result can also be proved (see [14] and [18]). But we do not want to consider that problem here.

THEOREM 6. (i) If $f \in \mathcal{L}(I)$ is convex then, for each $x \ge 0$ and $n \in \mathbb{N}$,

$$f(x) \le M_{n+1,p}(f,x) \le M_{n,p}(f,x).$$

(ii) If $f \in \mathcal{L}(I)$ is concave then, for each $x \ge 0$ and $n \in \mathbb{N}$,

$$M_{n,p}(f,x) \le M_{n+1,p}(f,x) \le f(x).$$

Proof. Assume f is convex. If we set

$$c_{n,k} = (\beta(n+1) - \beta(n))^k$$
 and $b_{n,p} = \frac{a_{n,p}}{\beta(n+1) - \beta(n)}$,

then

$$c_{n,k}\sum_{r=0}^{k} {\binom{k}{r}} b_{n,p}^{r} = (\beta(n+1) - \beta(n))^{k} \left(\frac{\beta(n) + p}{(\beta(n+1) - \beta(n))} + 1\right)^{k} = a_{n+1,p}^{k}.$$

That is

$$\frac{c_{n,k}}{a_{n+1,p}^k} \, k! \sum_{r=0}^k \frac{1}{r!} \frac{b_{n,p}^r}{(k-r)!} = 1.$$

Therefore

$$\begin{split} \frac{c_{n,k}}{a_{n+1,p}^{k}}k! \sum_{r=0}^{k} \frac{r}{a_{n,p}} \frac{1}{r!} \frac{b_{n,p}^{r}}{(k-r)!} &= \frac{k}{a_{n+1,p}^{k}} \frac{c_{n,k}}{(\beta(n+1)-\beta(n))} \sum_{r=1}^{k} \binom{k-1}{r} b_{n,p}^{r-1} \\ &= \frac{k}{a_{n+1,p}^{k}} \frac{c_{n,k}}{(\beta(n+1)-\beta(n))} \left(\frac{\beta(n)+p}{(\beta(n+1)-\beta(n))} + 1\right)^{k-1} \\ &= \frac{k}{a_{n+1,p}^{k}} \left(\beta(n+1) + p\right)^{k-1} = \frac{k}{a_{n+1,p}^{k}}. \end{split}$$

This proves that $k/a_{n+1,p}$ is a convex combination of the points $\{r/a_{n,p}: 0 \le r \le k\}$.

If f is convex, then

$$f\left(\frac{k}{a_{n+1,p}}\right) \le \frac{c_{n,k}}{a_{n+1,p}^{k}} k! \sum_{r=0}^{k} f\left(\frac{r}{a_{n,p}}\right) \frac{1}{r!} \frac{b_{n,p}^{r}}{(k-r)!} = \frac{k!}{a_{n+1,p}^{k}} \sum_{r=0}^{k} c_{n,k}^{k-r} f\left(\frac{r}{a_{n,p}}\right) \frac{1}{r!} \frac{a_{n,p}^{r}}{(k-r)!}.$$

By the Cauchy multiplication rule for product of series,

$$e^{(\beta(n+1)-\beta(n))x} \sum_{k=0}^{\infty} \frac{a_{n,p}^{k}}{k!} f\left(\frac{k}{a_{n,p}}\right) x^{k} = \sum_{k=0}^{\infty} \left\{ \sum_{m+r=k}^{(\beta(n+1)-\beta(n))x} \frac{a_{n,p}^{r}}{m!} f\left(\frac{r}{a_{n,p}}\right) x^{r} \right\}$$
$$= \sum_{k=0}^{\infty} \left\{ \sum_{r=0}^{k} \frac{(\beta(n+1)-\beta(n))^{k-r}}{(k-r)!} \frac{a_{n,p}^{r}}{r!} f\left(\frac{r}{a_{n,p}}\right) \right\} x^{k}.$$

Therefore

$$e^{a_{n+1,p}x} \Big(M_{n,p}(f,x) - M_{n+1,p}(f,x) \Big) =$$

= $e^{(\beta(n+1)-\beta(n))x} \sum_{k=0}^{\infty} \frac{a_{n,p}^k}{k!} f\Big(\frac{k}{a_{n,p}}\Big) x^k - \sum_{k=0}^{\infty} \frac{a_{n+1,p}^k}{k!} f\Big(\frac{k}{a_{n+1,p}}\Big) x^k$

$$=\sum_{k=0}^{\infty} \Big\{ \sum_{r=0}^{k} \frac{(\beta(n+1)-\beta(n))^{k-r}}{(k-r)!} \frac{a_{n,p}^{r}}{r!} f\Big(\frac{r}{a_{n,p}}\Big) - \frac{a_{n+1,p}^{k}}{k!} f\Big(\frac{k}{a_{n+1,p}}\Big) \Big\} x^{k} \ge 0.$$

This proves that $M_{n,p}(f,x) \ge M_{n+1,p}(f,x)$. From Theorem 4 we know that $M_{n,p}(f,x) \to f(x)$ as $n \to \infty$ (pointwise convergence). Thus $M_{n+1,p}(f,x) \ge f(x)$.

The concave functions follows by changing f by -f.

Fix $n \in \mathbb{N}$ and let $f \in C_r(I)$ be a non-negative function (see (4)).

For a non-negative function $f \in C_r(I)$, in [37], Zhao proved that if f(x)/x is non-increasing on $(0, \infty)$, then for each $n \ge 1$, $S_n(f, x)/x$ is non-increasing. A similar result can be proved for the operators $M_{n,p}$ by modifying the arguments of Zhao. Since the work [37] is not well known, we include the complete proof. Notice that the condition $f \in C_r(I)$ (assumed by Zhao) will be replaced by the more general $f \in \mathcal{L}(I)$.

THEOREM 7. Let $f \in \mathcal{L}(I)$ be a non-negative function. If f(x)/x is non-increasing on $(0, \infty)$, then for each $n \in \mathbb{N}$, $M_{n,p}(f, x)/x$ is non-increasing.

Proof. We will prove that $(d/dx)(M_{n,p}(f,x)/x) \leq 0$. We use the notations in (3).

Since

$$\frac{M_{n,p}(f,x)}{x} = f(0)\frac{g_{n,p}(x)}{x} + g_{n,p}(x)\sum_{k=1}^{\infty} \frac{a_{n,p}^{k}}{k!} f\left(\frac{k}{a_{n}}\right) x^{k-1}$$

and

$$\frac{d}{dx}\frac{g_{n,p}(x)}{x} = \frac{g_{n,p}(x)}{x^2} \Big(-a_{n,p}x - 1 \Big) < 0,$$

we should consider the derivative of the previous series. Note that

$$\sum_{k=1}^{\infty} \frac{a_{n,p}^{k}}{k!} f\left(\frac{k}{a_{n,p}}\right) \frac{d}{dx} \left(g_{n,p}(x)x^{k-1}\right) =$$

$$= g_{n,p}(x) \sum_{k=2}^{\infty} \frac{a_{n,p}^{k}(k-1)}{k!} f\left(\frac{k}{a_{n,p}}\right) x^{k-2} - g_{n,p}(x) \sum_{k=1}^{\infty} \frac{a_{n,p}^{k+1}}{k!} f\left(\frac{k}{a_{n}}\right) x^{k-1}$$

$$= g_{n,p}(x) \sum_{k=1}^{\infty} \frac{a_{n,p}^{k+1} k}{(k+1)!} f\left(\frac{k+1}{a_{n,p}}\right) x^{k-1} - g_{n,p}(x) \sum_{k=1}^{\infty} \frac{a_{n,p}^{k+1}}{k!} f\left(\frac{k}{a_{n,p}}\right) x^{k-1}$$

$$= g_{n,p}(x) \sum_{k=1}^{\infty} \left\{ \frac{a_{n,p}}{k+1} f\left(\frac{k+1}{a_{n,p}}\right) - \frac{a_{n}}{k} f\left(\frac{k}{a_{n}}\right) \right\} \frac{a_{n,p}^{k} x^{k-1}}{(k-1)!} \le 0.$$

The result is proved.

4. PRESERVATION OF MODULUS OF CONTINUITY

DEFINITION 8. A function $\omega : I \to \mathbb{R}^+$ is called a modulus of continuity if $\omega(0) = 0$, $\lim_{t\to 0} \omega(t) = 0$, ω is non-negative and non-decreasing in I and $\omega(t)$ is continuous in \mathbb{R}^+ .

DEFINITION 9. A function $\omega : I \to \mathbb{R}^+$ is called subadditive if for any $s, t \ge 0$

$$\omega(s+t) \le \omega(s) + \omega(t).$$

If a subadditive function $\omega : I \to \mathbb{R}^+$ is continuous at zero and $\omega(0) = 0$, then it is continuous. If ω is subadditive, then $\omega(2t) \leq 2\omega(t)$ and it follows from standard arguments that, if $t, \lambda > 0$, then

(10)
$$\omega(\lambda t) \le (1+\lambda)\,\omega(f,t).$$

It is known that (see [11, p. 43]), for any modulus of continuity ω on I, there exists a concave modulus of continuity (the least concave majorant) $\tilde{\omega}$ such that

(11)
$$\omega(t) \le \widetilde{\omega}(t) \le 2\omega(t).$$

For Szász-Mirakyan operators preservation of the usual modulus of continuity has been considered in [31], [15] and [3]. For instance, if $\omega(t)$ is a concave modulus of continuity and

$$\Lambda(\omega, A) = \Big\{ f \in C(I) : \ \omega(f, t) \le A\omega(t) \Big\},\$$

it is asserted in [15] that $f \in \Lambda(\omega, A)$ if and only if $S_n(f) \in \Lambda(\omega, A)$, for each each $n \in \mathbb{N}$. On the other hand, in [3] the authors considered functions f such that $0 < \omega(f, 1) < \infty$, where $\omega(f, t)$ is the usual modulus of continuity. Of course the condition $0 < \omega(f, 1)$ holds whenever f is not a constant function.

Of course, since the usual modulus of continuity is not well defined for all $f \in C(I)$, such a result must be handled with care. In fact in [13] Hermann presented a negative result. Let

$$C_0 = \left\{ f \in C(I) : \sup_{x \in I} | f(x+\delta) - f(x) | < \infty \text{ for any } \delta > 0 \right\}$$

Notice that for any $f \in C_0$ the usual modulus of continuity is well defined, but the conditions $f \in C_0$ and $\delta \to 0$ does not necessarily imply $\omega(f, \delta) \to 0$. Set $C_0^* = \{f \in C_0 : \omega(f, t) > 0\}$. In [13] Hermann proved that

$$\sup_{f \in C_0^*} \frac{\|S_n(f) - f\|_C}{\omega(f, 1/n)} = \infty.$$

In this section we prove some results related with preservation of some modulus of continuity by the operators $M_{n,p}$.

Although Theorem 3 is sufficient to prove the preservation of convexity of different order by the operators $M_{n,p}$, we need other kind of representations for studying modulus of continuity.

The ideas for the proof of Proposition 10 have been used for different authors in the case of Szász-Mirakyan operators (see [31] and [15]).

PROPOSITION 10. If $f \in \mathcal{L}(I)$, $n \in \mathbb{N}$, $x \in I$ and s > 0, then

$$M_{n,p}(f,x+s) - M_{n,p}(f,x) = e^{-a_{n,p}(x+s)} \sum_{k=0}^{\infty} \frac{a_{n,p}^{k} x^{k}}{k!} \sum_{i=1}^{\infty} \frac{a_{n,p}^{i}}{i!} s^{i} \left(f\left(\frac{k+i}{a_{n,p}}\right) - f\left(\frac{k}{a_{n,p}}\right) \right).$$

Proof. Notice that

$$e^{a_{n,p}(x+s)}M_{n,p}(f,x+s) =$$

$$= \sum_{j=0}^{\infty} f\left(\frac{j}{a_{n,p}}\right) \frac{a_{n,p}^{j}}{j!} (x+s)^{j} = \sum_{j=0}^{\infty} f\left(\frac{j}{a_{n,p}}\right) \frac{a_{n,p}^{j}}{j!} \sum_{k=0}^{j} {\binom{j}{k}} x^{k} s^{j-k} =$$

$$= \sum_{k=0}^{\infty} \sum_{j=k}^{\infty} {\binom{j}{k}} f\left(\frac{j}{a_{n,p}}\right) \frac{a_{n,p}^{j}}{j!} x^{k} s^{j-k} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!} \sum_{j=k}^{\infty} f\left(\frac{j}{a_{n,p}}\right) \frac{a_{n,p}^{j}}{(j-k)!} s^{j-k}$$

$$= \sum_{k=0}^{\infty} \frac{x^{k}}{k!} \sum_{i=0}^{\infty} f\left(\frac{i+k}{a_{n,p}}\right) \frac{a_{n,p}^{i+k}}{i!} s^{i}.$$

On the other hand,

$$e^{a_{n,p}(x+s)}M_{n,p}(f,x) = e^{a_{n,p}s} \sum_{k=0}^{\infty} f\left(\frac{k}{a_{n,p}}\right) \frac{a_{n,p}^{k}}{k!} x^{k} = \sum_{k=0}^{\infty} \frac{a_{n,p}^{k}x^{k}}{k!} \left(\sum_{i=0}^{\infty} \frac{a_{n,p}^{i}}{i!} s^{i} f\left(\frac{k}{a_{n,p}}\right)\right).$$

It follows from the equation given above the announced result.

It follows from the equation given above the announced result.

Let $UC_b(I)$ the class of all bounded uniformly continuous functions $f: I \to I$ \mathbb{R} . For $f \in UC_b(I)$ and $t \ge 0$, define

(12)
$$\omega(f,t) = \sup_{0 \le h \le t} \sup_{x \ge 0} |f(x+h) - f(x)|.$$

It can be proved that $\omega(f,t)$ is subadditive modulus of continuity in the sense of Definition 8.

THEOREM 11. If $f \in UC_b(I)$, $n \in \mathbb{N}$, and s > 0, then $M_{n,p}(f, x)$ is uniformly continuous and

$$\omega(M_{n,p}(f),s) \le 2\,\omega(f,s).$$

Proof. Let $\widetilde{\omega}(f,t)$ be the least concave majorant of $\omega(f,t)$. If $f \in UC_b(I)$, then $f \in \mathcal{L}(I)$. From Proposition 10 one has

$$| M_{n,p}(f, x + s) - M_{n,p}(f, x) | \leq \\ \leq e^{-a_{n,p}(x+s)} \sum_{k=0}^{\infty} \frac{a_{n,p}^{k} x^{k}}{k!} \sum_{i=0}^{\infty} \frac{a_{n,p}^{i}}{i!} s^{i} | f\left(\frac{k+i}{a_{n,p}}\right) - f\left(\frac{k}{a_{n,p}}\right) | \\ \leq e^{-a_{n,p}(x+s)} \sum_{k=0}^{\infty} \frac{a_{n,p}^{k} x^{k}}{k!} \sum_{i=0}^{\infty} \frac{a_{n,p}^{i}}{i!} s^{i} \omega\left(f, \frac{i}{a_{n,p}}\right) \\ = M_{n,p}(\omega(f, e_{1}), s) \leq M_{n,p}(\widetilde{\omega}(f, e_{1}), s).$$

Since $\tilde{\omega}(f,t)$ is a concave function, it follows from Theorem 6 that

$$M_{n,p}(\widetilde{\omega}(f),s) \le \widetilde{\omega}(f,s) \le 2\,\omega(f,s).$$

In particular if $\varepsilon > 0$, $\omega(f,s) \le \varepsilon/2$, $0 \le y < x$, $x - y \le s$ and we set x = y + t

$$|M_{n,p}(f,x) - M_{n,p}(f,y)| = |M_{n,p}(f,y+t) - M_{n,p}(f,y)| \le \varepsilon.$$

This proves that $M_{n,p}(f)$ is uniformly continuous.

For $f \in UC_b(I)$, $0 < \alpha \le 1$, and t > 0 define

$$\theta_{\alpha}(f,t) = \sup_{0 < s \leq t} \sup_{x \in I, 0 < h \leq s} \frac{|f(x+h) - f(x)|}{h^{\alpha}},$$

 $\theta_{\alpha}(f,0) = 0$, and

$$K^{\alpha}(f) = \sup_{0 \le t} \, \theta_{\alpha}(f, t).$$

For $0 < \alpha \leq 1$, let us set $\operatorname{Lip}^{\alpha}(I)$ for the family of all $f \in UC_b(I)$ such that $K^{\alpha}(f) < \infty$.

For $0 < \alpha < 1$, we also we consider the subspace

(13)
$$\operatorname{lip}^{\alpha}(I) = \left\{ f \in \operatorname{Lip}^{\alpha}(I) : \ \lim_{t \to 0} \theta_{\alpha}(f, t) = 0 \right\}$$

This type of spaces appears when we study the approximation in Hölder type norms (see [6]).

We will analyze the problem of the preservation of the constants $K^{\alpha}(f)$ and the class $\lim_{n \to \infty} \alpha(I)$ by the operators $M_{n,p}$.

For an analogous of Theorem 12 for Szász-Mirakyan operators see [15] and [12].

THEOREM 12. (i) If $0 < \alpha \leq 1$ and $f \in \operatorname{Lip}^{\alpha}(I)$, then $M_{n,p}(f) \in \operatorname{Lip}^{\alpha}(I)$, and

(14)
$$K^{\alpha}(M_{n,p}(f)) \le K^{\alpha}(f),$$

for each $n \in \mathbb{N}$.

(ii) If
$$0 < \alpha \le 1$$
, $f \in \mathcal{L}(I)$, $M_{n,p}(f) \in \operatorname{Lip}^{\alpha}(I)$, for each $n \in \mathbb{N}$, and
 $K := \sup_{n \in \mathbb{N}} K^{\alpha}(M_{n,p}(f)) < \infty$,

then $f \in \operatorname{Lip}^{\alpha}(I)$.

Proof. (i) Set $g(x) = x^{\alpha}$. Since the function g(x) is concave function and $M_{n,p}(g,x) \to g(x)$ (Theorem 4) and it follows Theorem 6 that $M_{n,p}(g,x) \leq g(x)$.

For any $k \in \mathbb{N}_0$ and $i \in \mathbb{N}$,

$$|f\left(\frac{k+i}{a_{n,p}}\right) - f\left(\frac{k}{a_{n,p}}\right)| \le \omega\left(f, \frac{i}{a_{n,p}}\right) \le \theta_{\alpha}\left(f, \frac{i}{a_{n,p}}\right) \left(\frac{i}{a_{n,p}}\right)^{\alpha} \le K^{\alpha}(f)g\left(\frac{i}{a_{n,p}}\right).$$

From Proposition 10 we know that, for $x \in I$ and h > 0,

$$|M_{n,p}(f, x+h) - M_{n,p}(f, x)| \le K^{\alpha}(f)M_{n,p}(g, h) \le K^{\alpha}(f)h^{\alpha}.$$

(ii) From Theorem 4 we know that, for each fixed $x \in I$, $M_{n,p}(f, x) \to f(x)$, as $n \to \infty$.

For $x \ge 0$, h > 0 fixed, and each $n \in \mathbb{N}$, one has $|f(x+h) - f(x)| \le |f(x+h) - M_{n,p}(f, x+h)|$

+
$$|M_{n,p}(f, x+h) - M_{n,p}(f, x)| + |M_{n,p}(f, x) - f(x)|$$

 $\leq |f(x+h) - M_{n,p}(f, x+h)| + Kh^{\alpha} + |M_{n,p}(f, x) - f(x)|.$

The result follows by taking $n \to \infty$.

For the preservation of the class $lip^{\alpha}(I)$ we need some previous results.

PROPOSITION 13. For $0 < \alpha < 1$ and each $f \in lip^{\alpha}(I)$,

$$\theta_{\alpha}(f,t) = \sup_{0 < s \le t} \sup_{0 < h \le s} \frac{\omega(f,h)}{h^{\alpha}},$$

where $\omega(f,t)$ is defined by (12).

Proof. By definition, if $f \in UC_b(I)$, then $\omega(f, s)$ is well defined. It is clear that

$$\sup_{x \in I, 0 < h \le s} \frac{|f(x+h) - f(x)|}{h^{\alpha}} \le \sup_{0 < h \le s} \frac{\omega(f,h)}{h^{\alpha}}$$

On the other hand, given $\varepsilon > 0$, for any $0 < h \leq s$, there exists $x_h \in I$ such that

$$\omega(f,h) \le \varepsilon h^{\alpha} + |f(x_h + h) - f(x_h)|.$$

Therefore

$$\frac{\omega(f,h)}{h^{\alpha}} \leq \varepsilon + \frac{|f(x_h+h) - f(x_h)|}{h^{\alpha}} \leq \varepsilon + \sup_{x \in I, \, 0 < h \le s} \frac{|f(x+h) - f(x)|}{h^{\alpha}}.\Box$$

PROPOSITION 14. If $0 < \alpha < 1$, for each $f \in \text{lip}^{\alpha}(I)$, the functional $\theta_{\alpha}(f,t)$ is a subadditive modulus of continuity.

Proof. (a) By definition $\theta_{\alpha}(f,0) = 0$ and $\theta_{\alpha}(f,t) \to 0$ as $t \to 0$. Moreover it is clear that $\theta_{\alpha}(f,t)$ is non-negative and non-decreasing in I

(b) Let us verify that $\theta_{\alpha}(f,t)$ is subadditive. Assume $0 < v \leq t$ and fix any s and h such that $0 < s \leq v + t$ and $0 < h \leq s$.

If $x \in I$ and $h \leq t$ it is clear that

$$\frac{|f(x+h)-f(x)|}{h^{\alpha}} \leq \sup_{0 < u \leq t} \sup_{y \in I, \ 0 < w \leq u} \frac{|f(y+w)-f(y)|}{w^{\alpha}} = \theta_{\alpha}(f,t).$$

We still have to consider the case $v \le t < h$. Since t < h and 0 < h - t < h, one has

$$\frac{|f(x+h)-f(x)|}{h^{\alpha}} \leq \frac{|f(x+h-t+t)-f(x+h-t)|}{t^{\alpha}} + \frac{|f(x+h-t)-f(x)|}{(h-t)^{\alpha}}$$
$$\leq \theta_{\alpha}(f,t) + \theta_{\alpha}(f,h-t) \leq \theta_{\alpha}(f,t) + \theta_{\alpha}(f,v),$$

because $\theta_{\alpha}(f,t)$ increases and $h-t \leq s-t \leq v$. Therefore

$$\theta_{\alpha}(f, t+v) \le \theta_{\alpha}(f, t) + \theta_{\alpha}(f, v).$$

(c) Taking into account that $\theta_{\alpha}(f,0) = 0$ and $\theta(f,t)$ is subadditive, it is a continuous function.

THEOREM 15. If
$$0 < \alpha < 1$$
, $f \in \operatorname{lip}^{\alpha}(I)$, $n \in \mathbb{N}$, and $t > 0$, then
 $\theta_{\alpha}(M_{n,p}(f), t) \leq 2\theta_{\alpha}(f, t).$

Proof. If $0 < s \le t$, taking into account Theorem 11, one has

 $|M_{n,p}(f,x+s) - M_{n,p}(f,x)| \le 2\omega(f,s) = 2\frac{\omega(f,s)}{s^{\alpha}}s^{\alpha} \le 2\theta_{\alpha}(f,s)s^{\alpha} \le 2\theta_{\alpha}(f,t)s^{\alpha}.$ This is sufficient to prove the result. \Box

For each $r \ge 0$, $f \in C_r(I)$ (see (4)), and $t \ge 0$, define

$$\Omega_r(f,t) = \sup_{0 \le s \le t} \sup_{x \ge 0} \frac{|f(x+s) - f(x)|}{(1+x+s)^r}.$$

We will use this modulus only in the case $f \in C_{r,\infty}(I)$.

Before proving some properties of this modulus, let us compare them with others that have been used previously.

The following functional was considered by Kratz and Stadtmüller in [19]. For $r \in \mathbb{N}$ and a function $f \in C_r(I)$ set

$$\widetilde{\Omega}_r(f,t) = \sup_{s,v \in I, |s-v| \le t} \frac{|f(s) - f(v)|}{(1+s+v)^r} = \sup_{x \ge 0} \sup_{0 < s \le t} \frac{|f(x+s) - f(x)|}{(1+2x+s)^r}.$$

Taking into account that $1 + x + s \le 1 + 2x + s \le 2(1 + x + s)$, we know that

$$\frac{1}{2^r}\Omega_r(f,t) \le \Omega_r(f,t) \le \Omega_r(f,t).$$

Kratz and Stadtmüller proved that, for Szász-Mirakyan operators, there exists a constant C such that, for all $f \in C_r(I)$, every $t \ge 0$ and each $n \in \mathbb{N}$,

$$\widetilde{\Omega}_r(S_n(f), t) \le C\widetilde{\Omega}_r(f, t).$$

They did not proved that $\lim_{t\to 0^+} \hat{\Omega}_r(f,t) = 0$. We will verify that, if $f \in C_{r,\infty}(I)$, then $\lim_{t\to 0^+} \Omega_r(f,t) = 0$.

For $f \in C_{2,\infty}(I)$, another modulus was considered in [2] by setting

$$\Omega(f,t) = \sup_{0 \le s \le t} \sup_{x \in I} \frac{|f(x+s) - f(x)|}{(1+s)^2(1+x)^2}.$$

For $0 \le t \le 1$, $\Omega(f,t)$ and $\Omega_2(f,t)$ are equivalent. In fact, suppose that $s \le 1$. First one has

 $(1+s^2)(1+x^2) = 1+s^2+x^2+s^2x^2 \le 2(1+s^2+x^2) \le 2(1+x+s)^2.$

On the other hand, if $x \leq 1$,

$$(1+s+x)^2 = 1+2x+2s+x^2+2xs+s^2 \le 7(1+s^2+x^2) \le 7(1+s^2)(1+x^2).$$

and, if $x > 1$,

$$(1+s+x)^2 \le 3+5x^2+s^2 \le 5(1+s^2+x^2) \le 5(1+s^2)(1+x^2).$$

Therefore

$$\frac{1}{2}\Omega_2(f,t) \le \Omega(f,t) \le 7\Omega_2(f,t).$$

PROPOSITION 16. If r is a non negative real and $f \in C_{r,\infty}(I)$, then $\Omega_r(f,t)$ is a subadditive modulus of continuity in the sense of Definition 8.

Proof. It is clear that $\Omega_r(f,0) = 0$ and $\Omega_r(f,t)$ is non-negative and nondecreasing in I

(a) We consider first the case r = 0. As in the case of the classical modulus of continuity, it is easy to prove that the functional $\Omega_r(f,t)$ is a subadditive. In order to prove continuity, it is sufficient to verify continuity a zero, but if follows from the condition $\lim_{x\to\infty} f(x) = 0$.

(b) Assume r > 0. Denote $A = \lim_{x\to\infty} f(x)/(1+x)^r$. Given $\varepsilon > 0$, there exists x_0 such that

$$\left|\frac{f(x)}{(1+x)^r} - A\right| < \frac{\varepsilon}{2}, \qquad x \ge x_0.$$

$$\begin{split} \text{If } t &> 0 \text{ and } 0 < s \leq t \leq 1, \text{ then} \\ \sup_{x \geq 0} \frac{|f(x+s) - f(x)|}{(1+x+s)^r} \leq \sup_{0 \leq x \leq x_0} \frac{|f(x+s) - f(x)|}{(1+x+s)^r} + \sup_{x \geq x_0} \frac{|f(x+s) - f(x)|}{(1+x+s)^r} \\ &\leq \sup_{0 \leq x \leq x_0} | f(x+s) - f(x)| + \sup_{x \geq x_0} \frac{|f(x+s) - A|}{(1+x+s)^r} + \sup_{x \geq x_0} \frac{|f(x) - A|}{(1+x)^r} \\ &\leq \omega_1(f, t)_{[0, x_0 + 1]} + \varepsilon, \end{split}$$

where $\omega_1(f,t)_{[0,x_0+1]}$ is the usual modulus of continuity in the interval $[0, x_0 + 1]$.

This is sufficient to prove that $\lim_{t\to 0} \Omega_r(f,t) \to 0 = 0$.

(c) Let us verify that $\Omega_r(f,t)$ is subadditive: $\Omega_r(f,v+t) \leq \Omega_r(f,v) + \Omega_r(f,t)$. Without losing generality we assume that $0 < v \leq t$.

Fijemos $x \ge 0$ and $0 < s \le t + v$.

If $s \leq t$, it is clear that

$$\frac{f(x+s)-f(x)|}{1+(x+s)^r} \le \sup_{0 < s \le t} \frac{|f(x+s)-f(x)|}{1+(x+s)^r} = \Omega_r(f,t).$$

Let us consider the case $v \le t < s$. Since 0 < s - t, one has $(1 + x + s - t)^r < (1 + x + s)^r$. Therefore

$$\frac{|f(x+s)-f(x)|}{(1+x+s)^r} \le \frac{|f(x+s-t+t)-f(x+s-t)|}{(1+(x+s-t)+t)^r} + \frac{|f(x+s-t)-f(x)|}{(1+x+s-t)^r} \le \Omega_r(f,t) + \Omega_r(f,s-t) \le \Omega_r(f,t) + \Omega_r(f,v).$$

It is sufficient to prove that $\Omega_r(f,t)$ is a modulus of continuity.

THEOREM 17. If r is a non negative real, there exists a constant C such that, for $f \in C_{r,\infty}(I)$, $n \in \mathbb{N}$, and t > 0,

$$\Omega_r(M_{n,p}(f),t) \le C\Omega_r(f,t).$$

Proof. Notice that, for s > 0, taking into account (10), with t = s and $\lambda = i/(sa_{n,p})$,

$$\left| f\left(\frac{k+i}{a_{n,p}}\right) - f\left(\frac{k}{a_{n,p}}\right) \right| \le \Omega_r \left(\frac{i}{a_{n,p}}\right) \left(1 + \frac{k}{a_{n,p}} + \frac{i}{a_{n,p}}\right)^r \\ \le \Omega_r (f,s) \left(1 + \frac{i}{a_{n,p}s}\right) \left(1 + \frac{k}{a_{n,p}} + \frac{i}{a_{n,p}}\right)^r,$$

because $\Omega_r(f,s)$ is a subadditive modulus.

Therefore (see Proposition 10)

$$| M_{n,p}(f, x+s) - M_{n,p}(f, x) | =$$

$$= \left| e^{-a_{n,p}(x+s)} \sum_{k=0}^{\infty} \frac{a_{n,p}^{k} x^{k}}{k!} \sum_{i=0}^{\infty} \frac{a_{n,p}^{i}}{i!} s^{i} \left(f\left(\frac{k+i}{a_{n,p}}\right) - f\left(\frac{k}{a_{n,p}}\right) \right) \right|$$

$$\leq \frac{\Omega_{r}(f,s)}{e^{a_{n,p}(x+s)}} \sum_{k=0}^{\infty} \frac{a_{n,p}^{k} x^{k}}{k!} \sum_{i=0}^{\infty} \frac{a_{n,p}^{i}}{i!} s^{i} \left(1 + \frac{i}{a_{n,p}s}\right) \left(1 + \frac{k}{a_{n,p}} + \frac{i}{a_{n,p}}\right)^{r}$$

Taking into account Proposition 2 (with $a = 1 + k/a_{n,p}$), we obtain

$$e^{-a_{n,p}s} \sum_{i=0}^{\infty} \frac{a_{n,p}^{i}}{i!} s^{i} \left(1 + \frac{k}{a_{n,p}} + \frac{i}{a_{n,p}}\right)^{r} = M_{n,p} \left(\left(1 + \frac{k}{a_{n,p}} + e_{1}\right)^{r}, s \right) \le C(r) \left(2 + \frac{k}{a_{n,p}} + s\right)^{r} \le 2^{r} C(r) \left(1 + \frac{k}{a_{n,p}} + s\right)^{r}.$$
On the other hand

On the other hand

$$\frac{e^{-a_{n,p}s}}{s} \sum_{i=1}^{\infty} \frac{a_{n,p}^{i}}{i!} s^{i} \frac{i}{a_{n,p}} \left(1 + \frac{k}{a_{n,p}} + \frac{i}{a_{n,p}}\right)^{r} = \\ = e^{-a_{n,p}s} \sum_{i=1}^{\infty} \frac{a_{n,p}^{i-1}}{(i-1)!} s^{i-1} \left(1 + \frac{k}{a_{n,p}} + \frac{i}{a_{n,p}}\right)^{r} \\ = M_{n,p} \left(\left(1 + \frac{1}{a_{n,p}} + \frac{k}{a_{n,p}} + e_{1}\right)^{r}, s\right) \le M_{n,p} \left(\left(2 + \frac{k}{a_{n,p}} + e_{1}\right)^{r}, s\right) \\ \le C(r) \left(3 + \frac{k}{a_{n,p}} + s\right)^{r} \le 3^{r} C(r) \left(1 + \frac{k}{a_{n,p}} + s\right)^{r}.$$

From the estimates given above one has

$$| M_{n,p}(f, x+s) - M_{n,p}(f, x) | \leq 3^{r} C(r) \frac{\Omega_{r}(f,s)}{e^{a_{n,p}x}} \sum_{k=0}^{\infty} \frac{a_{n,p}^{k}x^{k}}{k!} \left(1 + \frac{k}{a_{n,p}} + s\right)^{r} \\ \leq 6^{r} C(r) \Omega_{r}(f,s) (1 + x + s)^{r},$$

where we use again Proposition 2.

REFERENCES

- U. ABEL, M. IVAN, X.M. ZENG, Asymptotic expansion for Szász-Mirakyan operators, AIP Conference Proceedings, 936 (2007), pp. 779–782. https://doi.org/0.1063/1 .2790269 ^[2]
- [2] T. ACAR, A. ARAL, I. RASA, The new forms of Voronovskaya's theorem in weighted spaces, Positivity, 20 (2015) no. 1, pp. 25—40. https://doi.org/10.1007/s11117-0 15-0338-4 ^I
- J.A. ADELL, A. LEKUONA, Best constants in preservation of global smoothness for Szász-Mirakyan operators, J. Math. Anal. Appl., 338 (2008), pp. 753-757. https: //doi.org/10.1016/j.jmaa.2007.05.064 ^[2]
- [4] N.T. AMANOV, On the uniform weighted approximation by Szász-Mirakjan operators, Analysis Mathematica, 18 (1992), pp. 167–184. https://doi.org/10.1007/BF0191 1084

J.	Bustamante
----	------------

- [5] M. BECKER, Global approximation theorems for Szász-Mirakjan and Baskakov operators in polynomial weight spaces, Indiana Univ. Math. J., 27 (1978) no. 1, pp. 127–142.
- [6] J. BUSTAMANTE, C. CASTAÑEDA ROLDÁN, Direct and inverse results in Hölder norms, J. Approx. Theory, 138 (2006), pp. 112–123. https://doi.org/10.1016/ j.jat.2005.10.004 ^L
- J. BUSTAMANTE, J.M. QUESADA, L. MORALES DE LA CRUZ, Direct estimate for positive linear operators in polynomial weighted spaces, J. Approx. Theory, 162 (2010), pp. 1495–1508. urlhttps://doi.org/10.1016/j.jat.2010.04.001
- [8] J. BUSTAMANTE, A. CARRILLO-ZENTELLA, J.M. QUESADA, Direct and strong converse theorems for a general sequence of positive linear operators, Acta Math. Hungar., 136 (2012) nos. 1–2, pp. 90–106. https://doi.org/10.1007/s10474-012-0196-5 Z
- [9] E. CHENEY, A. SHARMA, Bernstein power series, Canad. J. Math., 16 (1964), pp. 241–252.
- [10] M. CHU, On the Szász operators Voronoskaja type theorem, J. Anhui Normal Univ. (Nat. Sci.), 18 (1995) no. 1, pp. 20–23.
- [11] R.A. DEVORE, G.G. LORENTZ, Constructive Approximation, Springer-Verlag, Berlin, 1993.
- H. DONG, Q. QI, Shape preserving properties of parametric Szász type operators on unbounded intervals, Symmetry, 15 (2023), art. no. 1755. https://doi.org/10.339
 0/sym15091755
- [13] T. HERMANN, On the Szász-Mirakian operators, Acta Math. Acad. Sci. Hungar, 32 (1978) nos. 1–2, pp. 163–173. https://doi.org/10.1007/BF01902211
- [14] I. HOROVÁ, Linear positive operators of convex functions, Mathematica, 10 (1968), pp. 275–283.
- [15] X.Q. HOU, Y.C. XUE, On the property of some linear positive operators preserving the class $\Lambda_{\omega}(A)$, J. Ningxia Univ. (Nat. Sci. Ed.),16 (1995), pp. 11–16 (in Chinese).
- [16] N. İSPIR, On Modified Baskakov operators on weighted spaces, Turk. J. Math., 25 (2001), pp. 355–365.
- [17] G. JIANG, On the inverse theorem for Szász-Mirakjan operators, Liupanshui Normal Univ., 4 (1993), pp. 8–10 (in Chinese).
- [18] M.K. KHAN, B. DELLA VECCHIA, A. FASSIH, On the monotonicity of positive linear operators, J. Approx. Theory, 92 (1998), pp. 22–37.
- [19] W. KRATZ, U. STADTMÜLLER, On the uniform modulus of continuity of certain discrete approximation operators, J. Approx. Theory, 54 (1988), pp. 326-337. https: //doi.org/10.1016/0021-9045(88)90009-3
- [20] C. LI, Y. ZHAO, Weighted approximation with Szász-Mirakjan operators, Acta Sci. Natur. Univ. Pekinensis, 37 (2001) no. 1, pp. 6–11 (in Chinese).
- [21] L. LIU, Y. XUE, W. SUN, Strong converse inequalities for Szász-Mirakjian operators with weights, Chi. Quart. Math., 23 (2008) no. 3, pp. 384–389.
- [22] L. LIU, G. YANG, S. GUO, Strong converse inequality for Szász operators, J. Math. Research Expo., 28 (2008) no. 1, pp. 147–155.
- [23] A.J. LÓPEZ-MORENO, Weighted simultaneous approximation with Baskakov type operators, Acta Math. Hungar., 104 (2004) nos. 1-2, pp. 143-151. https://doi.org/ 10.1023/B:AMHU.0000034368.81211.23 ^C
- [24] A. LUPAŞ, Some properties of the linear positive operators (I), Mathematica Cluj, 9 (1967), pp. 77–83.
- [25] D. MICLĂUŞ, O.T. POP, The generalization of certain results for Szász-Mirakjan-Schurer operators, Creat. Math. Inform., 21 (2012) no. 1, pp. 79–85.
- [26] F. SCHURER, Linear positive operators in approximation theory, Math. Inst. Techn., Univ. Delft Report, 1962.

- [27] F. SCHURER, On Linear positive operators in approximation theory, Delft University of Technology, Delft, 1965.
- [28] P.C. SIKKEMA, On some linear positive operators, Indag. Math., 32 (1970), pp. 327– 337.
- [29] P.C. SIKKEMA, Über die Schurerschen linearen positiven Operatoren I, Indag. Math., 78 (1975) no. 3, pp. 230–242.
- [30] O. SZÁSZ, Generalization of S. Bernstein's polynomials to the infinite interval, J. Res. Nat. Bur. Standards, 45 (1950), pp. 239-245. https://doi.org/10.6028/JRES.045 .024 ^[2]
- [31] B.D. VECHIA, On the preservation of Lipschitz constants for some linear operators, Bollettino Un. Mat. Ita., 16 (1989) no. 1, pp. 125–136.
- [32] X. WANG, On the proof of a theorem for Szász-Mirakjan operators, J. Hangzhou Univ. (Nat. Sci.), 19 (1992) no. 2, pp.139–143 (in Chinese).
- [33] X. WANG, X. LI, W. WANG and S. DING, Equivalent description on derivatives of Szász-Mirakjan operators, J. South. West Univ. (Nat. Sci.), 8 (2011), pp. 115–118 (in Chinese).
- [34] L. XIE, On direct theorems for Szász-Mirakian operators, J. Lishui Teach. Colle., 17 (1995) no. 2, pp. 1–2 (in Chinese).
- [35] L. XIE, Inverse theorems for Szász-Mirakjian operators, J. Lishui Teach. Colle., 22 (2000) no. 2, pp. 1–3 (in Chinese).
- [36] Y. XIN, C. LI, Q. GAO, Approximation qualities for the iterated Boolean sums of Szász operators, J. Hebei Normal Univ., 32 (2008) no. 6, pp. 713–717 (in Chinese).
- [37] Z. ZHAO, On the property of Szász-Mirakyan polynomials preserving the monotonicity, J. Gansu Edu. Coll., 15 (2001) no. 3, pp. 1–3 (in Chinese).
- [38] L. ZHEN, The shape preserving property and approximation order of Szász-Mirakjan operators, J. Hunan Univ. Tech., 25 (2011) no. 2, pp. 5–9 (in Chinese).

Received by the editors: March 16, 2024; accepted: April 18, 2024; published online: July 11, 2024.