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ADVECTION-DOMINATED TRANSPORT PROBLEMS
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Abstract. Numerical schemes for advection-dominated transport problems are
evaluated in a comparative study. Explicit finite difference methods are ana-
lyzed together with a global random walk algorithm in the frame of a splitting
procedure. A robust implementation of the method of lines is also proposed
as an alterative approach. The efficiency of the methods with respect to the
control of the numerical diffusion is investigated numerically in one-dimensional
problems with constant coefficients and two-dimensional problems with variable
coefficients consisting of realizations of space-random functions.
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1. INTRODUCTION

The numerical diffusion in transport problems is produced when the advec-
tion velocity is nonzero, increases with the decrease of the diffusion coefficient,
and is often associated with spurious oscillations of the solution [4]. Remedies
to these issues are provided by flux corrected transport and other diffusion-
antidiffusion methods [1, 5], upwind schemes [6, 2], or adaptive finite volume
approximations [7].

Numerical diffusion in advection-diffusion problems may be produced by the
finite order of the approximations and/or by numerically induced smoothing.
In such circumstances, a small amount of numerical diffusion may occur even
when the velocity vanishes [1, 8]. But above all, the numerical diffusion cannot
be avoided when stabilizing upwind schemes are used to prevent oscillations
of the numerical solution [8]. To illustrate this situation let us consider the
advection equation,

∂c
∂t + V ∂c

∂x = 0,

and the finite difference (FD) scheme with upwind space discretization,
ci,k+1−ci,k

∆t + V
ci,k−ci−1,k

∆x = 0,
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which provides solutions at x = i∆x and t = k∆t according to the recurrent
relation

ci,k+1 = (1 − Cr)ci,k + Cr ci−1,k,

where Cr = V ∆t/∆x is the Courant number.
Performing Taylor expansions of ci,k+1 and ci−1,k (in ∆t and ∆x, respec-

tively) one obtains [3]
∂c
∂t + V ∂c

∂x = 1
2V ∆x(1 − Cr) ∂2c

∂x2 + higher order terms.
The above relation shows that the FD scheme is unstable for Courant number
Cr > 1 [10, Sect. 2.2], the scheme is stable but diffusive for Cr < 1, and there
is no numerical diffusion for Cr = 1. A small (1 − Cr) > 0 ensures that the
scheme produces only a small amount of numerical diffusion.

Although, in general, discrete error norms used to measure differences from
reference solutions do not discriminate between different sources of errors (e.g.,
discretization, truncation, numerical diffusion) a quantification of the numer-
ical diffusion is sometimes obtained, for nonsteady transport problems, by
using the spatial moments of the solution [5, 8]. For constant velocity and
diffusion coefficients, it was found that the diffusion coefficient estimated from
the second central spatial moment of the concentration computed with dif-
ferent numerical schemes (linear and quadratic finite element methods with
and without upwind, different mixed-finite element implementations, and fi-
nite volume methods) is affected by errors of the order of the nominal diffusion
coefficient, which can hardly be reduced by refining the discretization for mesh
Péclet numbers ≥ 1 [8, Tables 1-8]. In case of diffusion in random velocity
fields simulations of transport in groundwater, the differences between the ef-
fective dispersion coefficients estimated by these methods and those obtained
by global random walk (GRW) simulations, free of numerical diffusion, can be
even larger [8, Figs. 5-10].

2. ONE-DIMENSIONAL ADVECTION-DIFFUSION PROCESS WITH CONSTANT

COEFFICIENTS

The advection-diffusion process used in the following to test one-dimensional
(1D) numerical schemes is governed by the parabolic equation with constant
coefficients
(1) ∂tc + V0∂xc = D0∂xxc,

with analytical solution given by the normalized Gaussian function
(2) c(x, t) = (4πD0t)−1/2 exp [−(x − x0 − V0t)/(4D0t)] .

The constant coefficients in Eq. (1) are chosen as V0 = 1 m/d and D0 = 0.01
m2/d. These coefficients are representative for a typical numerical setup for
transport in groundwater [8, 11]. (Hereafter, all spatial and temporal dimen-
sions are given in meters and days, respectively.) In this section, we compare
solutions obtained by several numerical schemes of the Cauchy problem for
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Eq. (1) in the domain (0, L) × [0, T ], L = 300, T = 200, for the initial con-
dition given by the analytical solution (2) evaluated at t = 1 for x0 = 1 and
normalized by its spatial integral over the interval (0, L). The length L of
the spatial interval was large enough to contain the support of the numeri-
cal solution at the final time T . The left/right boundary conditions are thus
c(0, t) = c(L, t) = 0.

Accuracy estimates are done by comparisons of the numerical solution cnum

with the analytical solution c, as well as by comparisons with the nominal
parameters V0 and D0 of the velocity V = M1/t and the diffusion coefficient
D = (M2 − M2

1 )/(2t) computed from the first two spatial moments of the nu-
merical solution, M1 and M2, respectively. The spatial moments are averages
weighted by the numerical solution normalized to unity, ci,k, i = 1, . . . , L/∆x,
k = 1, . . . , T/∆t, where ∆x and ∆t are discretization steps, computed by
relations of the form

(3) Mα(k∆t) =
L/∆x∑
i=1

(x − x0)αci,k, α = 1, 2.

2.1. Global random walk and equivalent finite difference schemes.
The 1D GRW algorithm approximates the solution of (1) by cnum ≈ nj,k,
where nj,k are numbers of particles at the sites of a regular lattices moving
according to the random walk rule [14]. Groups of n(j, k) particles lying at
the sites j of the 1D lattice are scattered at the time step k, and the particle
distribution is updated at k + 1, according to

n(j, k) = δnj+vj ,j,k + δnj+vj−d,j,k + δnj+vj+d,j,k,(4)

n(i, k + 1) = δni,i,k +
∑
j ̸=i

δni,j,k,(5)

where the amplitude of the diffusion jumps d, the space step ∆x, and the
time step ∆t are related by D = r(d∆x)2/(2∆t), 0 < r ≤ 1, which ensures
that the numerical solution is free of numerical diffusion [11, 12], and vj =
round(Vj∆t/∆x), |vj | ≥ 1 is the dimensionless velocity. Note that |vj | is an
integer Courant number (Cr). The ensemble averages of the quantities δn in
relations (4)-(5) are given by the random walk rules

(6) δnj+vj±d,j,k = 1
2r nj,k, δnj,j+vj ,k = (1 − r) nj,k.

Giving up particles indivisibility one obtains a deterministic FD scheme.
Summing up the contributions (5) to ni,k+1 coming from diffusive jumps (d)
and displacements due to velocity field (v), according to (4) (for v = d = 1),
respectively (1)d, (2)v, and (3)d shown in Fig. 1, one obtains the explicit FD
scheme

(7) ni,k+1 = (1 − r)ni−1,k + r
2(ni−2,k + ni,k).
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Fig. 1. Illustration of GRW-FD scheme (7).
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Fig. 2. Velocity and diffusion coefficient estimated from the fist two spatial moments
of the numerical solution ni,k obtained with the GRW-FD scheme (left) and the
relative errors with respect to the nominal values of V0 and D0 in Eq. (1) (right).

Fig. 2 shows that the velocity V and the diffusion coefficient D computed,
according to (3), from the spatial moments of the GRW-FD solution (7) pro-
vide highly accurate estimations of the constant coefficients V0 and D0 of the
advection-diffusion equation (1).
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The FD scheme (7) is equivalent to a splitting FD scheme with the following
advection (a) and diffusion (d) steps:

na
i,k+1/2 = ni−1,k,(8)

nd
i,k+1 = r

2na
i−1,k+1/2 + r

2na
i+1,k+1/2 + (1 − r)na

i,k+1/2.(9)

The advection scheme (8) is the discrete version of the exact solution of the
advection equation, c(x, t + ∆t) = c(x − V0∆t, t). The diffusion scheme (9) is
the stable explicit forward-time central-space FD scheme for the heat equation,

ni,k+1−ni,k

∆t = D 1
∆x

(
ni+1,k−ni,k

∆x − ni,k−ni−1,k

∆x

)
.

Since the dimensionless velocity has to be an integer greater than unity, the
GRW splitting-scheme (8)-(9) is defined for integer Courant numbers Cr ≥ 1.

One remarks that the GRW-advection scheme (8) is a particular case, for
Courant number Cr = 1, of the upwind (UPW) scheme

(10) ni,k+1 = ni,k − Cr(ni,k − ni−1,k),

and of the BOX scheme

(11) ni,k+1 = ni−1,k + [(1 − Cr)/(1 + Cr)](ni,k − ni−1,k+1).

While the UPW scheme is stable only if Cr ≤ 1, the BOX scheme is uncon-
ditionally stable [10]. However, since (11) is an implicit scheme, for an easier
implementation and to achieve faster computations, we use in the following a
linearized version consisting of replacing ni−1,k+1 by ni−1,k. As we will see in
Section 2.3, this linearized BOX scheme is no longer unconditionally stable.

The solution of these three schemes is obtained with the same Matlab code
by choosing the advection scheme (8) for GRW, (10) for UPW, (11) for BOX,
while using the same scheme (9) for the diffusion step.

2.2. Method of Lines. The Method of Lines (MOL) is an effective numer-
ical technique for solving partial differential equations (PDEs), particularly
useful in advection-dominated transport problems. This method discretizes
the spatial domain while preserving the time domain as continuous, thereby
transforming the PDE into a system of ordinary differential equations (ODEs).
These ODEs are subsequently solved using established ODE solvers, provid-
ing a robust framework for addressing the challenges inherent in advection-
dominated scenarios. For more details on the MOL, consult [9].

If we consider a discretization with N grid points with spacing ∆x: xi =
x0 + i∆x, i = 0, 1, 2 . . . , N then the spatial derivatives ∂xc and ∂xxc can be
approximated at each grid point with a FD scheme.

For improved accuracy, higher-order FD approximations can be derived us-
ing Taylor series expansions. The derivation is achieved by combining multiple
Taylor series expansions at different points such that the lower-order terms
cancel out, leaving higher-order terms as the dominant source of error.
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In the following, we use the central-space FD approximation

(12) ∂xc|x=xi
≈ ci+1−ci−1

2∆x ,

where ci denotes the value of c at the i-th grid point. Similarly, we consider
the central-space approximation of the second derivative,

(13) ∂xxc|x=xi
≈ ci+1−2ci+ci−1

∆x2 .

Substituting the FD approximations (12) and (13) into Eq.(1) transforms
it into a system of ODEs:

(14) ∂tci = −V0
ci+1−ci−1

2∆x + D0
ci+1−2ci+ci−1

∆x2 , 1 ≤ i ≤ N.

Since Eq. (14) constitutes N first-order initial-value ODEs, N initial condi-
tions are required, which are generated from the reference solution (2) at the
initial time t = 1.

In the system of ODE (14) we have N equations with N + 2 unknown
functions. The solution at x0 satisfies the Dirichlet boundary condition. Con-
sequently, c0 is already known and can be substituted into the system of
equations accordingly. At i = N the function cN+1 appears in the equation,
which is outside the considered grid. In order to be able to reduce the number
of unknowns to N we must assign a value to cN+1. Because this occurs at the
boundary point i = N , we can obtain an approximation by using (12) and the
right-boundary condition of the current numerical setup,

∂xc ≈ cN+1−cN−1
2∆x = 0,

which reduces to
cN+1 = cN−1.

In this study, we employed the explicit fourth-order Runge-Kutta method
to solve the resulting system of ODEs. We experimented with various Courant
numbers to determine the threshold for significant numerical errors. With a
spatial step size of ∆x = 0.1, satisfactory results were obtained up to Cr = 2.
However, when the spatial step size was decreased to ∆x = 0.05, the results
remained accurate up to a Courant number of 2.43.

2.3. Accuracy estimates. The accuracy of the numerical solutions presented
in Fig. 3 is evaluated by the quadratic norm,

(15) ec =

∆x

L/∆x∑
i=1

(ni,k − c(i∆x, k∆t))2

1/2

.

Similarly to (15), the accuracy of the estimated coefficients V and D is eval-
uated by quadratic norms on the time interval [0, T ] divided by the nominal
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coefficients V0 and D0. For instance, the relative error of the estimated diffu-
sion coefficient with respect to the coefficient D0,

(16) eD = 1
D0

∆t

T/∆t∑
k=1

(Dk∆t − D0)2

1/2

,

is an estimation, global in time, of the numerical diffusion (see also [5, 8]).
The accuracy estimates for the GRW-FD, UPW, BOX, and MOL schemes are
presented in Figs. 3 and 4. In Figs. 5 to 7 the numerical solutions of the four
schemes are compared to the exact Gaussian solution (2) at successive times
t ≤ T/20.

Estimations (16) of numerical diffusion corresponding to the splitting GRW-
FD scheme (8)-(9), UPW scheme (10), and BOX scheme (11) are presented in
Fig. 4, right panel. The computations were carried out for a fixed space step
∆x = 0.1. This corresponds to a local Péclet number Pe = V0∆x/D0 = 10,
that is, to an advection-dominated transport problem. The solution norms
(15) were evaluated at k∆t = T .

One remarks that in case Cr = 1, when the three schemes coincide, the
relative errors of the estimated coefficients from Fig. 4 are of the order 10−10

or smaller (see also Fig. 2), while the solution error-norm (15) from Fig. 3 is
of order 10−6. Thus, very small relative errors of the estimated coefficients
are not an appropriate indicator for the accuracy of the numerical solution.
Moreover, neither of these global estimates is sufficient to capture deformations
of the shape of the reference solution. For instance, the significant numerical
diffusion produced by the UPW scheme for Cr < 1, quantified by relative
errors much greater than one in Fig. 4, is also observable in flattening of
the numerical solution shown in Fig. 5. But, for the BOX scheme, even if
acceptable errors of the solutions of at most 10−2 and relative errors of the
coefficients smaller than 10−8 are obtained in all cases, the numerical solutions
shown in Fig. 6 deviate from the shape of the reference solution and are affected
by oscillations which grow with the departure from Cr = 1 and are mainly
significant for Cr > 1, leading to the instability of the scheme.

As seen in Fig. 4, the GRW-FD scheme is practically free of numerical
diffusion. Moreover, since the advection step (8) in the splitting procedure is
the FD approximation of exact solution of the advection equation, the GRW-
FD scheme reproduces almost perfectly the shape of the analytical solution,
within the range of the errors shown in Fig. 3.

A special attention deserves the performance of the MOL scheme. The
errors of the solution shown in Fig. 3 are of the order 10−4 up to Cr =
2, then they grow suddenly for Cr = 2.43 while the relative errors of the
coefficients from Fig. 4 remain extremely small for the whole range Cr ≤ 2.43.
At the same time, unlike the UPW and BOX FD schemes, MOL accurately
reproduces the shape of the solution for all Courant numbers less then Cr =
2.55, when the solution starts to oscillate (see Fig. 7). Therefore, MOL is
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Fig. 3. Quadratic-norm deviations from the theoretical Gaussian
with constant coefficients of numerical solutions obtained with box-,
upwind-, and GRW-scheme as function of Courant number.
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Fig. 4. Relative errors of the velocity (left panel) and diffusion coef-
ficient (right panel) estimated by box-, upwind-, and GRW-scheme
as function of Courant number.

much more robust than the UPW and BOX FD schemes and well suited to
provide accurate solutions to advection dominated problems for moderately
large Courant numbers.

3. TWO-DIMENSIONAL DIFFUSION WITH VARIABLE DRIFT COEFFICIENTS

In the following, we consider a 2D transport problem consisting of a diffusion
process in a spatially variable velocity field, governed by the equation

(17) ∂tc + U∂xc + V ∂yc = D(∂xxc + ∂yyc),

where the solution c(x, y, t) represents the associated concentration field, U
and V are drift coefficients, and D is a constant diffusion coefficient.

We choose D = 0.01 and drift coefficients given by the components of
a two-dimensional velocity field modeled by a fixed realization of a random
space function. The latter is a linear approximation of the Darcy velocity in
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Fig. 5. UPW scheme: comparison between numerical and reference
Gaussian solution for Cr = 0.2 (left) and Cr = 0.8 (right).
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Fig. 6. BOX scheme: comparison between numerical and reference
Gaussian solution for Cr = 0.2 (left) and Cr = 3 (right).
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Fig. 7. MOL scheme: comparison between numerical and reference
Gaussian solution for Cr = 0.2 (left) and Cr = 2.55 (right).

heterogeneous aquifers, generated by a randomization method with the Mat-
lab function given in [12, Appendix C.3.2.2]. The hydraulic conductivity is
described by a log-normal random field with Gaussian correlation, small vari-
ance σ2 = 0.1, and correlation length λ = 1. The mean velocity components
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are set to ⟨Vx⟩ = 1 and ⟨Vy⟩ = 0. The Péclet number associated to the charac-
teristic length λ takes a large value Pe = Uλ/D = 100, which indicates that
the transport is dominated by advection. The effective velocity components
and diffusion coefficients are computed, similarly to the 1D case, from the
first two spatial moments (3) by performing a supplementary average over an
ensemble of realizations of the velocity field according to

(18) Vx = ⟨M1x⟩/t, Dx = ⟨M2x − M2
1x⟩/(2t),

and similarly for Vy and Dy. For the parameters specified above, the effective
velocity components are constant and coincide with their ensemble averages
and the effective diffusion coefficients evolve asymptotically in time towards
Dx = D + Uσ2λ = 0.1 and Dy = D = 0.01 [13, Sect. 4.1].

Fig. 8 shows a numerical solution of Eq. (17) with the above parameters,
obtained by repeating the 1D GRW procedure (4)-(6) in both spatial direc-
tions. Estimations of the effective coefficients (18) for the same problem are
presented in Fig. 9.

Fig. 8. Distribution of N = 1024

particles at successive steps in a two-
dimensional GRW simulation.
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Fig. 9. Effective velocity components
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an ensemble of 1000 GRW solutions.

The numerical schemes evaluated in the following solve Eq. (17) in a spatial
domain (0, Lx) × (0, Ly) and a time interval (0, T ). For fixed T = 10, the
longitudinal and transverse lengths of the spatial domain, Lx = 20 and Ly =
12, are large enough to ensure that the support of the concentration field does
not reach the boundaries until the end of simulations. The initial condition is
an instantaneous Dirac pulse at x0 = Lx/10 and y0 = Ly/2 and the numerical
solutions are normalized to unity. For instance, in GRW simulations, the
initial condition consists of a pulse of N = 1024 particles released at (x0, y0)
and the normalized concentration is given by n(x, y)/N .
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3.1. Biased GRW algorithm. The biased-GRW algorithm (BGRW) accounts
for the advective terms in Eq. (17) by increasing the probability that a random
walker takes a jump in the flow direction and decreasing the jump probability
in the opposite direction.

The two-dimensional BGRW is defined by the relation
ni,j,k =δni,j|i,j,k

+ δni+1,j|i,j,k + δni−1,j|i,j,k

+ δni,j+1|i,j,k + δni,j−1|i,j,k,(19)
where ni,j,k is the number of particles at the site (x, y) = (i∆x, j∆y) at the
time t = k∆t and the δn are binomial random variables describing the number
of particles waiting at the initial lattice site or jumping to the first-neighbor
sites. To the drift and diffusion coefficients of the transport problem, U(x, y, t),
V (x, y, t), and D, one associates the dimensionless parameters,
(20) ui = U ∆t

∆x , vj = V ∆t
∆y , ri = D 2∆t

∆x2 , rj = D 2∆t
∆y2 .

Instead of the unbiased GRW rule (6), the average numbers of jumps in the
BGRW algorithm (19) are now given by

δni,j|i,j,k = (1 − ri − rj) ni,j,k,

δni±1,j|i,j,k = 1
2(ri ± ui)ni,j,k,

δni,j±1|i,j,k = 1
2(rj ± vj)ni,j,k.(21)

As follows from (21), the BGRW algorithm is subject to the following restric-
tions
(22) ri + rj ≤ 1, |vi| ≤ ri, |vj | ≤ rj .

By the last two inequalities in (22), the Courant numbers |Vx|∆t/∆x and
|Vy|∆t/∆y are smaller than one, which ensures that the BGRW algorithm is
free of overshooting errors. If, in addition, one imposes the conditions ri ≤ 0.5
and rj ≤ 0.5, the von Neumann’s criterion for stability is also satisfied, which
implies the lack of numerical diffusion and the convergence of order O(∆x2)
of the BGRW algorithm (19), interpreted as a FD scheme, is implied by the
Lax-Richtmyer Equivalence Theorem [10]. The BGRW solutions will be used
in the following as reference to evaluate the unbiased GRW algorithm.

3.2. Unbiased GRW scheme. Since the diffusion coefficient is constant, the
unbiased GRW solutions to the transport problem formulated in the beginning
of this section are obtained in two steps, first by performing the 1D GRW
procedure (4)-(6) in the x-direction, then by applying the same procedure to
the output of the first step in the y-direction [14, 11, 12].

Errors of GRW estimates of the effective coefficients for a single realization
of the random velocity field are presented in Fig. 10 and errors of the ensemble
averaged coefficients (18) are presented in Fig. 11. For a fixed realization of the
velocity field (Fig. 10) the relative errors of the unbiased GRW scheme range



12 Controlling numerical diffusion 155

0 2 4 6 8 10
t

0

0.02

0.04

0.06

0.08

0.1

0.12
|V

x
-V

0x
|

|V
y
-V

0y
|

0 2 4 6 8 10
t

0

0.05

0.1

0.15
|D

x
-D

0x
|/D

0x

|D
y
-D

0y
|/D

0y
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panel) estimated from an ensemble of 100 GRW solutions with respect to the corre-
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from a few percents to more than 10%. This is due to the overshooting pro-
duced when there are significant variations of the velocity over the advective
displacements ui and vj which encompass several grid points in the unbiased
GRW algorithm. However, the overshooting errors are smoothed out by the
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ensemble averaging and the results provided by the unbiased GRW scheme
become closer and closer to those of the BGRW scheme as the transport pro-
cess progresses in time (Fig. 11). This validates the unbiased GRW scheme,
which is faster, since not constraint by Cr ≤ 1, as an efficient tool for large
scale simulations of transport in random velocity fields.

4. CONCLUSIONS

The numerical diffusion in advection-dominated problems can be directly
estimated by comparing the diffusion coefficient derived from the spatial mo-
ments of the numerical solution to the nominal coefficient. However, since this
is a global estimate, it does not guarantee that the numerical scheme accu-
rately reproduces the shape of the exact solution of the transport problem.

In this study, we compared the performance in solving the one-dimensional
advection-diffusion equation with constant coefficients of two classical FD
schemes, UPW and BOX, an unbiased GRW scheme, and a MOL scheme.
For Courant number Cr = 1, the FD and the GRW schemes coincide. In
this case, they produce a negligible amount of numerical diffusion and do not
deform the shape of the exact solution. Instead, for Cr ̸= 1 the shape of the
solutions of the FD schemes may deviate significantly from that of the exact
solution even if the numerical diffusion is negligible.

The GRW scheme is by construction free of numerical diffusion. Addition-
ally, since it performs advective displacements according to the exact solution
of the advection equation, the unbiased GRW scheme preserves the shape of
the exact solution for any integer Cr ≥ 1. The MOL scheme is free of nu-
merical diffusion as well and reproduces the shape of the exact solution for all
Courant numbers Cr ≤ 2.43.

For the purpose of practical applications for two-dimensional simulations
of transport in groundwater, the unbiased GRW has been evaluated through
comparisons with the BGRW scheme, which simulates advection by using
biased jump probabilities. The BGRW scheme is highly accurate but much
slower than the unbiased scheme. The unbiased GRW is faster because it is
not not constraint by small Courant numbers, but, for the same reason, it
is less accurate due to the overshooting errors. However, the average over
an ensemble of realizations of the random velocity field, which model the
heterogeneity of the aquifer system, reduces the effect of the overshooting and
the unbiased GRW scheme is an efficient tool for assessing statistical inferences
on the transport process.
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[14] C. Vamoş, N. Suciu and H. Vereecken, Generalized random walk algorithm for
the numerical modeling of complex diffusion processes, J. Comput. Phys., 186 (2003),
pp. 527–544. https://doi.org/10.1016/S0021-9991(03)00073-1

Received by the editors: June 20, 2024; accepted: July 05, 2024; published online: July

11, 2024.

https://dx.doi.org/10.1016/j.advwatres.2011.10.001
https://dx.doi.org/10.1016/j.advwatres.2011.10.001
https://dx.doi.org/10.1016/j.advwatres.2011.10.001
https://dx.doi.org/10.1016/j.advwatres.2011.10.001
https://dx.doi.org/10.1016/j.advwatres.2011.10.001
https://dx.doi.org/10.1016/j.advwatres.2011.10.001
https://www.youtube.com/watch?v=Cjb4YtgeIn0&t=263s
https://www.youtube.com/watch?v=Cjb4YtgeIn0&t=263s
https://www.youtube.com/watch?v=Cjb4YtgeIn0&t=263s
https://www.youtube.com/watch?v=Cjb4YtgeIn0&t=263s
https://doi.org/10.1007/b97419
https://doi.org/10.1007/b97419
https://doi.org/10.1007/b97419
https://dx.doi.org/doi:10.1016/j.jcp.2008.12.011
https://dx.doi.org/doi:10.1016/j.jcp.2008.12.011
https://dx.doi.org/doi:10.1016/j.jcp.2008.12.011
https://dx.doi.org/doi:10.1016/j.jcp.2008.12.011
https://dx.doi.org/doi:10.1016/j.jcp.2008.12.011
https://dx.doi.org/10.1016/j.cam.2007.04.033
https://dx.doi.org/10.1016/j.cam.2007.04.033
https://dx.doi.org/10.1016/j.cam.2007.04.033
https://dx.doi.org/10.1016/j.cam.2007.04.033
https://dx.doi.org/10.1093/imanum/22.2.253
https://dx.doi.org/10.1093/imanum/22.2.253
https://dx.doi.org/10.1093/imanum/22.2.253
https://dx.doi.org/10.1093/imanum/22.2.253
https://dx.doi.org/10.1016/j.advwatres.2010.09.012
https://dx.doi.org/10.1016/j.advwatres.2010.09.012
https://dx.doi.org/10.1016/j.advwatres.2010.09.012
https://dx.doi.org/10.1016/j.advwatres.2010.09.012
https://dx.doi.org/10.1016/j.advwatres.2010.09.012
https://dx.doi.org/10.1016/j.advwatres.2010.09.012
https://doi.org/10.1017/CBO9780511576270
https://doi.org/10.1017/CBO9780511576270
https://doi.org/10.1017/CBO9780511576270
https://doi.org/10.1017/CBO9780511576270
https://doi.org/10.1017/CBO9780511576270
https://doi.org/10.1137/1.9780898717938
https://doi.org/10.1137/1.9780898717938
https://doi.org/10.1137/1.9780898717938
https://dx.doi.org/10.1016/j.advwatres.2014.04.002
https://dx.doi.org/10.1016/j.advwatres.2014.04.002
http://dx.doi.org/10.1016/j.advwatres.2014.04.002
https://dx.doi.org/10.1016/j.advwatres.2014.04.002
http://dx.doi.org/10.1016/j.advwatres.2014.04.002
https://doi.org/10.1007/978-3-030-15081-
https://doi.org/10.1007/978-3-030-15081-
https://doi.org/10.1007/978-3-030-15081-5
http://dx.doi.org/10.1016/j.advwatres.2016.02.016
http://dx.doi.org/10.1016/j.advwatres.2016.02.016
http://dx.doi.org/10.1016/j.advwatres.2016.02.016
https://dx.doi.org/10.1016/j.advwatres.2016.02.016
https://doi.org/10.1016/S0021-9991(03)00073-1
https://doi.org/10.1016/S0021-9991(03)00073-1
https://doi.org/10.1016/S0021-9991(03)00073-1
https://doi.org/10.1016/S0021-9991(03)00073-1

	1. Introduction
	2. One-dimensional advection-diffusion process with constant coefficients
	2.1. Global random walk and equivalent finite difference schemes
	2.2. Method of Lines
	2.3. Accuracy estimates

	3. Two-dimensional diffusion with variable drift coefficients
	3.1. Biased GRW algorithm
	3.2. Unbiased GRW scheme

	4. Conclusions
	References

