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IN POROUS MEDIA – CONVERGENCE AND TRUNCATION ERRORS
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Abstract. Nonlinearities of coupled flow and transport problems for partially
saturated porous media are solved with explicit iterative L-schemes. Their be-
havior is analyzed with the aid of the computational orders of convergence. This
approach allows highlighting the influence of the truncation errors in the numeri-
cal schemes on the convergence of the iterations. Further, by using manufactured
exact solutions, error-based orders of convergence of the iterative schemes are
assessed and the convergence of the numerical solutions is demonstrated numer-
ically through grid-convergence tests.
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1. INTRODUCTION

Flow and reactive transport in porous media are modeled by systems of
coupled nonlinear partial differential equations. The seepage velocity through
the bulk of porous medium is proportional to the hydraulic conductivity and
to the gradient of the pressure head, according to Darcy’s law, which combined
with the conservation equation results in the Richards’ equation. In its gen-
eral, mixed formulation, Richards’ equation contains two unknown functions,
the volumetric water content and the pressure head. Therefore, it needs to be
closed by constitutive relationships for the dependence of the water content
on the pressure head and the dependence of the hydraulic conductivity on the
water content. Such relationships are highly nonlinear, e.g., the exponential
model or the van Genuchten-Mualem model, with discontinuous derivatives
when the negative pressure, in unsaturated flow regime, changes into the posi-
tive pressure characterizing the saturated regime with constant water content
and hydraulic conductivity. Consequently, the resulting Richards’ equation
for the pressure head is non-linear and parabolic-elliptic degenerate.
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The concentration of the chemical compounds transported in soils and
aquifers is governed by parabolic advection-diffusion-reaction equations, with
flow velocity provided by the solution of the Richards’ equation. In the pres-
ence of capillarity effects, for instance in problems of surfactant transport, the
water content depends on pressure as well as on concentration and the flow
and transport equations are coupled in a nonlinear way in both directions.
Solving these coupled nonlinear problems requires iterative schemes that use
different linearization techniques, such as Newton’s method, (modified) Picard
method, L-scheme or their combinations. While Newton’s method is second
order (under usual circumstances) but only locally convergent, which means
that it converges only if the initial choice is not too far from the solution, the
L-scheme is a robust method unconditionally first order convergent, the ro-
bustness of the Picard method being somewhere in between [7]. A significant
improvement of the convergence can be achieved by starting with L-scheme
iterations and, once an appropriate initial solution is found, switching to the
faster and higher order convergent Newton’s method [12].

The L-scheme can be thought as a quasi-Newton method, with derivative
of the water content with respect of the pressure head replaced by a positive
constant L. This makes it robust and independent of the initial choice, at the
price of being only first order convergent. Given its simplicity, the L-scheme
is particularly suitable in solving intricate and fully coupled nonlinear prob-
lems. Most of the implementations of the L-scheme are implicit linearizations
based on finite element [8, 7, 12] or finite volume [9, 4] discretizations. Ex-
plicit L-schemes based on finite difference (FD) and random walk methods,
introduced in [16], have been successfully used to solve coupled problems of
flow and biodegradation in partially saturated soils and saturated heteroge-
neous aquifers [17]. The reason of using explicit L-schemes is that numerical
solutions of the flow equations are obtained on the same regular grid on which
reactive transport is solved with random walk algorithms free of numerical
diffusion [16].

Theoretical proofs of convergence of the linearization schemes essentially
show that the errors of the iterative solutions with respect to the exact solution
of the nonlinear problem can be made arbitrarily small [7]. However, even if the
numerical analysis of the scheme provides estimates of the convergence rates,
in general it does not produce a thorough and comprehensive characterization
of the type of convergence behavior, by predicting the upper/lower limits of
the rates as in the theory of the convergent sequences [2, 3]. The analysis
can be completed either by assessing computational orders of convergence,
with sequences of successive corrections, or by assessing error-based orders,
when exact solutions of the problem are available [19]. This approach could
be mainly useful when the constraints required by the theoretical proofs are
hard to meet, or when there are no convergence proofs at all, but, in practice,
the convergence of the scheme is demonstrated numerically.
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We investigate in this framework the convergence of the explicit L-scheme
through computational and error-based orders of convergence on three numer-
ical examples: solutions of Richards’ equation, fully coupled flow and surfac-
tant transport, and coupled flow and transport with van Genuchten-Mualem
parametrization.

2. COUPLED FLOW AND TRANSPORT IN POROUS MEDIA

We consider in the following the fully coupled one-dimensional problem of
flow governed by Richards’ equation and transport of a single chemical species
governed by an advection-diffusion-reaction equation,

(1) ∂
∂tθ(ψ, c) − ∂

∂z

[
K(θ(ψ, c)) ∂∂z (ψ + z)

]
= 0,

(2) ∂
∂t [θ(ψ, c)c] − ∂

∂z

[
D ∂
∂z c− qc

]
= R(c),

where ψ(z, t) is the pressure head, with z being the height against the gravita-
tional direction, θ is the water content, q = −K(θ(ψ, c)) ∂∂z (ψ+ z) is the water
flux (also called Darcy velocity), K stands for the hydraulic conductivity of
the porous medium, c is the concentration, D is the diffusion/dispersion coeffi-
cient, and R is the reaction term. The system (1)-(2) is closed via constitutive
relationships defining the dependencies θ(ψ, c) and K(θ(ψ, c)).

Equations (1)-(2) are fully coupled through the terms θ(ψ, c) and [θ(ψ, c)c].
Richards’ equation (1) is parabolic-elliptic degenerate, with variable θ(ψ, c) if
ψ < 0 and θ = const if ψ ≥ 0. Since the system is strongly nonlinear, through
the functional dependencies θ(ψ, c) and K(θ(ψ, c)), linearization methods have
to be used to compute numerical solutions.

2.1. Explicit L-schemes for one-dimensional Richards’ equation. Fol-
lowing [16], we start with the staggered FD scheme with backward discretiza-
tion in time of the Richards’ equation (1) decoupled1 from the transport equa-
tion (2),

θ(ψi,k) − θ(ψi,k−1) =
= ∆t

∆z2 {[K(θ(ψi+1/2,k))(ψi+1,k − ψi,k) −K(θ(ψi−1/2,k))(ψi,k − ψi−1,k)]

+
(
K(θ(ψi+1/2,k)) −K(θ(ψi−1/2,k))

)
∆z}.(3)

To obtain an iterative method for solving Richard’s equation, we denote by
ψsi,k the approximate solution after s iterations and add to the l.h.s. a stabi-
lization term L(ψs+1

i,k − ψsi,k), where L is a constant which has the dimension
of an inverse length. Whenever the iterative method converges, this stabi-
lization term vanishes and the limit is the solution of the nonlinear scheme

1In the fully coupled problem θ(ψi,k) is replaced by θ(ψi,k, ci,k), where ci,k is the solution
of (2) and the coupled scheme consists of alternating flow and transport steps.
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(3). Defining the dimensionless numbers rsi±1/2,k = K(ψsi±1/2,k)∆t/(L∆z2),
one obtains

ψs+1
i,k = [1 − (rsi+1/2,k + rsi−1/2,k)]ψ

s
i,k + rsi+1/2,kψ

s
i+1,k + rsi−1/2,kψ

s
i−1,k

+(rsi+1/2,k − rsi−1/2,k)∆z − (θ(ψsi,k) − θ(ψi,k−1))/L.(4)

In practice, we run successive iterations s = 1, 2, . . . until a threshold condition
is fulfilled, e.g., ∥ψsk − ψs−1

k ∥ ≤ εa + εr∥ψsk∥, where ψsk denotes the solution
vector of components ψsi,k, i = 1, . . . , I, ∥ · ∥ is the l2 norm, and εa ≥ 0 and
εr ≥ 0 are the absolute and relative tolerances (see e.g., [7]). The relation
(4) is an explicit L-scheme that allows the computation of the approximate
solution recursively and avoids the need to solve systems of linear equations,
as in implicit finite element [7] or finite volume [9] L-schemes. Consequently,
the explicit scheme (4) vas found to be one order of magnitude faster than the
implicit finite volume L-scheme when solving typical problems for partially
saturated flows [16].

To transform the FD scheme (4) into a random walk scheme we represent the
solution ψsi,,k by N particles distributed over the lattice sites, ψsi,k ≈ nsi,ka/N ,
where a is a unit length that will be disregarded in the following. This results
in the following relation summing contributions from neighboring sites to the
number of particles at the site i and time step k,
(5)
ns+1
i,k =

[
1 − (rsi+1/2,k + rsi−1/2,k)

]
nsi,k + rsi+1/2,kn

s
i+1,k + rsi−1/2,kn

s
i−1,k + ⌊N fs⌋,

where fs = (rsi+1/2,k − rsi−1/2,k)∆z− [θ(nsi,k) − θ(ni,k−1)]/L and ⌊·⌋ is the floor
function.

In order for (5) to be a random walk scheme, the coefficients multiplying
numbers of particles at lattice sites [1 − (rsi+1/2,k + rsi−1/2,k)], ri+1/2,k, and
ri−1/2,k should be normalized probabilities. This implies the following restric-
tion [1 − (rsi+1/2,k + rsi−1/2,k)] ≤ 1. A sufficient condition for that is

(6) rsi±1/2,k ≤ 1/2.

The first three terms in r.h.s. of (5) represent groups of particles jumping on
the site i form the right and from the left, and the ratio of the initial number
of particles at the site i which do not undergo jumps,

(7) δni|i±1,k = rsi±1/2,kn
s
i±1,k, δni|i,k =

[
1 − (rsi+1/2,k + rsi−1/2,k)

]
nsi,k.

With (7), (5) becomes

(8) ns+1
i,k = δni|i,k + δni|i+1,k + δni|i−1,k + ⌊N f s⌋.

The numbers δn of random walkers are binomially distributed random vari-
ables. Unlike in classical random walk approaches, consisting of generating
random walk trajectories and counting particles at lattice sites, we directly
evaluate the binomial variables δn and construct a global random walk (GRW)
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[21]. Since there are different probabilities rj±1/2,k for the right/left jumps,
one obtains a biased global random walk (BGRW) [14]. The resulting BGRW
algorithm moves the particles from a given lattice site j according to the rule

(9) nsj,k = δnsj|j,k + δnsj+1|j,k + δnsj−1|j,k,

where

(10) δnj±1|j,k = rsj±1/2,kn
s
j,k, δni|i,k = [1 − (rsj+1/2,k + rsj−1/2,k)]n

s
i,k.

The random variable δnj+1|j,k = rsj+1/2,kn
s
j,k representing the number of right

jumps in (9) is binomially distributed, with parameters nsj,k, p = rsj+1/2,k/r
s
i,k,

and q = 1 − p = rsj−1/2,k/r
s
i,k, where rsi,k = rsj+1/2,k + rsj−1/2,k. The number of

left jumps is the difference between the total number of jumps and the number
of right jumps δnj−1|j,k = rsi,kn

s
j,k − δnj+1|j,k. Since the computation of the

exact binomial distribution could be computationally prohibitive for very large
nsj,k, one uses its approximation via a “reduced-fluctuations algorithm” similar
to that proposed for the unbiased GRW algorithm in [21] as follows:

algorithm 1. Reduced fluctuations algorithm
(i) initialize a real variable rest = 0;
(ii) compute δn with the relations (10);
(iii) split δn into δn = ⌊δn⌋ + {δ} at every lattice site;
(iv) approximate δn by ⌊δn⌋;
(v) sum up the remainders into the variable rest =

∑
{δ} over all the sites;

(vi) allocate one particle to the first lattice site where rest ≥ 1;
(vii) save rest = rest− 1 and repeat the sequence (ii)-(vi) at every k.

Specifically, the algorithm is implemented in the Matlab code as follows:

Code 1. Flow-BGRW with reduced fluctuations
restr=0; rest1=0; rest2=0;
D=K(tht); D=D(1:I-1); % conductivity function of water content
r=dt*D/dxˆ2/L;
rloc=[1-2*r(1),1-(r(1:I-2)+r(2:I-1)),1-2*r(I-1)];
restr=rloc.*n+restr; nn=floor(restr); restr=restr-nn;
rest1=r(2:I-1).*n(3:I)+rest1;
njumpleft=floor(rest1); rest1=rest1-njumpleft; % left jumps
nn(2:I-1)=nn(2:I-1)+njumpleft;
rest2=r(1:I-2).*n(1:I-2)+rest2;
njumpright=floor(rest2); rest2=rest2-njumpright; % right jumps
nn(2:I-1)=nn(2:I-1)+njumpright;

Code 1 computes the solution in the interior of the domain. The Darcy
velocity on the boundaries can be computed in several ways: using an ap-
proximate forward finite difference discretization of Darcy’s law, extending on
the boundary the velocity from the first neighboring interior site, computing
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the exact velocity analytically when a manufactured solution for the pressure
head is available [16, Sect. 5.2.1].

Remark 1. Since the BGRW is an explicit scheme, the source term can be
evaluated first, then the first tree terms of (8) which model the transport will be
computed according to Code 1. The reduced-fluctuations algorithm preserves
the indivisibility of the particles by summing up to unity the fractional parts {·}
of all the terms defined by (7). Therefore, the floor function in (8) is no longer
necessary and the source term becomes N f s. Dividing (8) by N , using (7),
and taking the average, one retrieves the FD L-scheme (4) for the unknown
ψsi,k = nsi,k/N . A condition of kind K∆t/∆z2 ≤ 1/2 ensures the stability
of the forward-time central-space scheme for the heat equation with constant
coefficient K and is assumed (without carrying out the stability analysis) to
hold in case of variable coefficients as well [13]. In the present context, the
condition (6) guaranties that particles cannot be created or destroyed otherwise
than through boundary conditions or in the presence of an internal source/sink,
that is, it ensures the stability of the BGRW L-scheme (5). Since the FD L-
scheme (4) is the ensemble average of the BGRW scheme, its stability is also
ensured by the constraint (6).

The FD scheme is also retrieved when all floor operators are removed in
Code 1. The resulting code sequence can be recast as the FD scheme presented
in Code 2 below, where p = n/N and pp = nn/N .

Code 2. Flow-FD scheme
D=K(tht); D=D(1:I-1); % conductivity function of water content
r=dt*D/dxˆ2/L;
rloc=[1-2*r(1),1-(r(1:I-2)+r(2:I-1)),1-2*r(I-1)];
pp=rloc.*p;
pp(2:I-1)=pp(2:I-1)+r(2:I-1).*p(3:I)+r(1:I-2).*p(1:I-2);

Remark 2. In the particular case of the saturated regime, θ = const, with
space-variable hydraulic conductivity K and a given source term f , after setting
L = 1 and disregarding the time index k in (4) one obtains a transient scheme
to solve the equation for the hydraulic head h = ψ + z,

1
a
∂h
∂s − ∂

∂z

[
K ∂h

∂z

]
= f.

This scheme has been used to solve coupled flow and transport in saturated
aquifers with moderate heterogeneity [15]. However, because the transient
scheme may be very slow for highly heterogeneous coefficients K [1], a more
efficient strategy to solve coupled problems for saturated porous media is the
coupling between an implicit FD flow scheme [1] and a GRW transport solver,
see https://github.com/PMFlow/Coupled FDM GRW.

Matlab codes for one- and two-dimensional solutions of Richards’ equation,
verification tests, and benchmark problems presented in [16] are posted at
https://github.com/PMFlow/RichardsEquation.

https://github.com/PMFlow/Coupled_FDM_GRW
https://github.com/PMFlow/RichardsEquation
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2.2. Explicit BGRW scheme for reactive transport. Similarly to the
derivation of the flow scheme in Section 2.1, we start with a FD scheme with
backward time discretization of the equation (2) with a constant diffusion
coefficient D,
θ(ψi,k, ci,k)ci,k − θ(ψi,k−1, ci,k−1)ci,k−1 = −
=−tfrac∆t2∆z(qi+1,kci+1,k−qi−1,kci−1,k)+D∆t

∆z2 (ci+1,k−2ci,k+ci−1,k)+R(ci,k) =

− 2D∆t
∆z2 ci,k +

(
D∆t
∆z2 − ∆t

2∆z qi+1,k
)
ci+1,k +

(
D∆t
∆z2 + ∆t

2∆z qi−1,k
)
ci−1,k + ∆tR(ci,k),

(11)

where ψi,k is the solution of the coupled flow solver. Further, we denote by
csi,k the approximate solution after s iterations, add to the l.h.s. of (11) a
stabilization factor L(cs+1

i,k − csi,k), where L is now a dimensionless constant,
and define the dimensionless parameters

(12) r = 2D∆t
L∆z2 , vsi±1,k = ∆t

L∆z q
s
i±1,k.

Representing the concentration by the distribution of N particles on the lat-
tice, csi,k ≈ nsi,k/N , and using the parameters (12), the stabilized version of
the scheme (11) becomes an explicit L-scheme,

ns+1
i,k = (1 − r)nsi,k + 1

2(r − vsi+1,k)nsi+1,k + 1
2(r + vsi−1,k)nsi−1,k + ⌊gs⌋,(13)

where gs = N
{

∆tR(nsi,k)/L− [θ(ψsi,k, nsi,k)nsi,k − θ(ψi,k−1, ni,k−1)ni,k−1]/L
}

.
With the constrains

(14) r ≤ 1, |vsi,k| ≤ r,

which ensure the normalization of the jump probabilities, the explicit L-scheme
(13) for reactive transport is defined as a BGRW algorithm. The gathering
and the spreading of groups of particles at/from a lattice point are described
by relations similar to (8) and (9). The binomial random variables δn are
defined by
(15) δnsj±1|j,k = 1

2(r ± vsj,k)nsj,k, δnsj|j,k = (1 − r)nsj,k.

Remark 3. The biased jump probabilities 1
2(r ± vsj,k) in (15) simulate the

advective displacement by moving larger numbers of particles in the positive
flow direction. With an unbiased GRW, the advection is simulated by moving
groups of particles over vsj,k lattice sites, i.e., δnsj+v|j,k = (1 − r)nsj,k, where
v = vsj,k [16, 17]. This procedure is faster but yields overshooting errors when
there are important changes in velocity over a time step. The BGRW algorithm
which allows only first-neighbor jumps is accurate but can be much slower
than the unbiased GRW when a fine discretization is required to describe the
spatial variability of the solution. Moreover, the second constraint (14) and
the definitions of the parameters (12) imply an upper bound for the local Péclet
number, Pé = qsi,k∆z/D ≤ 2.
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The binomial random variables δn defined by (15) are generated with the
Algorithm 1. The Matlab implementation of the advection-diffusion steps of
the transport solver is presented in Code 3 below.

Code 3. Transport-BGRW with reduced fluctuations
u=q*dt/Lc/dx; % computation of the BGRW parameters (12)
ru=2*D*dt/Lc/dxˆ2*ones(1,I);
restr=0; restjump=0;
for x=1:I
if n(x) > 0

r=ru(x);
restr=n(x)*(1-r)+restr; nsta=floor(restr);
restr=restr-nsta; njump=n(x)-nsta;
nn(x)=nn(x)+nsta;
if(njump)>0

restjump=njump*0.5*(1-u(x)/r)+restjump;
nj(1)=floor(restjump); restjump=njump-nj(1);
nj(2)=floor(restjump); restjump=restjump-nj(2);
if x==1

nn(2)=nn(2)+nj(2);
elseif x==I

nn(I-1)=nn(I-1)+nj(1);
else

for i=1:2
xd=x+(2*i-3);
nn(xd)=nn(xd)+nj(i);

end
end

end
end
end

Remark 4. The ensemble average of the BGRW L-scheme for reactive
transport also leads to an equivalent FD scheme. However, we do not pursue
this approach which gives up the particle indivisibility. The numerical schemes
developed in [16, 17] aim at providing a “microscopic” kinematic description of
the reactive transport with piecewise-analytic time functions associated to each
particle. Using a space-time averaging over this microscopic description we are
then able to construct a macroscopic description through almost everywhere
continuous fields that can be used to model experimental measurements or to
achieve a spatio-temporal upscaling [18].

Matlab codes for coupled flow and transport and test problems are posted in
the repository https://github.com/PMFlow/RichardsEquation. BGRW/GRW
solvers for decoupled reactive transport with applications to biodegradation

https://github.com/PMFlow/RichardsEquation
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processes in soils and aquifers, presented in [17], may be found in the repository
https://github.com/PMFlow/MonodReactions.

2.3. Discussion on convergence. We look for convergence conditions by
investigating the evolution of the difference esψ = ψs − ψ of the solutions of
(4) and (3) and of the difference esc = cs − c of the solutions of (13) and (11)
at fixed position i and time k.

Let Lψ and Lc be the stabilization constants flow the flow and transport
schemes, respectively. After denoting by ∆t

∆z2 Dψ(ψ) the r.h.s. of (3) and
subtracting (3) from (4), we have

Lψ(es+1
ψ − esψ) + θ(ψs, cs) − θ(ψ, c) = ∆t

∆z2 (Dψ(ψs) − Dψ(ψ)) .(16)

Similarly, with ∆t
2∆zDq(c) and ∆t

∆z2 DD(c) denoting the advection and diffusion
operators in the r.h.s. of (11), converting the numbers of particles to concen-
trations, csi,k = nsi,k/N , and subtracting (11) from (13) we have

Lc(es+1
c −esc)+θ(ψs, cs)cs−θ(ψ, c)c= ∆t

2∆z (Dq(cs)−Dq(c))+ ∆t
∆z2 (DD(cs)−DD(c)) .

(17)

Assuming

(A1) ∂θ/∂ψ > 0, ∂θ/∂c > 0, ∂(θc)/∂ψ > 0, ∂(θc)/∂c > 0,
(A2) |Dψ(ψs) − Dψ(ψ)| ≤ LDψ |esψ|, DD(cs) − DD(c)| ≤ LDD |esc|,

(16) and (17) give(
es+1
ψ

)2
≤
(
esψ

)2
(

1 − 1
Lψ

∂θ(ψ,c)
∂ψ +

LDψ∆t
Lψ∆z2

)2
+ (esc)

2
(

1
Lψ

∂θ(ψ,c)
∂c

)2
,(18)

(
es+1
c

)2
≤ (esc)

2
(
1 − 1

Lc

∂(θ(ψ,c)c)
∂c + LDq∆t

2Lc∆z + LDD∆t
Lc∆z2

)2
+
(
esψ

)2 ( 1
Lc

∂(θ(ψ,c)c)
∂ψ

)2
.

(19)

Let F denote one of the factors of
(
esψ

)2
and (esc)

2 in (18) and (19). As-
suming for all factors the condition F ≤ 1−ϵ

2 , where ϵ ∈ (0, 1], one obtains

inf
ψ

{∂θ(ψ, c)/∂ψ} ≥ LDψ
∆t

∆z2 + 1 −
√

1−ϵ
2 ,

sup
ψ

{∂θ(ψ, c)/∂ψ} ≤ LDψ
∆t

∆z2 + 1 +
√

1−ϵ
2 ,

1
Lψ

∂θ(ψ,c)
∂c ≤

√
1−ϵ

2 .(20)

https://github.com/PMFlow/MonodReactions
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inf
c

{∂(θ(ψ, c)c)/∂c} ≥ LDq
∆t

2∆z + LDD
∆t

∆z2 + 1 −
√

1−ϵ
2 ,

sup
c

{∂(θ(ψ, c)c)/∂c} ≤ LDq
∆t

2∆z + LDD
∆t

∆z2 + 1 +
√

1−ϵ
2 ,

1
Lc

∂(θ(ψ,c)c)
∂ψ ≤

√
1−ϵ

2 .(21)

Adding the inequalities (18) and (19) and using (20) and (21) one gets

(22)
(
es+1
ψ

)2
+
(
es+1
c

)2
≤ (1 − ϵ)

[(
esψ

)2
+ (esc)

2
]
.

With ∥es∥2 =
∑I
i=1

[(
ψsi,k − ψi,k

)2
+
(
csi,k − ci,k

)2
]

being the squared error

norm of the solution vector xs = (ψsk, csk) ∈ R2I , the inequality (22) implies

(23) ∥es+1∥2 ≤ (1 − ϵ)∥es∥2,

and thus a contractive property of the coupled L-schemes. Further, (23) can
be used to show that {xs} is a convergent Cauchy sequence (see e.g. [6, Sect.
8.1]) and its limit is unique, because R2I is a complete metric space.

For given ∆z, the time step ∆t is constrained by the stability conditions
of the flow and transport schemes. With the positive constant α defined as
α = max(2rsi±1/2,k), the stability condition (6) for the flow scheme becomes
α ≤ 1. Further, from α = 2 max(K(ψsk)∆tψ/(Lψ∆z2), we determine the
corresponding time step ∆tψ by

(24) ∆tψ = αLψ∆z2

2 max(K(ψsk)) .

Similarly, with β = max(r), the stability condition (14) becomes β ≤ 1,
β = 2D∆tc/Lc∆z2, and the time step ∆tc is given by

(25) ∆tc = βLc∆z2

2D .

The schemes (4) and (13) are coupled by alternating flow and transport steps
at every time iteration [4, 16], which require a unique time step, defined as
(26) ∆t = min(∆tψ , ∆tc).
Using (24)-(26) we introduce the factor γ,

(27) γ = ∆t
∆z2 = min

(
αLψ

2 max(K(ψsk)) ,
βLc
2D

)
.

Inserting (27) and γ∆z in (20) and (21), the convergence conditions explicitly
depend on the parameters Lψ and Lc and become more robust, with only
one term (coming from the advection term of (2)) depending on discretization
through ∆z. By relating the parameters Lψ and Lc to the physical parameters
of the problem, the conditions (20) and (21) also provide a general frame for
an adaptive L-scheme.

We note that, even though the conditions (20) and (21) show that the cou-
pled L-schemes should converge, they are of limited use in practice: actually
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they only can be verified if the solution of the problem is known. Therefore, in
the following we investigate the convergence by using sequences of iterates and
the definitions of the computational and error-based orders of convergence.

3. NUMERICAL EXAMPLES

We illustrate the explicit iterative methods presented in Section 2 by three
numerical examples. First, we solve a problem with transition between un-
saturated and saturated flow regimes for the degenerate Richards’ equation
with both the FD and the BGRW scheme presented in Section 2.1. Then,
we consider a fully coupled flow and surfactant transport problem [5] with
an academic example of constitutive laws θ(ψ) and Kθ(ψ), and a one way
coupled flow and transport problem with the realistic van Genuchten-Mualem
parametrization of θ and K. The last two problems are solved by the cou-
pled FD-flow and BGRW-transport schemes presented in Section 2.1 and Sec-
tion 2.2.

The convergence of the iterative schemes is investigated numerically with
tools from the theory of abstract convergent sequences [2]. The convergence
of an arbitrary sequence of real numbers xs → x∗ ∈ R is characterized by the
behavior of the successive errors es = |x∗ − xs|. The sequence {xs} converges
with the (classical) C-order p ≥ 1 if

(28) (C) lim
s→∞

es+1
(es)p

= Qp ∈
{

(0,∞), p > 1
(0, 1), p = 1,

which implies the (weaker) order2 Q (see [3]),

(29) (Q) lim
s→∞

ln es+1
ln es

= p.

While Eq. (29) is a common way to identify the Q-order of convergence,
Eq. (28) can subsequently be used to check whether a classical convergence
order exists.

If the limit x∗ is not known, the errors es are replaced by the corrections
|xs+1−xs| and (28)-(29) define “computational orders of convergence”, denoted
by a prime, C ′ and Q′. If p > 1, computational and error-based orders of
convergence are equivalent, denoting this by using curly braces, and they are
related by

{C,C ′} ⇒
⇍

{Q,Q′}.
However, when p = 1, the above equivalences do not hold in general [3] and
the existence of the error-based orders has to be checked on a case by case
basis.

Results from the theory of convergent sequences in Rn [2] cannot be directly
extrapolated to flow and transport iterative schemes for porous media, where

2This is usually denoted by QL (from logarithm) to distinguish from other types of Q
orders. Since only definition (29) will be used in the following, we disregard the subscript L.



12 Iterative schemes for coupled flow and transport in porous media 169

the convergence is investigated in function spaces with norms that often de-
pend on the particular problem formulation (e.g., [7, 9, 12]). Therefore we rely
on the sequences of positive real numbers provided by iterative methods, e.g.,
∥ψs −ψs−1∥ and ∥cs − cs−1∥. If the method converges, which in a restricted
sense means that the successive corrections become arbitrarily small (e.g., [9]),
the corrections form sequences {xs} converging to zero that can be analyzed
with the definitions of the error-based orders of convergence (28) and (29) [19].
Further, based on numerical evaluations of the Q or C orders of convergence
of the sequences {xs} we may assume the Q′ or C ′ convergence of the solution
(ψs, cs) of the coupled problem.

Remark 5. Let s∗ be the iteration count for which (28) written for the
sequence of successive corrections ∥ψs+1 − ψs∥ defines a constant quotient
Q1(s∗) = Q within a given absolute tolerance εa. Then, from (28), we have

∥ψs+1 −ψs∥ ≤ Q∥ψs −ψs−1∥ ≤ Q2∥ψs−1 −ψs−2∥ ≤ · · ·
≤ Qs−s

∗∥ψs∗+1 −ψs∗∥.(30)
Using (30) we also have, for any s > s∗, m ∈ N,

∥ψs+m −ψs∥ =
= ∥ψs+1 −ψs +ψs+2 −ψs+1 + · · · +ψs+m −ψs+m−1∥

≤ (Qs−s∗ +Qs−s
∗+1 + · · · +Qs−s

∗+m−1)∥ψs∗+1 −ψs∗∥

= Qs−s
∗(1 +Q+ · · · +Qm−1)∥ψs∗+1 −ψs∗∥

≤ Qs−s
∗
( ∞∑
m=0

Qm
)

∥ψs∗+1 −ψs∗∥

= Qs−s
∗ lim
m→∞

1−Qm
1−Q ∥ψs∗+1 −ψs∗∥ = Qs−s∗

1−Q ∥ψs∗+1 −ψs∗∥.(31)

According to (31), lim
s→∞

∥ψs+m −ψs∥ = 0, hence {ψs} is a convergent Cauchy
sequence and has a unique limit in the complete space RI . The convergence of
the iterates of the L-scheme implies the cancelation of the stabilization terms,
e.g., L(ψs+1 − ψs), so that the limit of the sequence {ψs} coincides with the
solution of the nonlinear scheme (compare (3) and (4)). Thus, the C ′-linear
convergence of the L-scheme is equivalent to the convergence of the successive
approximations {ψs} to the unique solution of the nonlinear scheme.

Remark 6. From a theoretical perspective the C-linear convergence of the
L-scheme assumes the convergence of the L-scheme to the exact solution. How-
ever, the numerical solution is only an approximation of the exact solution
depending on the fineness of the discretization. It follows that a limit quotient
Q1 < 1 in (28), which defines the C-linear convergence, cannot be practically
reached in numerical simulations which, necessarily use finite discretizations.
For instance, the errors with respect to the exact solution of the second order
accurate schemes used in the examples below are of the order O(∆z2). As the
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errors es in (28) reach this threshold, they cannot be decreased by further it-
erations. One obtains thus estimations of the quotient Q1 ≈ 1, corresponding
to the sublinear convergence of the iterations [2]. The approach to the exact
solution is instead quantified by the decay of the errors with respect to the dis-
cretization. The common approach [11, 1, 16, 19] is to assess estimated orders
of convergence (EOC) by the slope of the decay of the errors in the logarithmic
scale after successively halving the discretization parameter ∆z,

(32) EOC = log
(

el
el+1

)
/ log(2), l = 1, 2, · · ·

3.1. First example: Richards’ equation. For the beginning, let us consider
the one-dimensional Richards’ equation (1) closed by one of the simplest mod-
els, with exponential dependence of the water content on the pressure head
and linear dependence of the hydraulic conductivity on the water content [16],

(33) Θ(ψ) =
{
eαψ, ψ < 0
1, ψ ≥ 0,

(34) K(θ(ψ)) =
{
KsatΘ(ψ), ψ < 0
Ksat, ψ ≥ 0,

where Θ = (θ − θres)/(θsat − θres) is the normalized water content, θ = θsat
and K = Ksat denote the constant water content respectively the constant
hydraulic conductivity in the saturated regions (ψ ≥ 0), and θres is the residual
water content.

We solve a typical problem modeling the experimental study of the flow in
variably saturated soil columns, formulated in the domain [0, 2]. The bound-
ary conditions are specified by a constant pressure ψ(0, t) = ψ0 at the bottom
of the soil column and a constant water flux q0 on the top. Together, these con-
stant conditions determine the initial pressure distribution ψ(z, 0) as solution
of the steady-state flow problem. For t > 0, the pressure ψ0 is kept constant
at the bottom of the column and on the top the water flux is increased linearly
from q0 to q1 until t ≤ t1 and is kept constant for t > t1. The texture of an
homogeneous soil, representative for a column filled with sand, is parameter-
ized with Ksat = 2.77 ·10−6, θres = 0.06, θsat = 0.36, α = 10. The water fluxes
on the top boundary are given by q0 = 2.77 · 10−7 and q1 = 2.50 · 10−6. To
capture the transition from unsaturated to saturated regime, the pressure at
the bottom boundary is fixed at ψ0 = 0.5. For the parameters specified above,
we consider meters as length units and seconds as time units. The simulations
are conducted up to T = 104 (about 2.78 hours) and the intermediate time is
taken as t1 = T/102.

We use a regular lattice with ∆z = 10−2. The BGRW computations are
initialized by multiplying the initial condition by the total number of particles
N . Since the hydraulic conductivity varies in time according to (34), the time
step is determined according to (24) for the maximum of K at every time
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iteration and by specifying a maximum α = 0.8 of the parameters ri±1/2,k.
The parameter of the regularization term in the L-scheme is set to L = 1 for
the computation of the initial condition (solution of the stationary problem,
i.e. for ∂θ/∂t = 0 in (1)) and to L = 2 for the solution of the non-stationary
problem. In both cases, the convergence criterion is verified by choosing εr = 0
and a fixed absolute tolerance εa = 10−18.

To illustrate the consistency of the representation of the solution by ensem-
bles of random walkers and the equivalence of the BGRW and FD schemes,
we compare their solutions for increasing N between 103 and 1024 at the final
time T (Fig. 1). The errors |ψBGRW (z)−ψFD(z)| of the BGRW solution with
respect to the FD solution shown in Fig. 2 decrease as N −1 and approach the
machine precision ∼ 10−16 for N ≥ 1018. The l2 norm ∥ψBGRW − ψFD∥ of
the difference of the two solution vectors with I = 2/∆z+1 = 101 components
decreases at a rate of ∼ 10N −1 and reaches a plateau at about 10−14 (see Ta-
ble 1). Since the FD solution is the ensemble average of the BGRW solution
(see Remark 1), this behavior also illustrates the self-averaging property of
the GRW algorithms [21].

N 1e3 1e6 1e10 1e18 1e24
|ψBGRW (z) − ψFD(z)| 1.70e-03 4.24e-06 2.52e-10 7.13e-16 9.21e-16

∥ψBGRW − ψFD∥ 2.27e-02 6.52e-05 3.32e-09 1.13e-14 1.40e-14

Table 1. Mean errors and error norms for Section 3.1, Fig. 2.

Let {ψs} be the sequence of iterates of the BGRW L-scheme and ψBGRW =
lim
s→∞

ψs. By the triangle inequality ∥ψs−ψs−1∥ ≤ ∥ψs−ψFD∥+∥ψFD−ψs−1∥
we have lim

s→∞
∥ψs − ψs−1∥ ≤ 2∥ψBGRW − ψFD∥. Hence, the order ∼ 20N −1

of convergence of the BGRW solution to the FD solution is an upper limit for
corrections. Fig. 3 and Fig. 4 show the decrease of the correction norms for
N = 1010 and N = 1018, respectively. In the first case the corrections reach
a plateau of about 10−9, consistent with the upper bound 20N −1. In the
second case, the corrections show a plateau at the machine precision, which,
as indicated by Fig. 2, is the same as the plateau for the FD scheme.

Remark 7. The convergence behavior illustrated above can be explained
with the reduced fluctuations Algorithm 1. The sum of fractional parts rest =∑I
i=1{δi} can be used to evaluate the truncation errors of the algorithm. At

a given lattice site i, {δi} ∈ [0, 1) with a mean {δi} ≈ 0.5. The sum over the
lattice sites is thus rest ≈ 0.5I. The total numbers of particles on the lattice
is ntot =

∑I
i=1 n

s
i,k =

∑I
i=1 |ψsi,k|N = |ψ|N I. With these, the truncation

error can be evaluated as rest/ntot ≈ 0.5/|ψ|N −1, which is independent of the
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discretization3 (i.e., the number of lattice sites I). For verification purposes,
we remove all the floor functions in the Code 1, add the truncation sequence
rest=nn+rest; nn=floor(rest); rest=rest-nn;
at the end, and perform the computation with N = 1010. The relative error
of the solution ψT/∆t obtained in this way with respect to the solution of the
original Code 1, evaluated with the l2 norm, is of about 4.25 · 10−4. At the
middle of the time interval [0, T ] we evaluate |ψ| = 6.45 · 10−2 and obtain the
truncation error 0.5/|ψ|N −1 = 7.75 · 10−10, which corresponds to the average
value of the plateau shown by the corrections ∥ψs −ψs−1∥ in this case. Since
the original Code 1 contains three truncation sequences, we take rest/I ≈ 1.5
and obtain the truncation error 1.5/|ψ|N −1 = 2.30 ·10−9. This error is almost
the same as the plateau of the correction from Fig. 3. The plateau arises when
the correction norms reach the threshold given by the truncation errors and
cannot be further decreased by the iterative method. We note that this threshold
is also close to the relative errors of the BGRW solution with respect to the FD
solution at the final time T shown in Fig. 2 and Table 1. Thus, the accuracy
of the BGRW L-scheme is limited by the truncation errors produced by the
reduced fluctuations Algorithm 1.

The plateau of the order 10N −1 also arises if one adds to the three terms
depending on the parameter r in the FD Code 2 a noisy term randn/N , where
randn is a random variable drawn from the standard normal distribution. The
results (not shown here) are similar to those from Fig. 3 and Fig. 6. One
expects therefore that the accuracy of the random walk methods based on
random number generators is limited as well by truncation errors.

Fig. 5 and Fig. 6 show that the length of the sequence of corrections for
N = 1010 not affected by oscillations is too short to allow the estimation of
the order of convergence p with (29) and the evaluation of the quotient Q1
according to (28). For N = 1018, the sequence not affected by oscillations
is three times longer and the behavior of the estimate p(s) ≈ 1 and of the
quotient Q1(s) < 1 suggest the C ′-linear convergence (see Fig. 7 and Fig. 8).
This is, according to Remark 5, a numerical argument for the convergence of
the iterates to the unique solution which solves the nonlinear scheme (3).

In the absence of an exact solution for this example, we investigate the
existence of the “error-based” order C on sequences of errors with respect
to the FD solution taken as a reference. We compute BGRW solutions for
N = 1016 and form the sequence {∥ψs − ψFD∥}. The errors presented in
Fig. 9 maintain a linear trend in semi-logarithmic representation over 130
iterations s and allow the evaluation, according to (28), of a subunit quotient
Q1 in the same interval, shown in Fig. 10. We can therefore assume that
the solution of the BGRW scheme converges with the linear C-order to the
reference FD solution.

3This can be easily verified by doubling the number of lattice sites and taking the appro-
priate parameter L = 100 in the Matlab code.
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Fig. 1. Section 3.1: comparison of the
BGRW (5) and FD (4) solutions.
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Fig. 2. Section 3.1: errors of the BGRW so-
lutions.
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Fig. 3. Section 3.1: corrections (N = 1010).
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Fig. 4. Section 3.1: corrections (N = 1018).
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Fig. 5. Section 3.1: estimated order of con-
vergence (N = 1010).
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Fig. 6. Section 3.1: estimation of the quo-
tient Q1 (N = 1010).

3.2. Second example: fully coupled flow and surfactant transport.
The next example is the fully coupled problem of variably saturated flow,
with transition from saturated to unsaturated regime, and surfactant transport
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Fig. 7. Section 3.1: estimated order of con-
vergence (N = 1018).

0 50 100 150 200

0.6

0.7

0.8

0.9

1

1.1

1.2

t=2000
t=4000
t=6000
t=8000
t=10000

Fig. 8. Section 3.1: estimation of the quo-
tient Q1 (N = 1018).

0 50 100 150 200
10-14

10-10

10-6

10-2

t=2000
t=4000
t=6000
t=8000
t=10000

Fig. 9. Section 3.1: errors of the BGRW so-
lution (N = 1016).
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Fig. 10. Section 3.1: error-based quotient
Q1 of the BGRW solution.

governed by Eqs. (1) and (2) with the exact manufactured solutions

ψm(z, t) = −t z (z − 1) + x
4 , cm(z, t) = t z (z − 1) + 1,

and the water contend parameterized by

θ(ψ, c) =
{ 1

1−ψ−c/10 , ψ < 0
0.3, ψ ≥ 0.

The hydraulic conductivity is constant K(θ(ψ, c)) = 1 and the diffusion coef-
ficient in Eq. (2) is set to D = 1 (in arbitrary units). The manufactured solu-
tions verify Eqs. (1) ans (2) with supplementary source terms [10, 1, 16, 17].
These source terms, generated by inserting the manufactured solutions into
the equations, are calculated analytically with the Matlab symbolic toolbox.

We first solve the problem in the domain [0, 1], on a regular lattice with
δz = 2.5 ·10−2, with the coupled FD scheme (4) and BGRW transport scheme
(13). The time step ∆t = 1.56 · 10−3 is determined according to (26) with
Lψ = Lc = 100, α = 1, and β = 0.5. The corrections are evaluated in the l2
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norm with the absolute tolerance εa = 10−18 and the convergence is assessed
with the condition max(∥ψs −ψs−1∥, ∥cs − cs−1∥) ≤ εa.

The results obtained for N = 1010 particles used in the transport scheme
presented in Figs. 11 and 12 show that the truncation errors generated by the
transport Code 3 yield a plateau ∼ 10−10 of the concentration corrections and
also, due to the coupling, a plateau higher than the machine precision of about
10−13 of the pressure corrections. The oscillations arising when the corrections
reach the plateau do not allow reliable estimations of the order of convergence
and of the trend of the quotient Q1, for both pressure (Figs. 13 and 14) and
concentration (Figs. 15 and 16). Increasing the number of particles in the
transport scheme to N = 1024 lowers the plateau to the machine precision for
both pressure and concentration corrections (Figs. 17 and 18), renders more
reliable the estimates of the order of convergence p = 1 (Figs. 19 and 21), and
indicates limits Q1 < 1, consistent with the C ′ linear convergence (Figs. 20
and 22). According to Remark 5, this result is an indication of the convergence
to the solution of the nonlinear schemes (3) and (11).

Tests (not presented here) with a similar two dimensional problem [16, Sec.
5.2.1] also show the plateau ∼ 10−13 of the pressure corrections produced by
the coupling of flow and transport for N = 1010 particles in the transport code
and a plateau at the machine precision for N = 1024 particles.
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Fig. 11. Section 3.2: corrections of the pres-
sure solution (N = 1010).
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Fig. 12. Section 3.2: corrections of the con-
centration solution (N = 1010).

The convergence of the iterations does not yet ensure the convergence of the
numerical solution to the manufactured solution. This can be verified by a grid
convergence test performed by successively halving the space step ∆z. To do
that, we fix the number of particles in the transport code to N = 1024, which,
as seen above, ensures that the truncation errors do not affect the convergence
of the corrections, and perform iterations of the linearization schemes (4) and
(13) until the corrections fall below the threshold εa = 10−18. The solutions for
successive ∆z are further used to evaluate the EOC by the rate of logarithmic
decay of the deviations from the manufactured solutions measured with the
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Fig. 13. Section 3.2: estimation of the con-
vergence order p, pressure (N = 1010).
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Fig. 14. Section 3.2: estimation of the quo-
tient Q1, pressure (N = 1010).
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Fig. 15. Section 3.2: estimation of the conver-
gence order p, concentration (N = 1010).
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Fig. 16. Section 3.2: estimation of the quotient
Q1, concentration (N = 1010).
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Fig. 17. Section 3.2: corrections of the pres-
sure solution (N = 1024).
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Fig. 18. Section 3.2: corrections of the con-
centration solution (N = 1024).

discrete L2 norm
√

∆z∥ · ∥l2 . The results presented in Table 2 indicate the
second order convergence of the solution {ψ, q, c}.



20 Iterative schemes for coupled flow and transport in porous media 177

0 500 1000 1500 2000 2500 3000

1

1.0005

1.001

1.0015 t=0.33333
t=0.66667
t=1

Fig. 19. Section 3.2: estimation of the con-
vergence order p, pressure (N = 1024).
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Fig. 20. Section 3.2: estimation of the quo-
tient Q1, pressure (N = 1024).
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Fig. 21. Section 3.2: estimation of the conver-
gence order p, concentration (N = 1024).
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Fig. 22. Section 3.2: estimation of the quotient
Q1, concentration (N = 1024).

∆z ∥ψ − ψm∥ EOC ∥q −mm∥ EOC ∥c− cm∥ EOC
1.00e-1 4.59e-02 – 1.23e-01 – 3.43e-02 –
5.00e-1 1.14e-02 2.01 3.34e-02 1.89 1.02e-02 1.75
2.50e-2 2.85e-03 2.00 8.68e-03 1.94 2.76e-03 1.88
1.25e-2 7.11e-04 2.00 2.21e-03 1.98 7.21e-04 1.94

Table 2. Orders of convergence of the numerical solution to Section 3.2.

The knowledge of the exact solution allows us to compute error-based orders
of convergence as well. Using a finer discretization, ∆z = 1.25 · 10−2, and a
larger tolerance εa = 10−3 we form sequences of discrete L2 norms of errors
and corrections for pressure (Figs. 23 and 24) and concentration (Figs. 25
and 26). We note that as the convergence criterion for errors is fulfilled,
the corrections are four to five orders of convergence smaller. Estimations
(not shown here) of the order of convergence p with (29) were found to be
consistent with the definition of the Q linear convergence, for both errors and
the corresponding corrections. The quotient Q1 computed with (28) from the
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sequences of successive errors approaches the unity, indicating the C sublinear
convergence of the linearization schemes for both flow and transport (Figs. 27
and 29). We have thus an illustration of the observation made in Remark 6
that C-linear convergence cannot be obtained in numerical simulations. For
the corresponding corrections, Q1 < 1 indicates the C ′-linear convergence
(Figs. 28 and 30), which, according to Remark 5, indicates the convergence
of the iterative schemes to the solutions of the coupled nonlinear schemes (3)
and (11).
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Fig. 23. Section 3.2: errors of the pressure
solution.
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Fig. 24. Section 3.2: corrections of the pres-
sure solution.
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Fig. 25. Section 3.2: errors of the concen-
tration solution.
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Fig. 26. Section 3.2: corrections of the con-
centration solution.

3.3. Third example: One-way coupled flow and transport problem
with van Genuchten-Mualem parameterization. In the following, we
consider the one-way coupled system (1)-(2), i.e., θ independent of c, with an
experimentally based parameterization model. The relationships defining the
water content θ(ψ) and the hydraulic conductivity K(θ(ψ)) are given by the
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Fig. 27. Section 3.2: estimation of the quo-
tient Q1, pressure errors.
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Fig. 28. Section 3.2: estimation of the quo-
tient Q1, pressure corrections.
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Fig. 29. Section 3.2: estimation of the quo-
tient Q1, concentration errors.
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Fig. 30. Section 3.2: estimation of the quo-
tient Q1, concentration corrections.

van Genuchten-Mualem model

(35) Θ(ψ) =
{

(1 + (−αψ)n)−m , ψ < 0
1, ψ ≥ 0,

(36) K(Θ(ψ)) =

KsatΘ(ψ)
1
2
[
1 −

(
1 − Θ(ψ)

1
m

)m]2
, ψ < 0

Ksat, ψ ≥ 0,

where Θ = (θ − θres)/(θsat − θres) is the normalized water content defined
in the same way as for the exponential model (33)-(34), α, n, m = 1 − 1/n
are model parameters depending on the soil type, and Ksat is the constant
hydraulic conductivity in the saturated regime. In this example, we consider
the parameters of a silt loam used in previously published studies [7, 16, 17],
θsat = 0.396, θres = 0.131, α = 0.423, n = 2.06, Ksat = 4.96 · 10−2.

We chose the manufactured solutions

ψm(z, t) = −t z (z − 1) − x
4 + x

2 , cm(z, t) = t z (z − 1) + 1,
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which illustrate again the degeneracy of Richards’ equation, with transitions
from saturated to unsaturated flow regime. The diffusion coefficient in the
transport equation (2) is set to D = 0.01. The source terms generated by the
manufactured solutions are calculated as in Section 3.2 above with the Matlab
symbolic toolbox.

Since the flow is now independent of transport it is not influenced the trun-
cation produced by the Code 3. Therefore, we focus here on the error-based
orders of convergence of the linearization schemes. The coupled problems are
solved in the domain [0, 1], with ∆z = 1.25 · 10−2 and ∆t = 3.91 · 10−3. The
convergence is assessed with discrete L2 norms of pressure and concentration
errors with respect to the manufactured solutions for the tolerance εa = 10−3.
Preliminary tests with increasing numbers of particles show that the transport
scheme (13) fails to converge if N < 108. To completely eliminate the effect
to the truncation errors, the computations are carried out with N = 1018

particles.
As in the previous example, we found that the correction norms reach values

that are systematically smaller by several orders of magnitude than the error
norms, for both pressure and concentration and the estimates obtained with
(29) indicate the Q order of convergence p = 1. The quotient Q1 computed
with (28) approaches the unity for the errors of both the pressure and the
concentration (Figs. 31 and 33) indicating the sublinear convergence. For
the corresponding corrections (Figs. 32 and 34) Q1 < 1, hence the C ′ linear
convergence of both iterative schemes may be assumed. These results illustrate
again the observations made in Remarks 5 and 6.
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Fig. 31. Section 3.3: estimation of the quo-
tient Q1, pressure errors.
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Fig. 32. Section 3.3: estimation of the quo-
tient Q1, pressure corrections.

The grid convergence test, conducted in the same way as in Section 3.2, pre-
sented in Table 3 indicates the quadratic convergence of the solution {ψ, q, c}
towards the exact manufactured solution.
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Fig. 33. Section 3.3: estimation of the quo-
tient Q1, concentration errors.
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Fig. 34. Section 3.3: estimation of the quo-
tient Q1, concentration corrections.

∆z ∥ψ − ψm∥ EOC ∥q −mm∥ EOC ∥c− cm∥ EOC
1.00e-1 5.85e-02 – 2.28e-03 – 1.23e-02 –
5.00e-1 1.42e-02 2.05 5.69e-04 2.00 3.54e-03 1.80
2.50e-2 3.27e-03 2.11 1.48e-04 1.94 9.19e-04 1.95
1.25e-2 8.09e-04 2.02 4.50e-05 1.72 2.38e-04 1.95

Table 3. Orders of convergence of the numerical solution to Section 3.3.

4. CONCLUSIONS

In this study, we demonstrated through numerical examples the convergence
of the explicit L-schemes for nonlinear and degenerate problems of coupled flow
and transport processes in porous media. The convergence issue is two-fold.
First it is the convergence of the iterative method which solves the nonlinearity
of the problem and provides a solution of the nonlinear numerical scheme,
for instance the L-scheme for Richards’ equation (4) which approximates the
solution of the nonlinear scheme (3). The second aspect is the convergence
of the numerical solution to the exact solution of the problem, provided that
there exists a unique solution.

The convergence of the iterative schemes has been investigated through es-
timations of computational and error-based orders of convergence. The three
examples presented in Section 3 provide numerical arguments for the C ′-linear
convergence. According to Remark 5, the C ′-linear convergence indicates the
uniqueness of the iterative solutions and their convergence to the solutions of
the nonlinear schemes. The sequences of errors with respect to exact manu-
factured solutions of the coupled problem presented in Section 3.2 and Sec-
tion 3.3 are only sublinearly C convergent and illustrate the impossibility of
achieving the C-liner convergence via numerical simulations, pointed out in
Remark 6. However, with the FD solution as reference, we have shown that
the random walk BGRW L-scheme for Richards’ equation could be C-linear
convergent (Fig. 9). Using grid convergence tests and manufactured solutions
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we get strong numerical evidence of second order convergence (∼ (∆z)2) of
the L-schemes for coupled flow and transport problems (Table 2 and Table 3).

The random walk method for Richards’ equation is rather of academic inter-
est. It has been used, for instance, to prove the stability of the equivalent FD
scheme (Remark 1). Instead, the random walk approach is essential in model-
ing the transport because it facilitates a discrete description at the molecular
level of the chemical reactions [17] and provides a basis for the space-time
upscaling of the reactive transport in porous media [18]. An issue of concern
of this approach are the truncation errors produced by the Algorithm 1 which
preserves the indivisibility of the particles. We have shown that the trunca-
tion errors induce a plateau in the decrease of the successive corrections of
the linearization method (Remark 7). The plateau is inversely proportional to
the number of particles, ∼ N −1, and may hinder the evaluation of the conver-
gence orders if N is not large enough. In modeling reactive transport, where
the amount of molecules is of the order of Avogadro’s number, the plateau
reaches the machine precision. However, the truncation-limited precision be-
comes significant in applications for small systems of particles (e.g., [20]), for
instance in modeling the isotopic separation of heavy water where the number
of deuterium isotopes can be of the order N ∼ 106 or even smaller.
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program, The Norwegian Academy of Science and Letters, and Equinor.
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