JOURNAL OF NUMERICAL ANALYSIS AND APPROXIMATION THEORY

J. Numer. Anal. Approx. Theory, vol. 53 (2024) no. 1, pp. 63–77, doi.org/10.33993/jnaat531-1408 **ictp.acad.ro/jnaat**

PRESERVING PROPERTIES OF SOME SZÁSZ-MIRAKYAN TYPE OPERATORS

JORGE BUSTAMANTE[∗]

Abstract. For a family of Szász-Mirakyan type operators we prove that they preserve convex-type functions and that a monotonicity property verified by Cheney and Sharma in the case Szász-Mirakyan operators holds for the variation study here. We also verify that several modulus of continuity are preserved.

MSC. 41A36, 41A99.

Keywords. Szász-Mirakyan type operators, positive linear operators, shape preserving properties.

1. INTRODUCTION

Throughout the work N is the set of all positive integers, $\mathbb{N}_0 = \mathbb{N} \cup \{0\},\$ and \mathbb{P}_n is the family of all algebraic polynomials of degree non greater than *n*. Moreover, for each $j \in \mathbb{N}_0$, we use the notations

$$
e_j(x) = x^j, \qquad x \in \mathbb{R},
$$

and $I = [0, \infty)$. Let $C(I)$ the family of all continuous functions $f: I \to \mathbb{R}$. The Szász-Mirakyan operators are defined by (see $[5]$ and the references therein)

$$
S_n(f, x) = e^{-nx} \sum_{k=0}^{\infty} \frac{n^k}{k!} f\left(\frac{k}{n}\right) x^k, \quad x \in I.
$$

It is known that $S_n(e_0, x) = 1$ and $S_n(e_1, x) = x$ (see [\[5\]](#page-13-0)).

For a fixed real $p \geq 0$ and $n \in \mathbb{N}$, Schurer defined ([\[26\]](#page-13-1) and [\[27\]](#page-14-0))

(1)
$$
S_{n,p}(f,x) = e^{-(n+p)x} \sum_{k=0}^{\infty} \frac{(n+p)^k}{k!} f(\frac{k}{n}) x^k, \quad x \in I.
$$

Some studies concerning these operators were given by Sikkema in [\[28\]](#page-14-1) and [\[29\]](#page-14-2) (see also [\[25\]](#page-13-2)).

It is known that (see [\[25,](#page-13-2) p. 82]), for each $x \ge 0$ and $n \in \mathbb{N}$, $S_{n,p}(e_0, x) = 1$ and

$$
S_{n,p}(e_1,x) = x + \frac{px}{n}.
$$

^{*}Benemérita Universidad Autónoma de Puebla, Facultad de Ciencias Físico-Matemáticas, Avenida San Claudio y 18 Sur, Colonia San Manuel, Edificio FM1-101B, Ciudad Universitaria, C.P. 72570, Puebla, México. e-mail: jbusta@fcfm.buap.mx.

Hence one has $S_{n,p}(e_1, x) = x$ only when $p = 0$.

In this work we study properties of a modification $M_{n,p}$ of Schurer operators satisfying $M_{n,p}(e_0, x) = 1$ and $M_{n,p}(e_1, x) = x$.

Let $\{\beta(n)\}\$ be an strictly increasing sequence of positive real numbers such that $\lim_{n\to\infty} \beta(n) = \infty$. For $p \geq 0$, $n \in \mathbb{N}$, $x \geq 0$, and a function $f \in C(I)$ consider the operator

(2)
$$
M_{n,p}(f,x) = e^{-(\beta(n)+p)x} \sum_{k=0}^{\infty} \frac{(\beta(n)+p)^k}{k!} f\left(\frac{k}{\beta(n)+p}\right) x^k,
$$

whenever the series converges absolutely. Let $\mathcal{L}(I)$ be the family of all functions $f \in C(I)$ such that, for each $n \in \mathbb{N}$, the series $M_{n,p}(f)$ converges absolutely.

Notice that $M_{n,p}$ can be considered a more natural extension of Szász-Mirakyan operators. This modification appeared in [\[7\]](#page-13-3) and [\[8\]](#page-13-4). In [\[7\]](#page-13-3) they were studied in spaces defined by the weight $\varrho_m(x) = 1/(1+x)^m$, with $m \in \mathbb{N}$ and in [\[8\]](#page-13-4) some weighted space of bounded functions were considered.

There is a long list of papers devoted to study properties of Szász-Mirakyan operators. Here we recall some of them: [\[1\]](#page-12-0), [\[3\]](#page-12-1), [\[4\]](#page-12-2), [\[5\]](#page-13-0), [\[10\]](#page-13-5), [\[17\]](#page-13-6), [\[20\]](#page-13-7), [\[21\]](#page-13-8), [\[22\]](#page-13-9), [\[32\]](#page-14-3), [\[33\]](#page-14-4), [\[34\]](#page-14-5), [\[35\]](#page-14-6), and [\[36\]](#page-14-7). It is worth asking when the results presented in the cited articles can be extended to the case $M_{n,p}$ operators.

For a fixed $p \geq 0$, $n \in \mathbb{N}$, and $x \geq 0$ we use the notations

(3)
$$
g_{n,p}(x) = e^{-(\beta(n)+p)x}
$$
 and $a_{n,p} = \beta(n)+p$.

For $r \in \mathbb{N}_0$, $C_r(I)$ is the family of all $f \in C(I)$ such that

(4)
$$
||f||_r = \sup_{x \in I} \frac{|f(x)|}{(1+x)^r} < \infty.
$$

For $r \in \mathbb{N}_0$, let $C_{r,\infty}(I)$ be the class of all functions $f \in C_r(I)$ such that $f(x)/(1+x)^r$ has a finite limit as $x \to \infty$.

In [Section 2](#page-1-0) we present some general properties of operators $M_{n,p}$. In [Sec](#page-3-0)[tion 3](#page-3-0) we show that some known properties related with monotone and convex functions and Szász-Mirakyan operators also holds for the operators $M_{n,p}$. In [Section 4](#page-5-0) we prove that several modulus of continuity are preserved (up to a constant) by the operators $M_{n,p}$.

2. SOME BASIC PROPERTIES

Since the series

(5)
$$
\sum_{k=0}^{\infty} \frac{a_{n,p}^k}{k!} x^k = e^{(\beta(n)+p)x} = g_{n,p}(x),
$$

converges uniformly on each interval $[0, a]$, $a > 0$, it can be differentiated term by term. For $i \in \mathbb{N}$, we will use several times the equations

(6)
$$
g_{n,p}^{(i)}(x) = \sum_{k=i}^{\infty} \frac{a_{n,p}^k}{(k-i)!} x^{k-i} = \sum_{k=0}^{\infty} \frac{a_{n,p}^{k+i}}{k!} x^k = a_{n,p}^i g_{n,p}(x).
$$

THEOREM 1. If $i \in \mathbb{N}_0$ and

(7)
$$
P_{i+1}(x) = x\left(x - \frac{1}{a_{n,p}}\right) \cdots \left(x - \frac{i}{a_{n,p}}\right), \quad x \ge 0,
$$

then

(8)
$$
M_{n,p}(P_{i+1},x) = x^{i+1}.
$$

In particular, for each $n \in \mathbb{N}$ *and* $i \in \mathbb{N}_0$, $e_i \in \mathcal{L}[0,\infty)$ *and* $M_{n,p}(e_i,x) \in \mathbb{P}_i$ *.*

Proof. Notice that $P_{i+1}(x) \in \mathbb{P}_{i+1}$ and, for $k \in \mathbb{N}_0$,

$$
a_{n,p}^{i+1}P_{i+1}\Big(\frac{k}{a_{n,p}}\Big) = k(k-1)\cdots(k-i).
$$

In particular $P_{i+1}(k/a_{n,p}) = 0$ for $0 \le k \le i$. Therefore, for each fixed $x > 0$,

$$
a_{n,p}^{i+1} g_{n,p}(x) M_{n,p}(P_{i+1}, x) = \sum_{k=i+1}^{\infty} \frac{a_{n,p}^k x^k}{(k-i-1)!} = x^{i+1} \sum_{k=i+1}^{\infty} \frac{a_{n,p}^k x^{k-i-1}}{(k-i-1)!}
$$

= $x^{i+1} \sum_{k=0}^{\infty} \frac{a_{n,p}^{k+i+1}}{k!} x^k = x^{i+1} g_n^{(i+1)}(x),$

where we use [\(6\)](#page-1-1). Therefore $M_{n,p}(P_{i+1},x) = x^{i+1} \in \mathbb{P}_{i+1}$, for each $i \geq 0$.

Since, for $i \geq 0$, x^i can be written as a linear combination of the polynomials P_1, \ldots, P_i , we know that $e_i \in \mathcal{L}[0, \infty)$ and $M_{n,p}(e_i, x) \in \mathbb{P}_i$. For $i = 0$ it is a simple assertion because $M_{n,p}(e_0, x) = 1$.

For the case of Szász-Mirakyan operators the last assertion in [Theorem 1](#page-1-2) was verified by Becker in [\[5,](#page-13-0) Lemma 3].

PROPOSITION 2. *If* $r \in \mathbb{N}$ *, there exists a constant* $C(r) \geq 1$ *such that, for every real* $a > 0$ *,*

$$
M_{n,p}((a+e_1)^r, x) \le C(r)(1+a+x)^r.
$$

Proof. From [Theorem 1](#page-1-2) we know that, for each $i \in \mathbb{N}$, there is an algebraic polynomial $P_i \in \mathbb{P}_n$, say $P_i(x) = \sum_{k=0}^i b_{i,k} x^k$, such that

$$
M_{n,p}(e_i, x) = \sum_{k=0}^{i} b_{i,k} x^k.
$$

If $0 \leq x \leq 1$, then

$$
\left| \sum_{k=0}^i b_{i,k} x^k \right| \leq \sum_{k=0}^i |b_{i,k}| \leq (1+x)^i \sum_{k=0}^i |b_{i,k}|.
$$

If $1 \leq x$, then

$$
\left| \sum_{k=0}^i b_{i,k} x^k \right| \leq x^i \sum_{k=0}^i |b_{i,k}| \leq (1+x)^i \sum_{k=0}^i |b_{i,k}|.
$$

Therefore $0 \leq M_{n,p}(e_i, x) \leq C_i(1+x)^i$, where the constant C_i depends only on *i*.

If $a > 0$,

$$
M_{n,p}((a+e_1)^r, s) = \sum_{j=0}^r {r \choose j} a^{r-j} M_{n,p}(e_j, s)
$$

$$
\leq C\Big(a^r + \sum_{j=1}^r {r \choose j} a^{r-j} (1+x)^j = C(1+a+x)^r.
$$

[Theorem 3](#page-3-1) was proved in [\[8\]](#page-13-4) when $\beta(n) = n$, but it can be easily extended to the case of a general $\beta(n)$.

THEOREM 3. *The operators* $M_{n,p}$ *has the following properties:*

- (i) $M_{n,p}: \mathcal{L}(I) \to C^1(I)$.
- (ii) $M_{n,p}(e_0, x) = 1$

(iii) *For every* $n, m \in \mathbb{N}$, $f \in \mathcal{L}(I)$ *and* $x > 0$,

(9)
$$
\frac{1}{a_{n,p}^m} M_{n,p}^{(m)}(f,x) = M_{n,p} \left(\Delta_{1/a_{n,p}}^m f(t), x \right),
$$

where $\Delta_h^k g(u)$ *stands the usual k*-th forward difference of the function g at u *with step h.*

The following result can be proved as Theorem 1 in [\[30\]](#page-14-8) (it is a consequence of the Korovkin theorem).

THEOREM 4. *If* $f \in \mathcal{L}(I)$ *and* $a > 0$ *then* $M_{n,p}(f, x)$ *converges uniformly to* $f(x)$ *on* [0*, a*].

3. MONOTONICITY AND CONVEX FUNCTIONS

For $k \in \mathbb{N}$, a function $g: I \to \mathbb{R}$ is said to be *k*-convex, if $\Delta_h^k g(u) \geq 0$ for each $h > 0$. In particular, 2-convexity agrees with the usual notion of convex functions.

For each $k \in \mathbb{N}$, Szász-Mirakyan operators preserve *k*-convexity [\[24\]](#page-13-10). That is, if $\Delta_h^k g(u) \geq 0$ and $S_n(g, x)$ is well defined, then $\Delta_h^k S_n(g, u) \geq 0$. If follows from (9) that the operators $M_{n,p}$ share this property Szász-Mirakyan operators. But the assertion must be presented in a more convenient form. Let us explain why we need that. In [\[38,](#page-14-9) Th. 1], Zhen proved that, if $f'(x) > 0$, then $S'_n(f, x) > 0$, and if $f''(x) > 0$, then $S''_n(f, x) > 0$. [Theorem 5](#page-3-3) shows that these types of results are trivial.

THEOREM 5. (i) If
$$
f \in \mathcal{L}(I)
$$
 increases, then $M'_{n,p}(f, x) \ge 0$.
(ii) If $f \in \mathcal{L}(I)$ is convex, then $M''_{n,p}(f, x) \ge 0$.

Proof. It follows directly from (9) . □

Cheney and Sharma proved in [\[9\]](#page-13-11) that, if *f* is convex, for each *x* and every $n \in \mathbb{N}, S_{n+1}(f, x) \leq S_n(f, x)$. Horová [\[14\]](#page-13-12) obtained a converse theorem. In [Theorem 6](#page-3-4) we verify that a similar result holds for the operators $M_{n,p}$. A converse result can also be proved (see [\[14\]](#page-13-12) and [\[18\]](#page-13-13)). But we do not want to consider that problem here.

THEOREM 6. (i) *If* $f \in \mathcal{L}(I)$ *is convex then, for each* $x \geq 0$ *and* $n \in \mathbb{N}$ *,*

$$
f(x) \le M_{n+1,p}(f,x) \le M_{n,p}(f,x).
$$

(ii) *If* $f \in \mathcal{L}(I)$ *is concave then, for each* $x \geq 0$ *and* $n \in \mathbb{N}$ *,*

$$
M_{n,p}(f,x) \le M_{n+1,p}(f,x) \le f(x).
$$

Proof. Assume *f* is convex. If we set

$$
c_{n,k} = (\beta(n+1) - \beta(n))^k
$$
 and $b_{n,p} = \frac{a_{n,p}}{\beta(n+1) - \beta(n)}$,

then

$$
c_{n,k} \sum_{r=0}^k {k \choose r} b_{n,p}^r = (\beta(n+1) - \beta(n))^k \left(\frac{\beta(n)+p}{(\beta(n+1)-\beta(n))} + 1 \right)^k = a_{n+1,p}^k.
$$

That is

$$
\tfrac{c_{n,k}}{a_{n+1,p}^{k}}\,k!\sum_{r=0}^{k}\tfrac{1}{r!}\tfrac{b_{n,p}^{r}}{(k-r)!}=1.
$$

Therefore

$$
\frac{c_{n,k}}{a_{n+1,p}^k} k! \sum_{r=0}^k \frac{r}{a_{n,p}} \frac{1}{r!} \frac{b_{n,p}^r}{(k-r)!} = \frac{k}{a_{n+1,p}^k} \frac{c_{n,k}}{(\beta(n+1)-\beta(n))} \sum_{r=1}^k {k-1 \choose r} b_{n,p}^{r-1}
$$

$$
= \frac{k}{a_{n+1,p}^k} \frac{c_{n,k}}{(\beta(n+1)-\beta(n))} \left(\frac{\beta(n)+p}{(\beta(n+1)-\beta(n))}+1\right)^{k-1}
$$

$$
= \frac{k}{a_{n+1,p}^k} \left(\beta(n+1)+p\right)^{k-1} = \frac{k}{a_{n+1,p}}.
$$

This proves that $k/a_{n+1,p}$ is a convex combination of the points $\{r/a_{n,p}: 0 \leq$ $r \leq k$.

If f is convex, then

$$
f\left(\frac{k}{a_{n+1,p}}\right) \leq \frac{c_{n,k}}{a_{n+1,p}^k} k! \sum_{r=0}^k f\left(\frac{r}{a_{n,p}}\right) \frac{1}{r!} \frac{b_{n,p}^r}{(k-r)!} = \frac{k!}{a_{n+1,p}^k} \sum_{r=0}^k c_{n,k}^{k-r} f\left(\frac{r}{a_{n,p}}\right) \frac{1}{r!} \frac{a_{n,p}^r}{(k-r)!}.
$$

By the Cauchy multiplication rule for product of series,

$$
e^{(\beta(n+1)-\beta(n))x} \sum_{k=0}^{\infty} \frac{a_{n,p}^k}{k!} f\left(\frac{k}{a_{n,p}}\right) x^k = \sum_{k=0}^{\infty} \Big\{ \sum_{m+r=k} \frac{((\beta(n+1)-\beta(n))x)^m}{m!} \frac{a_{n,p}^r}{r!} f\left(\frac{r}{a_{n,p}}\right) x^r \Big\}
$$

=
$$
\sum_{k=0}^{\infty} \Big\{ \sum_{r=0}^k \frac{(\beta(n+1)-\beta(n))^{k-r}}{(k-r)!} \frac{a_{n,p}^r}{r!} f\left(\frac{r}{a_{n,p}}\right) \Big\} x^k.
$$

Therefore

$$
e^{a_{n+1,p}x}\left(M_{n,p}(f,x) - M_{n+1,p}(f,x)\right) =
$$

= $e^{(\beta(n+1)-\beta(n))x} \sum_{k=0}^{\infty} \frac{a_{n,p}^k}{k!} f\left(\frac{k}{a_{n,p}}\right) x^k - \sum_{k=0}^{\infty} \frac{a_{n+1,p}^k}{k!} f\left(\frac{k}{a_{n+1,p}}\right) x^k$

$$
= \sum_{k=0}^{\infty} \Big\{ \sum_{r=0}^{k} \frac{(\beta(n+1)-\beta(n))^{k-r}}{(k-r)!} \frac{a_{n,p}^r}{r!} f\left(\frac{r}{a_{n,p}}\right) - \frac{a_{n+1,p}^k}{k!} f\left(\frac{k}{a_{n+1,p}}\right) \Big\} x^k \ge 0.
$$

This proves that $M_{n,p}(f, x) \geq M_{n+1,p}(f, x)$. From [Theorem 4](#page-3-5) we know that $M_{n,p}(f, x) \to f(x)$ as $n \to \infty$ (pointwise convergence). Thus $M_{n+1,p}(f, x) \geq$ *f*(*x*).

The concave functions follows by changing f by $-f$.

$$
\Box
$$

Fix $n \in \mathbb{N}$ and let $f \in C_r(I)$ be a non-negative function (see [\(4\)](#page-1-3)).

For a non-negative function $f \in C_r(I)$, in [\[37\]](#page-14-10), Zhao proved that if $f(x)/x$ is non-increasing on $(0, \infty)$, then for each $n \geq 1$, $S_n(f, x)/x$ is non-increasing. A similar result can be proved for the operators $M_{n,p}$ by modifying the arguments of Zhao. Since the work [\[37\]](#page-14-10) is not well known, we include the complete proof. Notice that the condition $f \in C_r(I)$ (assumed by Zhao) will be replaced by the more general $f \in \mathcal{L}(I)$.

THEOREM 7. Let $f \in \mathcal{L}(I)$ be a non-negative function. If $f(x)/x$ is non*increasing on* $(0, \infty)$ *, then for each* $n \in \mathbb{N}$ *,* $M_{n,p}(f, x)/x$ *is non-increasing.*

Proof. We will prove that $(d/dx)(M_{n,p}(f, x)/x) \leq 0$. We use the notations in [\(3\)](#page-1-4).

Since

$$
\frac{M_{n,p}(f,x)}{x} = f(0)\frac{g_{n,p}(x)}{x} + g_{n,p}(x) \sum_{k=1}^{\infty} \frac{a_{n,p}^k}{k!} f\left(\frac{k}{a_n}\right) x^{k-1}
$$

and

$$
\frac{d}{dx}\frac{g_{n,p}(x)}{x} = \frac{g_{n,p}(x)}{x^2} \left(-a_{n,p}x - 1 \right) < 0,
$$

we should consider the derivative of the previous series. Note that

$$
\sum_{k=1}^{\infty} \frac{a_{n,p}^k}{k!} f\left(\frac{k}{a_{n,p}}\right) \frac{d}{dx} \left(g_{n,p}(x)x^{k-1}\right) =
$$
\n
$$
= g_{n,p}(x) \sum_{k=2}^{\infty} \frac{a_{n,p}^k(k-1)}{k!} f\left(\frac{k}{a_{n,p}}\right) x^{k-2} - g_{n,p}(x) \sum_{k=1}^{\infty} \frac{a_{n,p}^{k+1}}{k!} f\left(\frac{k}{a_{n}}\right) x^{k-1}
$$
\n
$$
= g_{n,p}(x) \sum_{k=1}^{\infty} \frac{a_{n,p}^{k+1}k}{(k+1)!} f\left(\frac{k+1}{a_{n,p}}\right) x^{k-1} - g_{n,p}(x) \sum_{k=1}^{\infty} \frac{a_{n,p}^{k+1}}{k!} f\left(\frac{k}{a_{n,p}}\right) x^{k-1}
$$
\n
$$
= g_{n,p}(x) \sum_{k=1}^{\infty} \left\{ \frac{a_{n,p}}{k+1} f\left(\frac{k+1}{a_{n,p}}\right) - \frac{a_n}{k} f\left(\frac{k}{a_n}\right) \right\} \frac{a_{n,p}^k x^{k-1}}{(k-1)!} \leq 0.
$$

The result is proved. \Box

4. PRESERVATION OF MODULUS OF CONTINUITY

DEFINITION 8. *A function* $\omega: I \to \mathbb{R}^+$ *is called a modulus of continuity if* $\omega(0) = 0$, $\lim_{t \to 0} \omega(t) = 0$, ω *is non-negative and non-decreasing in I and* $\omega(t)$ *is continuous in* \mathbb{R}^+ .

DEFINITION 9. *A function* $\omega : I \to \mathbb{R}^+$ *is called subadditive if for any* $s, t \geq 0$

$$
\omega(s+t) \le \omega(s) + \omega(t).
$$

If a subadditive function $\omega: I \to \mathbb{R}^+$ is continuous at zero and $\omega(0) = 0$, then it is continuous. If ω is subadditive, then $\omega(2t) \leq 2\omega(t)$ and it follows from standard arguments that, if $t, \lambda > 0$, then

(10)
$$
\omega(\lambda t) \le (1 + \lambda) \omega(f, t).
$$

It is known that (see [\[11,](#page-13-14) p. 43]), for any modulus of continuity ω on *I*, there exists a concave modulus of continuity (the least concave majorant) $\tilde{\omega}$ such that

(11)
$$
\omega(t) \leq \tilde{\omega}(t) \leq 2\omega(t).
$$

For Szász-Mirakyan operators preservation of the usual modulus of conti-nuity has been considered in [\[31\]](#page-14-11), [\[15\]](#page-13-15) and [\[3\]](#page-12-1). For instance, if $\omega(t)$ is a concave modulus of continuity and

$$
\Lambda(\omega, A) = \Big\{ f \in C(I) : \ \omega(f, t) \le A\omega(t) \Big\},\
$$

it is asserted in [\[15\]](#page-13-15) that $f \in \Lambda(\omega, A)$ if and only if $S_n(f) \in \Lambda(\omega, A)$, for each each $n \in \mathbb{N}$. On the other hand, in [\[3\]](#page-12-1) the authors considered functions f such that $0 < \omega(f, 1) < \infty$, where $\omega(f, t)$ is the usual modulus of continuity. Of course the condition $0 < \omega(f, 1)$ holds whenever f is not a constant function.

Of course, since the usual modulus of continuity is not well defined for all $f \in C(I)$, such a result must be handled with care. In fact in [\[13\]](#page-13-16) Hermann presented a negative result. Let

$$
C_0 = \Big\{ f \in C(I) : \sup_{x \in I} |f(x + \delta) - f(x)| < \infty \text{ for any } \delta > 0 \Big\}.
$$

Notice that for any $f \in C_0$ the usual modulus of continuity is well defined, but the conditions $f \in C_0$ and $\delta \to 0$ does not necessarily imply $\omega(f, \delta) \to 0$. Set $C_0^* = \{ f \in C_0 : \omega(f, t) > 0 \}.$ In [\[13\]](#page-13-16) Hermann proved that

$$
\sup_{f \in C_0^*} \frac{\|S_n(f) - f\|_C}{\omega(f, 1/n)} = \infty.
$$

In this section we prove some results related with preservation of some modulus of continuity by the operators $M_{n,p}$.

Although [Theorem 3](#page-3-1) is sufficient to prove the preservation of convexity of different order by the operators $M_{n,p}$, we need other kind of representations for studying modulus of continuity.

The ideas for the proof of [Proposition 10](#page-6-0) have been used for different authors in the case of Szász-Mirakyan operators (see [\[31\]](#page-14-11) and [\[15\]](#page-13-15)).

PROPOSITION 10. *If* $f \in \mathcal{L}(I)$, $n \in \mathbb{N}$, $x \in I$ *and* $s > 0$ *, then*

$$
M_{n,p}(f,x+s) - M_{n,p}(f,x) = e^{-a_{n,p}(x+s)} \sum_{k=0}^{\infty} \frac{a_{n,p}^k x^k}{k!} \sum_{i=1}^{\infty} \frac{a_{n,p}^i}{i!} s^i \Big(f\Big(\frac{k+i}{a_{n,p}}\Big) - f\Big(\frac{k}{a_{n,p}}\Big)\Big).
$$

Proof. Notice that

$$
e^{a_{n,p}(x+s)}M_{n,p}(f, x+s) =
$$

\n
$$
= \sum_{j=0}^{\infty} f\left(\frac{j}{a_{n,p}}\right) \frac{a_{n,p}^j}{j!}(x+s)^j = \sum_{j=0}^{\infty} f\left(\frac{j}{a_{n,p}}\right) \frac{a_{n,p}^j}{j!} \sum_{k=0}^j \binom{j}{k} x^k s^{j-k} =
$$

\n
$$
= \sum_{k=0}^{\infty} \sum_{j=k}^{\infty} \binom{j}{k} f\left(\frac{j}{a_{n,p}}\right) \frac{a_{n,p}^j}{j!} x^k s^{j-k} = \sum_{k=0}^{\infty} \frac{x^k}{k!} \sum_{j=k}^{\infty} f\left(\frac{j}{a_{n,p}}\right) \frac{a_{n,p}^j}{(j-k)!} s^{j-k}
$$

\n
$$
= \sum_{k=0}^{\infty} \frac{x^k}{k!} \sum_{i=0}^{\infty} f\left(\frac{i+k}{a_{n,p}}\right) \frac{a_{n,p}^{i+k}}{i!} s^i.
$$

On the other hand,

$$
e^{a_{n,p}(x+s)}M_{n,p}(f,x) = e^{a_{n,p}s} \sum_{k=0}^{\infty} f\left(\frac{k}{a_{n,p}}\right) \frac{a_{n,p}^k}{k!} x^k = \sum_{k=0}^{\infty} \frac{a_{n,p}^k x^k}{k!} \left(\sum_{i=0}^{\infty} \frac{a_{n,p}^i}{i!} s^i f\left(\frac{k}{a_{n,p}}\right)\right).
$$

It follows from the equation given above the announced result. \Box

Let $UC_b(I)$ the class of all bounded uniformly continuous functions $f: I \to$ **R**. For *f* ∈ $UC_b(I)$ and *t* ≥ 0, define

(12)
$$
\omega(f,t) = \sup_{0 \le h \le t} \sup_{x \ge 0} |f(x+h) - f(x)|.
$$

It can be proved that $\omega(f, t)$ is subadditive modulus of continuity in the sense of [Definition 8.](#page-5-1)

THEOREM 11. *If* $f \in UC_b(I)$, $n \in \mathbb{N}$, and $s > 0$, then $M_{n,p}(f, x)$ is uni*formly continuous and*

$$
\omega(M_{n,p}(f),s) \le 2\,\omega(f,s).
$$

Proof. Let $\tilde{\omega}(f, t)$ be the least concave majorant of $\omega(f, t)$. If $f \in UC_b(I)$, then $f \in \mathcal{L}(I)$. From [Proposition 10](#page-6-0) one has

$$
| M_{n,p}(f, x + s) - M_{n,p}(f, x) | \le
$$

\n
$$
\le e^{-a_{n,p}(x+s)} \sum_{k=0}^{\infty} \frac{a_{n,p}^k x^k}{k!} \sum_{i=0}^{\infty} \frac{a_{n,p}^i s^i}{i!} s^i | f(\frac{k+i}{a_{n,p}}) - f(\frac{k}{a_{n,p}}) |
$$

\n
$$
\le e^{-a_{n,p}(x+s)} \sum_{k=0}^{\infty} \frac{a_{n,p}^k x^k}{k!} \sum_{i=0}^{\infty} \frac{a_{n,p}^i s^i \omega(f, \frac{i}{a_{n,p}})}{i!} s^i \omega(f, \frac{i}{a_{n,p}})
$$

\n
$$
= M_{n,p}(\omega(f, e_1), s) \le M_{n,p}(\widetilde{\omega}(f, e_1), s).
$$

Since $\tilde{\omega}(f, t)$ is a concave function, it follows from [Theorem 6](#page-3-4) that

$$
M_{n,p}(\widetilde{\omega}(f),s) \le \widetilde{\omega}(f,s) \le 2\omega(f,s).
$$

In particular if $\varepsilon > 0$, $\omega(f, s) \leq \varepsilon/2$, $0 \leq y < x$, $x - y \leq s$ and we set $x = y + t$

$$
| M_{n,p}(f,x) - M_{n,p}(f,y) | = | M_{n,p}(f,y+t) - M_{n,p}(f,y) | \le \varepsilon.
$$

This proves that $M_{n,p}(f)$ is uniformly continuous. \Box

For $f \in UC_b(I)$, $0 < \alpha \leq 1$, and $t > 0$ define

$$
\theta_{\alpha}(f,t) = \sup_{0 < s \le t} \ \sup_{x \in I, \, 0 < h \le s} \frac{|f(x+h) - f(x)|}{h^{\alpha}},
$$

 $\theta_{\alpha}(f,0) = 0$, and

$$
K^{\alpha}(f) = \sup_{0 \le t} \theta_{\alpha}(f, t).
$$

For $0 < \alpha \leq 1$, let us set $\text{Lip}^{\alpha}(I)$ for the family of all $f \in UC_b(I)$ such that $K^{\alpha}(f) < \infty$.

For $0 < \alpha < 1$, we also we consider the subspace

(13)
$$
\mathrm{lip}^{\alpha}(I) = \left\{ f \in \mathrm{Lip}^{\alpha}(I) : \lim_{t \to 0} \theta_{\alpha}(f,t) = 0 \right\}.
$$

This type of spaces appears when we study the approximation in Hölder type norms (see $[6]$).

We will analyze the problem of the preservation of the constants $K^{\alpha}(f)$ and the class $lip^{\alpha}(I)$ by the operators $M_{n,p}$.

For an analogous of [Theorem 12](#page-8-0) for Szász-Mirakyan operators see $[15]$ and [\[12\]](#page-13-18).

THEOREM 12. (i) *If* $0 < \alpha \leq 1$ *and* $f \in \text{Lip}^{\alpha}(I)$ *, then* $M_{n,p}(f) \in \text{Lip}^{\alpha}(I)$ *, and*

(14)
$$
K^{\alpha}(M_{n,p}(f)) \leq K^{\alpha}(f),
$$

for each $n \in \mathbb{N}$ *.*

(ii) If
$$
0 < \alpha \le 1
$$
, $f \in \mathcal{L}(I)$, $M_{n,p}(f) \in \text{Lip}^{\alpha}(I)$, for each $n \in \mathbb{N}$, and

$$
K := \sup_{n \in \mathbb{N}} K^{\alpha}(M_{n,p}(f)) < \infty,
$$

then $f \in \text{Lip}^{\alpha}(I)$ *.*

Proof. (i) Set $g(x) = x^{\alpha}$. Since the function $g(x)$ is concave function and $M_{n,p}(g, x) \to g(x)$ [\(Theorem 4\)](#page-3-5) and it follows [Theorem 6](#page-3-4) that $M_{n,p}(g, x) \leq$ *g*(*x*).

For any $k \in \mathbb{N}_0$ and $i \in \mathbb{N}$,

$$
| f\left(\frac{k+i}{a_{n,p}}\right) - f\left(\frac{k}{a_{n,p}}\right) | \leq \omega \left(f, \frac{i}{a_{n,p}}\right) \leq \theta_{\alpha} \left(f, \frac{i}{a_{n,p}}\right) \left(\frac{i}{a_{n,p}}\right)^{\alpha} \leq K^{\alpha} (f) g\left(\frac{i}{a_{n,p}}\right).
$$

From [Proposition 10](#page-6-0) we know that, for $x \in I$ and $h > 0$, | *Mn,p*(*f, x* + *h*) − *Mn,p*(*f, x*) |≤ *K^α* (*f*)*Mn,p*(*g, h*) ≤ *K^α*

$$
| M_{n,p}(f, x+h) - M_{n,p}(f, x) | \le K^{\alpha}(f) M_{n,p}(g, h) \le K^{\alpha}(f) h^{\alpha}.
$$

(ii) From [Theorem 4](#page-3-5) we know that, for each fixed $x \in I$, $M_{n,p}(f, x) \to f(x)$, as $n \to \infty$.

For $x \geq 0$, $h > 0$ fixed, and each $n \in \mathbb{N}$, one has $| f(x+h) - f(x) | \leq | f(x+h) - M_{n,p}(f, x+h) |$

+
$$
| M_{n,p}(f, x+h) - M_{n,p}(f, x) | + | M_{n,p}(f, x) - f(x) |
$$

\n $\leq | f(x+h) - M_{n,p}(f, x+h) | + Kh^{\alpha} + | M_{n,p}(f, x) - f(x) |.$

The result follows by taking $n \to \infty$. □

For the preservation of the class $lip^{\alpha}(I)$ we need some previous results.

PROPOSITION 13. *For* $0 < \alpha < 1$ *and each* $f \in \text{lip}^{\alpha}(I)$,

$$
\theta_{\alpha}(f,t) = \sup_{0 < s \le t} \sup_{0 < h \le s} \frac{\omega(f,h)}{h^{\alpha}},
$$

where $\omega(f, t)$ *is defined by* [\(12\)](#page-7-0)*.*

Proof. By definition, if $f \in UC_b(I)$, then $\omega(f, s)$ is well defined. It is clear that |*f*(*x*+*h*)−*f*(*x*)|

$$
\sup_{x \in I, 0 < h \le s} \frac{|f(x+h) - f(x)|}{h^\alpha} \le \sup_{0 < h \le s} \frac{\omega(f, h)}{h^\alpha}.
$$

On the other hand, given $\varepsilon > 0$, for any $0 < h \leq s$, there exists $x_h \in I$ such that

$$
\omega(f,h) \le \varepsilon h^{\alpha} + | f(x_h + h) - f(x_h) |.
$$

Therefore

$$
\frac{\omega(f,h)}{h^{\alpha}} \leq \varepsilon + \frac{|f(x_h + h) - f(x_h)|}{h^{\alpha}} \leq \varepsilon + \sup_{x \in I, 0 < h \leq s} \frac{|f(x + h) - f(x)|}{h^{\alpha}}.
$$

PROPOSITION 14. *If* $0 < \alpha < 1$ *, for each* $f \in \text{lip}^{\alpha}(I)$ *, the functional* $\theta_{\alpha}(f, t)$ *is a subadditive modulus of continuity.*

Proof. (a) By definition $\theta_{\alpha}(f, 0) = 0$ and $\theta_{\alpha}(f, t) \rightarrow 0$ as $t \rightarrow 0$. Moreover it is clear that $\theta_{\alpha}(f, t)$ is non-negative and non-decreasing in *I*

(b) Let us verify that $\theta_{\alpha}(f, t)$ is subadditive. Assume $0 < v \leq t$ and fix any *s* and *h* such that $0 < s \le v + t$ and $0 < h \le s$.

If $x \in I$ and $h \leq t$ it is clear that

$$
\frac{|f(x+h)-f(x)|}{h^{\alpha}} \leq \sup_{0
$$

We still have to consider the case $v \leq t < h$. Since $t < h$ and $0 < h - t < h$, one has

$$
\frac{|f(x+h)-f(x)|}{h^{\alpha}} \leq \frac{|f(x+h-t+t)-f(x+h-t)|}{t^{\alpha}} + \frac{|f(x+h-t)-f(x)|}{(h-t)^{\alpha}}
$$

$$
\leq \theta_{\alpha}(f,t) + \theta_{\alpha}(f,h-t) \leq \theta_{\alpha}(f,t) + \theta_{\alpha}(f,v),
$$

because $\theta_{\alpha}(f, t)$ increases and $h - t \leq s - t \leq v$. Therefore

$$
\theta_{\alpha}(f, t+v) \le \theta_{\alpha}(f, t) + \theta_{\alpha}(f, v).
$$

(c) Taking into account that $\theta_{\alpha}(f, 0) = 0$ and $\theta(f, t)$ is subadditive, it is a continuous function. □

THEOREM 15. If
$$
0 < \alpha < 1
$$
, $f \in \text{lip}^{\alpha}(I)$, $n \in \mathbb{N}$, and $t > 0$, then

$$
\theta_{\alpha}(M_{n,p}(f), t) \leq 2\theta_{\alpha}(f, t).
$$

 $|M_{n,p}(f,x+s)-M_{n,p}(f,x)| \leq 2\,\omega(f,s)=2\,\frac{\omega(f,s)}{s^{\alpha}}s^{\alpha} \leq 2\,\theta_{\alpha}(f,s)s^{\alpha} \leq 2\,\theta_{\alpha}(f,t)s^{\alpha}.$ This is sufficient to prove the result.

For each $r \geq 0$, $f \in C_r(I)$ (see [\(4\)](#page-1-3)), and $t \geq 0$, define

$$
\Omega_r(f,t) = \sup_{0 \le s \le t} \sup_{x \ge 0} \frac{|f(x+s) - f(x)|}{(1+x+s)^r}.
$$

We will use this modulus only in the case $f \in C_{r,\infty}(I)$.

Before proving some properties of this modulus, let us compare them with others that have been used previously.

The following functional was considered by Kratz and Stadtmüller in $[19]$. For $r \in \mathbb{N}$ and a function $f \in C_r(I)$ set

$$
\widetilde{\Omega}_r(f,t) = \sup_{s,v \in I, |s-v| \le t} \frac{|f(s) - f(v)|}{(1+s+v)^r} = \sup_{x \ge 0} \sup_{0 < s \le t} \frac{|f(x+s) - f(x)|}{(1+2x+s)^r}.
$$

Taking into account that $1 + x + s \leq 1 + 2x + s \leq 2(1 + x + s)$, we know that

$$
\frac{1}{2^{r}}\Omega_{r}(f,t)\leq\widetilde{\Omega}_{r}(f,t)\leq\Omega_{r}(f,t).
$$

Kratz and Stadtmüller proved that, for Szász-Mirakyan operators, there exists a constant *C* such that, for all $f \in C_r(I)$, every $t \geq 0$ and each $n \in \mathbb{N}$,

$$
\Omega_r(S_n(f),t) \leq C\Omega_r(f,t).
$$

They did not proved that $\lim_{t\to 0^+} \Omega_r(f,t) = 0$. We will verify that, if $f \in$ $C_{r,\infty}(I)$, then $\lim_{t\to 0^+} \Omega_r(f,t) = 0$.

For $f \in C_{2,\infty}(I)$, another modulus was considered in [\[2\]](#page-12-3) by setting

$$
\Omega(f,t) = \sup_{0 \le s \le t} \sup_{x \in I} \frac{|f(x+s) - f(x)|}{(1+s)^2(1+x)^2}.
$$

For $0 \leq t \leq 1$, $\Omega(f, t)$ and $\Omega_2(f, t)$ are equivalent. In fact, suppose that $s \leq 1$. First one has

 $(1 + s^2)(1 + x^2) = 1 + s^2 + x^2 + s^2x^2 \le 2(1 + s^2 + x^2) \le 2(1 + x + s)^2$.

On the other hand, if $x \leq 1$,

$$
(1+s+x)^2 = 1+2x+2s+x^2+2xs+s^2 \le 7(1+s^2+x^2) \le 7(1+s^2)(1+x^2).
$$

and, if $x > 1$,

$$
(1+s+x)^2 \le 3+5x^2+s^2 \le 5(1+s^2+x^2) \le 5(1+s^2)(1+x^2).
$$

Therefore

$$
\frac{1}{2}\Omega_2(f,t) \le \Omega(f,t) \le 7\Omega_2(f,t).
$$

PROPOSITION 16. If *r* is a non negative real and $f \in C_{r,\infty}(I)$, then $\Omega_r(f,t)$ *is a subadditive modulus of continuity in the sense of* [Definition 8](#page-5-1)*.*

74 J. Bustamante 12

Proof. It is clear that $\Omega_r(f,0) = 0$ and $\Omega_r(f,t)$ is non-negative and nondecreasing in *I*

(a) We consider first the case $r = 0$. As in the case of the classical modulus of continuity, it is easy to prove that the functional $\Omega_r(f, t)$ is a subadditive. In order to prove continuity, it is sufficient to verify continuity a zero, but if follows from the condition $\lim_{x\to\infty} f(x) = 0$.

(b) Assume $r > 0$. Denote $A = \lim_{x \to \infty} f(x)/(1+x)^r$. Given $\varepsilon > 0$, there exists x_0 such that

$$
\left|\frac{f(x)}{(1+x)^r} - A\right| < \frac{\varepsilon}{2}, \qquad x \ge x_0.
$$

If
$$
t > 0
$$
 and $0 < s \le t \le 1$, then
\n
$$
\sup_{x\ge 0} \frac{|f(x+s)-f(x)|}{(1+x+s)^r} \le \sup_{0\le x\le x_0} \frac{|f(x+s)-f(x)|}{(1+x+s)^r} + \sup_{x\ge x_0} \frac{|f(x+s)-f(x)|}{(1+x+s)^r}
$$
\n
$$
\le \sup_{0\le x\le x_0} |f(x+s)-f(x)| + \sup_{x\ge x_0} \frac{|f(x+s)-A|}{(1+x+s)^r} + \sup_{x\ge x_0} \frac{|f(x)-A|}{(1+x)^r}
$$
\n
$$
\le \omega_1(f,t)_{[0,x_0+1]} + \varepsilon,
$$

where $\omega_1(f, t)_{[0,x_0+1]}$ is the usual modulus of continuity in the interval $[0, x_0 +$ 1].

This is sufficient to prove that $\lim_{t\to 0} \Omega_r(f,t) \to 0 = 0$.

(c) Let us verify that $\Omega_r(f,t)$ is subadditive: $\Omega_r(f,v+t) \leq \Omega_r(f,v) +$ $\Omega_r(f,t)$. Without losing generality we assume that $0 < v \leq t$.

Fijemos $x \geq 0$ and $0 < s \leq t + v$.

If $s \leq t$, it is clear that

$$
\frac{|f(x+s)-f(x)|}{1+(x+s)^r} \le \sup_{0
$$

Let us consider the case $v \le t < s$. Since $0 < s-t$, one has $(1+x+s-t)^r <$ $(1 + x + s)^r$. Therefore

$$
\frac{|f(x+s)-f(x)|}{(1+x+s)^r}\leq \frac{|f(x+s-t+t)-f(x+s-t)|}{(1+(x+s-t)+t)^r}+\frac{|f(x+s-t)-f(x)|}{(1+x+s-t)^r}\\ \leq \Omega_r(f,t)+\Omega_r(f,s-t)\leq \Omega_r(f,t)+\Omega_r(f,v).
$$

It is sufficient to prove that $\Omega_r(f, t)$ is a modulus of continuity. \Box

Theorem 17. *If r is a non negative real, there exists a constant C such that, for* $f \in C_{r,\infty}(I)$ *,* $n \in \mathbb{N}$ *, and* $t > 0$ *,*

$$
\Omega_r(M_{n,p}(f),t) \leq C\Omega_r(f,t).
$$

Proof. Notice that, for $s > 0$, taking into account [\(10\)](#page-6-1), with $t = s$ and $\lambda = i/(sa_{n,n}),$

$$
\left| f\left(\frac{k+i}{a_{n,p}}\right) - f\left(\frac{k}{a_{n,p}}\right) \right| \leq \Omega_r \left(\frac{i}{a_{n,p}}\right) \left(1 + \frac{k}{a_{n,p}} + \frac{i}{a_{n,p}}\right)^r
$$

$$
\leq \Omega_r(f,s) \left(1 + \frac{i}{a_{n,p}s}\right) \left(1 + \frac{k}{a_{n,p}} + \frac{i}{a_{n,p}}\right)^r,
$$

because $\Omega_r(f, s)$ is a subadditive modulus.

Therefore (see [Proposition 10\)](#page-6-0)

$$
\begin{split} &| M_{n,p}(f,x+s) - M_{n,p}(f,x) | = \\ & = \left| e^{-a_{n,p}(x+s)} \sum_{k=0}^{\infty} \frac{a_{n,p}^k x^k}{k!} \sum_{i=0}^{\infty} \frac{a_{n,p}^i}{i!} s^i \left(f \left(\frac{k+i}{a_{n,p}} \right) - f \left(\frac{k}{a_{n,p}} \right) \right) \right| \\ & \leq \frac{\Omega_r(f,s)}{e^{a_{n,p}(x+s)}} \sum_{k=0}^{\infty} \frac{a_{n,p}^k x^k}{k!} \sum_{i=0}^{\infty} \frac{a_{n,p}^i}{i!} s^i \left(1 + \frac{i}{a_{n,p}s} \right) \left(1 + \frac{k}{a_{n,p}} + \frac{i}{a_{n,p}} \right)^r . \end{split}
$$

Taking into account [Proposition 2](#page-2-0) (with $a = 1 + k/a_{n,p}$), we obtain

$$
e^{-a_{n,p}s} \sum_{i=0}^{\infty} \frac{a_{n,p}^{i}}{i!} s^{i} \left(1 + \frac{k}{a_{n,p}} + \frac{i}{a_{n,p}}\right)^{r} =
$$

= $M_{n,p} \left(\left(1 + \frac{k}{a_{n,p}} + e_1\right)^{r}, s\right) \le C(r) \left(2 + \frac{k}{a_{n,p}} + s\right)^{r} \le 2^{r} C(r) \left(1 + \frac{k}{a_{n,p}} + s\right)^{r}.$

On the other hand

$$
\frac{e^{-a_{n,p}s}}{s} \sum_{i=1}^{\infty} \frac{a_{n,p}^{i}}{i!} s^{i} \frac{i}{a_{n,p}} \left(1 + \frac{k}{a_{n,p}} + \frac{i}{a_{n,p}}\right)^{r} =
$$
\n
$$
= e^{-a_{n,p}s} \sum_{i=1}^{\infty} \frac{a_{n,p}^{i-1}}{(i-1)!} s^{i-1} \left(1 + \frac{k}{a_{n,p}} + \frac{i}{a_{n,p}}\right)^{r}
$$
\n
$$
= M_{n,p} \left(\left(1 + \frac{1}{a_{n,p}} + \frac{k}{a_{n,p}} + e_1\right)^{r}, s\right) \leq M_{n,p} \left(\left(2 + \frac{k}{a_{n,p}} + e_1\right)^{r}, s\right)
$$
\n
$$
\leq C(r) \left(3 + \frac{k}{a_{n,p}} + s\right)^{r} \leq 3^{r} C(r) \left(1 + \frac{k}{a_{n,p}} + s\right)^{r}.
$$

From the estimates given above one has

$$
| M_{n,p}(f, x+s) - M_{n,p}(f, x) | \leq 3^r C(r) \frac{\Omega_r(f, s)}{e^{a_{n,p}x}} \sum_{k=0}^{\infty} \frac{a_{n,p}^k x^k}{k!} \left(1 + \frac{k}{a_{n,p}} + s\right)^r
$$

$$
\leq 6^r C(r) \Omega_r(f, s) (1 + x + s)^r,
$$

where we use again [Proposition 2.](#page-2-0)

$$
\Box
$$

REFERENCES

- [1] U. Abel, M. Ivan, X.M. Zeng, *[Asymptotic expansion for Sz´asz-Mirakyan operators](https://doi.org/0.1063/1.2790269)*, [AIP Conference Proceedings,](https://doi.org/0.1063/1.2790269) **936** (2007), pp. 779–782. [https://doi.org/0.1063/1](https://doi.org/0.1063/1.2790269) [.2790269](https://doi.org/0.1063/1.2790269)
- [2] T. Acar, A. Aral, I. Rasa, *[The new forms of Voronovskaya's theorem in weighted](https://doi.org/10.1007/s11117-015-0338-4) spaces*, Positivity, **20** (2015) no. 1, pp. 25—40. [https://doi.org/10.1007/s11117-0](https://doi.org/10.1007/s11117-015-0338-4) [15-0338-4](https://doi.org/10.1007/s11117-015-0338-4)
- [3] J.A. Adell, A. Lekuona, *[Best constants in preservation of global smoothness for](https://doi.org/10.1016/j.jmaa.2007.05.064) [Sz´asz-Mirakyan operators](https://doi.org/10.1016/j.jmaa.2007.05.064)*, J. Math. Anal. Appl., **338** (2008), pp. 753–757. [https:](https://doi.org/10.1016/j.jmaa.2007.05.064) [//doi.org/10.1016/j.jmaa.2007.05.064](https://doi.org/10.1016/j.jmaa.2007.05.064)
- [4] N.T. AMANOV, *On the uniform weighted approximation by Szász–Mirakjan operators*, Analysis Mathematica, **18** (1992), pp. 167–184. [https://doi.org/10.1007/BF0191](https://doi.org/10.1007/BF01911084) [1084](https://doi.org/10.1007/BF01911084) 년

- [5] M. BECKER, *Global approximation theorems for Szász-Mirakjan and Baskakov operators in polynomial weight spaces*, Indiana Univ. Math. J., **27** (1978) no. 1, pp. 127–142.
- [6] J. Bustamante, C. Castaneda Rold ˜ an´ , *[Direct and inverse results in H¨older](https://doi.org/10.1016/j.jat.2005.10.004) norms*, J. Approx. Theory, **138** (2006), pp. 112–123. [https://doi.org/10.1016/](https://doi.org/10.1016/j.jat.2005.10.004) j . jat. 2005.10.004 \Box
- [7] J. Bustamante, J.M. Quesada, L. Morales de la Cruz, *[Direct estimate for pos](https://doi.org/10.1016/j.jat.2010.04.001)[itive linear operators in polynomial weighted spaces](https://doi.org/10.1016/j.jat.2010.04.001)*, J. Approx. Theory, **162** (2010), [pp. 1495–1508. urlhttps://doi.org/10.1016/j.jat.2010.04.001](https://doi.org/10.1016/j.jat.2010.04.001)
- [8] J. Bustamante, A. Carrillo-Zentella, J.M. Quesada, *[Direct and strong con](https://doi.org/10.1007/s10474-012-0196-5)[verse theorems for a general sequence of positive linear operators](https://doi.org/10.1007/s10474-012-0196-5)*, Acta Math. Hungar., 136⁽²⁰¹²⁾ nos. 1-2, pp. 90-106. <https://doi.org/10.1007/s10474-012-0196-5>²
- [9] E. Cheney, A. Sharma, *Bernstein power series*, Canad. J. Math., **16** (1964), pp. 241–252.
- [10] M. Chu, *On the Sz´asz operators Voronoskaja type theorem*, J. Anhui Normal Univ. (Nat. Sci.), **18** (1995) no. 1, pp. 20–23.
- [11] R.A. DeVore, G.G. Lorentz, *Constructive Approximation*, Springer-Verlag, Berlin, 1993.
- [12] H. Dong, Q. Qi, *[Shape preserving properties of parametric Sz´asz type operators on](https://doi.org/10.3390/sym15091755) unbounded intervals*, Symmetry, **15** (2023), art. no. 1755. [https://doi.org/10.339](https://doi.org/10.3390/sym15091755) [0/sym15091755](https://doi.org/10.3390/sym15091755)
- [13] T. Hermann, *On the Sz´asz-Mirakian operators*[, Acta Math. Acad. Sci. Hungar,](https://doi.org/10.1007/BF01902211) **32** (1978) nos. 1–2, pp. 163–173. https://doi.org/10.1007/BF01902211
- [14] I. HOROVÁ, *Linear positive operators of convex functions*, Mathematica, **10** (1968), pp. 275–283.
- [15] X.Q. Hou, Y.C. Xue, *On the property of some linear positive operators preserving the class* Λ*ω*(*A*), J. Ningxia Univ. (Nat. Sci. Ed.),**16** (1995), pp. 11–16 (in Chinese).
- [16] N. ˙Ispir, *On Modified Baskakov operators on weighted spaces*, Turk. J. Math., **²⁵** (2001), pp. 355–365.
- [17] G. Jiang, *On the inverse theorem for Sz´asz-Mirakjan operators*, Liupanshui Normal Univ., **4** (1993), pp. 8–10 (in Chinese).
- [18] M.K. Khan, B. Della Vecchia, A. Fassih, *On the monotonicity of positive linear operators*, J. Approx. Theory, **92** (1998), pp. 22–37.
- [19] W. KRATZ, U. STADTMÜLLER, [On the uniform modulus of continuity of certain dis](https://doi.org/10.1016/0021-9045(88)90009-3)*[crete approximation operators](https://doi.org/10.1016/0021-9045(88)90009-3)*, J. Approx. Theory, **54** (1988), pp. 326–337. [https:](https://doi.org/10.1016/0021-9045(88)90009-3) [//doi.org/10.1016/0021-9045\(88\)90009-3](https://doi.org/10.1016/0021-9045(88)90009-3)
- [20] C. Li, Y. Zhao, *Weighted approximation with Sz´asz-Mirakjan operators*, Acta Sci. Natur. Univ. Pekinensis, **37** (2001) no. 1, pp. 6–11 (in Chinese).
- [21] L. Liu, Y. Xue, W. Sun, *Strong converse inequalities for Sz´asz-Mirakjian operators with weights*, Chi. Quart. Math., **23** (2008) no. 3, pp. 384–389.
- [22] L. Liu, G. Yang, S. Guo, *Strong converse inequality for Sz´asz operators*, J. Math. Research Expo., **28** (2008) no. 1, pp. 147–155.
- [23] A.J. LÓPEZ-MORENO, *[Weighted simultaneous approximation with Baskakov type op](https://doi.org/10.1023/B:AMHU.0000034368.81211.23)erators*, Acta Math. Hungar., **104** [\(2004\) nos. 1–2, pp. 143–151.](https://doi.org/10.1023/B:AMHU.0000034368.81211.23) [https://doi.org/](https://doi.org/10.1023/B:AMHU.0000034368.81211.23) [10.1023/B:AMHU.0000034368.81211.23](https://doi.org/10.1023/B:AMHU.0000034368.81211.23)
- [24] A. Lupas¸, *Some properties of the linear positive operators (I)*, Mathematica Cluj, **9** (1967), pp. 77–83.
- [25] D. MicLĂUŞ, O.T. Pop, *The generalization of certain results for Szász-Mirakjan-Schurer operators*, Creat. Math. Inform., **21** (2012) no. 1, pp. 79–85.
- [26] F. Schurer, *Linear positive operators in approximation theory*, Math. Inst. Techn., Univ. Delft Report, 1962.
- [27] F. Schurer, *On Linear positive operators in approximation theory*, Delft University of Technology, Delft, 1965.
- [28] P.C. Sikkema, *On some linear positive operators*, Indag. Math., **32** (1970), pp. 327– 337.
- [29] P.C. SIKKEMA, *Über die Schurerschen linearen positiven Operatoren I*, Indag. Math., **78** (1975) no. 3, pp. 230–242.
- [30] O. Szász, *[Generalization of S. Bernstein's polynomials to the infinite interval](https://doi.org/10.6028/JRES.045.024)*, J. Res. Nat. Bur. Standards, **45** (1950), pp. 239–245. [https://doi.org/10.6028/JRES.045](https://doi.org/10.6028/JRES.045.024) [.024](https://doi.org/10.6028/JRES.045.024) Γ
- [31] B.D. Vechia, *On the preservation of Lipschitz constants for some linear operators*, Bollettino Un. Mat. Ita., **16** (1989) no. 1, pp. 125–136.
- [32] X. Wang, *On the proof of a theorem for Sz´asz-Mirakjan operators*, J. Hangzhou Univ. (Nat. Sci.), **19** (1992) no. 2, pp.139–143 (in Chinese).
- [33] X. Wang, X. Li, W. Wang and S. Ding, *Equivalent description on derivatives of Sz´asz-Mirakjan operators*, J. South. West Univ. (Nat. Sci.), **8** (2011), pp. 115–118 (in Chinese).
- [34] L. Xie, *On direct theorems for Sz´asz-Mirakian operators*, J. Lishui Teach. Colle., **17** (1995) no. 2, pp. 1–2 (in Chinese).
- [35] L. Xie, *Inverse theorems for Sz´asz-Mirakjian operators*, J. Lishui Teach. Colle., **22** (2000) no. 2, pp. 1–3 (in Chinese).
- [36] Y. Xin, C. Li, Q. Gao, *Approximation qualities for the iterated Boolean sums of Sz´asz operators*, J. Hebei Normal Univ., **32** (2008) no. 6, pp. 713–717 (in Chinese).
- [37] Z. Zhao, *On the property of Sz´asz-Mirakyan polynomials preserving the monotonicity*, J. Gansu Edu. Coll., **15** (2001) no. 3, pp. 1–3 (in Chinese).
- [38] L. ZHEN, *The shape preserving property and approximation order of Szász-Mirakjan operators*, J. Hunan Univ. Tech., **25** (2011) no. 2, pp. 5–9 (in Chinese).

Received by the editors: March 16, 2024; accepted: April 18, 2024; published online: July 11, 2024.