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SOME SIMPLE FULL-RANGE INVERSE-NORMAL
APPROXIMATIONS

RAYMOND F. KOOPMAN∗

Abstract. Two approximations are given for numerically inverting the normal
distribution function. Both approximations minimize the maximum absolute
error in the approximate z over the full range of the distribution. The first ap-
proximation has two parameters and only modest accuracy but is very simple;
the second has four parameters and is substantially more accurate. Both ap-
proximations have smaller maximum absolute errors than others of equivalent
complexity. Alternate versions of the approximations are also given, with their
parameter values chosen to minimize the maximum relative error in the value of
q implied by the approximate z, rather than the maximum absolute error in the
approximate z. This “back-translation” approach to evaluating the quality of an
approximation seems not to have been used before. Considering the two sets of
approximations together draws attention to the issue of the relative seriousness
of errors at different points in the range, which is a subject-field question.
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1. INTRODUCTION

Let f and F̄ denote the standard normal density and complementary dis-
tribution functions, respectively, and let q = F̄ (z) denote the upper-tail area.
The intent is to approximate z numerically as a simple function of q with
errors that are small over the full range of the distribution. Almost all the
functions that have been proposed are accurate for either the central part of
the distribution or the tail, but not both; such approximations must be either
truncated, making no attempt to cover the full range, or concatenated with
another function to extend the range, possibly creating a discontinuity (see,
e.g., Odeh and Evans, 1974 [13]; Beasley and Springer, 1977 [3]; Derenzo,
1977 [4]; Page, 1977 [14]; Hamaker, 1978 [5]; Schmeiser, 1979; Bailey, 1981
[2]; Lin, 1989, 1990 [9], [10]; Vedder, 1993 [16]; Moro, 1995 [12]; Acklam,
2000 [1]; Voutier, 2010 [17]; Soranzo and Epure, 2014 [15], Lipoth et al. 2022
[11]). Only Hastings (1955, sheets 67 and 68) [6], Hill and Davis (1973) [7],
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and Winitzki (2008) [18] limit the errors over the full range and are relatively
simple.

2. TWO NEW APPROXIMATIONS

The method used here takes advantage of symmetry: it requires q ≤ 1/2 and
gives an estimate ẑ ≥ 0; if q > 1/2, then 1−q should be used in place of q, and
ẑ should be given a negative sign. Let t = –2 ln(2q). Then t = z2 + ln r, where
r = u2/u2

0, u = f(z)/F̄ (z) is the upper-tail mean, and u0 = f(0)/F̄ (0) =
(2/π)1/2. The general form of the approximation is ẑ = (t − ln R(t))1/2, where
R is a rational function of t that approximates r, subject to R(0) = R′(0) = 1.
The error is asymptotically zero: ẑ − z = ln(r/R)

(z2+ln(r/R))1/2+z
; as z → ∞, u2 →

z2 + 2, so t → u2 − 2 + ln R, r/R → a constant, and ẑ − z → 0. Parameter
values that optimize the fits were found by hand.
Approximation 1: R(t) = 1 + t + t2/(at + b), a = 1.991162, b = 10.05113,
|ẑ − z| < 1.19 × 10−3. Rounding a to 2 and b to 10 increases the maximum
absolute error to 1.25 × 10−3, but also reduces the absolute errors over a
substantial interval. The maximum absolute error of Winitzki’s approximation
(one parameter) is 2.76 × 10−2, after converting it from erf to normal and
optimizing the parameter. The maximum absolute error of Hastings’ sheet 67
(four parameters) is 2.84 × 10−3.

Unlike many approximations, there is little to be gained by optimizing ap-
proximation 1 over a domain that excludes very small values of q. On the
other hand, increasing the degree of R provides a substantial gain in accuracy
without restricting q.
Approximation 2: R(t) = 1 + t + t2(at + b)/(t2 + ct + d), a = .5583971,
b = 6.268748, c = 20.36848, d = 58.95569, |ẑ − z| < 8.43 × 10−5.

The maximum absolute error of Hastings’ sheet 68 (six parameters) is
4.47 × 10−4. The maximum absolute error of the Hill–Davis approximation
(six parameters) is 3.58 × 10−4 if |z| ≤ 304; otherwise the limit is 7.11 × 10−4.

Fig. 1 and Fig. 2 show the absolute error curves for approximations 1 and 2.
The dashed curve in Fig. 1 shows the result of rounding a and b to integers.
To display the asymptotic behavior of the approximations, the z axis in all the
figures extends far beyond the usual single-digit range and is plotted in arcsinh
units. The computations used Mathematica’s arbitrary precision capability.

Simple approximations are no longer as widely needed as they once were,
but where simplicity is still important, approximation 1 is so simple, especially
with the rounded parameters, that it should be used if its error bound is
acceptable; if it is not, then approximation 2 should be considered. No other
approximations of comparable simplicity have such small absolute errors over
the full range of z.

Aside from any immediate practical uses these approximations may have,
the fact that they are so simple, yet still manage to cover the full range with
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Fig. 1. Approximation 1: 103|ẑ − z| as a function of z. Optimized parameters give
the solid curve. Rounded parameters give the dashed curve.
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Fig. 2. Approximation 2: 105|ẑ − z| as a function of z.

smaller errors than many more complex approximations, suggests that further
study is warranted to see why they are so much better than the others and
how far that advantage extends. Investigating the general form of the ap-
proximation (t − ln R(t))1/2, with R not necessarily a rational function, would
accordingly be a logical next step, consonant with Howard’s (2022) [8] sugges-
tion “that finding approximations to the inverse error function is best treated
directly and as a separate problem, rather than approaching it via finding the
inverse of an approximation to the error function.”

3. A DIFFERENT APPROACH

It may not always be appropriate to minimize the absolute error in ẑ. In
general, the choice of a minimand ought to be based on the intended use of the
approximate value and the effects that errors in it may have. For instance, if
we were constructing a table of approximate critical values ẑ for given values
of q, and if each implied q̃ = F̄ (ẑ) would be taken as if it were the given q, then
it might be better to minimize the relative error1 in q̃ rather than the absolute

1We use ln(q̃/q) instead of the more common (q̃ − q)/q because relative error is a multi-
plicative concept, not an additive one, and thinking additively leads to the fallacy that x%
over and x% under are equally serious and cancel one another. Some may say that an even
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error in ẑ. This approach — comparing q̃ to the original q — is analogous to
evaluating a translation from one language to another by comparing its back-
translation to the original. It seems to have not been used before to evaluate
numeric approximations.
Alternate approximation 1: a = 1.80977, b = 11.627, | ln(q̃/q) < 5.84 × 10−3.
Alternate approximation 2: a = .5688184, b = 14.97873, c = 38.46443, d =
145.668, ln(q̃/q) < 6.30 × 10−4.
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Fig. 3. Alternate approximation 1: 103| ln(q̃/q)| as a function of z.
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Fig. 4. Alternate approximation 2: 104| ln(q̃/q)| as a function of z/

Fig. 3 and Fig. 4 show the relative error curves for the alternate approxima-
tions. The asymptotic relative error can be made zero by setting a to 2/(π–2)
in the first approximation or π/2–1 in the second, but that would increase the
maximum relative error even after adjusting the other parameters to equate
the magnitudes of the extrema.

The alternate approximations, too, may have some immediate practical
uses, but there is a larger point to be made here. Minimizing the relative
error in q̃ is equivalent to minimizing the weighted error in ẑ using weights
that increase with z, which is opposite to the weighting needed to minimize

better measure of relative error for probabilities would be the logit difference, the log of the
odds ratio, because it treats the domain symmetrically.
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the relative error in ẑ. The relative seriousness of errors in ẑ at different values
of z will depend on what z represents and the effects that errors in ẑ will have,
which is a subject-field question; there is unlikely to be one approximation
that is best for all purposes. This is true for approximations in general, not
just the inverse-normal.
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