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A NUMERICAL STUDY OF AN INFEASIBLE INTERIOR-POINT
ALGORITHM FOR CONVEX QUADRATIC SEMI-DEFINITE

OPTIMIZATION

YASMINA BENDAAS∗ and MOHAMED ACHACHE∗

Abstract. The focus of this research is to apply primal-dual interior-point path-
following methods, specifically those derived from Newton’s method for solving
convex quadratic semidefinite optimization (CQSDO) problems. In this paper,
we present a numerical study of an infeasible primal-dual interior-point method
for tackling this class of optimization problems. Unlike the feasible interior-point
algorithms, the proposed algorithm can be start with any initial positive definite
matrix and does not require the strictly feasible initial points. Under certain
conditions, the Newton system is well defined and its Jacobian is nonsingular at
the solution. For computing an iteration throughout the algorithm, a Newton
direction and a step-size are determined. Here, our search direction is based
on Alizadeh-Haeberly-Overton (AHO) symmetrization. However, for the step
size along this direction two alternatives are suggested. Preliminary numerical
results demonstrate the efficiency of our algorithm.
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1. INTRODUCTION

Let Sn and Sn
+ denote the cones of n×n real symmetric and symmetric pos-

itive semi-definite matrices, respectively. The convex quadratic semidefinite
optimization (CQSDO) problem is defined as follows

(P) p⋆ = minX∈Sn f(X) s.t. Ai • X = bi, i = 1, . . . , m, X ⪰ 0,

and its dual

(D) d⋆ = maxy∈Rm,Z∈Sn g(y, Z) s.t.
m∑

i=1
yiAi + Z = C + Q(X), Z ⪰ 0,
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where
f(X) = 1

2X • Q(X) + C • X,

and
g(y, Z) = −1

2X • Q(X) + b⊤y,

b, y ∈ Rm, X, Z ∈ Sn
+, C, Ai ∈ Sn, i = 1, · · · , m, Q(X) is a given linear

transformation on Sn and the inequality M ⪰ 0 means that M ∈ Sn
+. Recall

that the notation A • B = tr(AB), A, B ∈ Sn denotes the trace inner product.
The CQSDO problem has wide applications such as the computation of

nearest correlation matrix problem (NCMP) also it arises in nearest Euclidean
distance matrix problems and other matrix least square problems (SDLS) (see
[17]). Many problems in metric embeddings, covariance estimations, eigenval-
ues and max-cut problems and molecular conformations can also be restated
as CQSDO. It also includes the semidefinite optimization (SDO) as a special
case when Q(X) = 0.

Over the last decades, many feasible primal-dual interior-point algorithms
(FIPA) for solving CQSDO have been proposed (see, e.g., [20, 22, 6, 9, 15]).
These algorithms are of Newton type methods and which enjoy certain prop-
erty such as the locally quadratic convergence and have polynomial complexity.
Further they are highly efficient in practice. It is well-known that FIPAs are
iterative methods and start with a strictly feasible starting point and follow
the central-path with keeping feasibility and centrality during the solution
process. However, experimental issue of these algorithms show that getting a
strictly feasible centered point is a hard task and even impossible. Therefore,
to overcome this drawback many remedies are suggested. Among them, infea-
sible interior-point (IFIPA) algorithms which require that the starting initial
point is any arbitrary symmetric positive definite matrix where feasibility is
reached as optimality is approached [24, 27].

The main aim of this work is to deal with the numerical implementation of
an IFIPAs for solving the CQSDO problems. Here, the determination of New-
ton search directions is based on the symmetrization of Alizadeh-Haeberly-
Overton (AHO) [8]. Further, efficient step-size are suggested to keep iterations
positive definite during Newton’s process. Our tested examples of CQSDO are
reformulated from some known optimization problems such as SDO, SDLS,
NCMP, the computation of the smallest eigenvalue of a symmetric positive
definite matrix and the Max-cut problem.

Throughout the paper, the following notations are used. Rn×n denotes the
set of all n×n real matrices. The trace inner-product and the Frobenius norm
in Sn are denoted, respectively, by: A • B = tr(AB) =

∑
i,j aijbij and ∥A∥F =

(tr(A2))
1
2 , A, B ∈ Sn. For a matrix A, λi(A) denote its eigenvalues with

λmin(A) (λmax(A)) as the smallest (largest) one, respectively, and det A stand
for its determinant. The square root matrix of any X ∈ Sn

+ is denoted by
X1/2 and the identity matrix is denoted by I, and e is the vector of all l’s.
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The paper is organized as follows. In Section 2, preliminaries, the concept of
the central-path and the AHO symmetrization search directions for CQSDO
are discussed. Further, the numerical computation of the step-size and the
search directions are stated. We described in Section 3 the generic primal-
dual IFIPA. In Section 4, some numerical results are reported. In Section 5,
a conclusion and future remarks end the paper.

2. A PRIMAL-DUAL IFIPA FOR CQSDO

2.1. Preliminaries. In this subsection, we first provide some mathematical
useful tools which are crucial for the development of our proposed algorithm.

Lemma 1 (Lemma 2.1 in [22]). If X, Z ∈ Sn
+. Then the following statements

1) X • Z = 0,
2) XZ = 0,
3) XZ+ZX

2 = 0
are equivalent.

Let A and B two matrices, their Kronecker product is denoted by A ⊗ B.
For a matrix A ∈ Rn×n, vec(A) is the n2 × 1 vector given by

vec(A) = (a11, a21, · · · , ann)⊤.

We make use of the functions svec and smat, formally defined as follows

Definition 2. For A ∈ Sn, svec ∈ R
1
2 n(n+1) is given by

svec(A) = (a11,
√

2a21, · · · ,
√

2an1, a22,
√

2a32, · · · ,
√

2an2, · · · , ann)⊤.

Further, the operator smat is the inverse operator of svec. That is,
smat(svec(A)) = A.

In all the paper, the feasible sets and the strict feasible sets of P and D are
the subsets of Sn and Rm × Sn, respectively,

FP = {X ∈ Sn
+ : Ai • X = bi, i = 1, . . . , m},

F0
P = {X ∈ FP : X ∈ Sn

++},

FD = {(y, Z) ∈ Rm × Sn
+ : C + Q(X) −

m∑
i=1

yiAi = Z},

F0
D = {(y, Z) ∈ FD : Z ∈ Sn

++}.

The optimal sets of P and D are the sets
SP

opt = {X ∈ Sn : X ⪰ 0, Ai • X = bi, i = 1, . . . , m, f(X) = p⋆},

and

SD
opt = {(y, Z) ∈ Rm × Sn

+ : C + Q(X) −
m∑

i=1
yiAi = Z, g(y, Z) = d⋆}.

It is assumed that the two problems satisfy the following conditions:
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- F0
P × F0

D is nonempty.
- The Ai, i = 1, . . . , m, are linearly independent.
- The linear transformation Q(X) is monotone and self-adjoint, i.e.,

X • Q(X) ≥ 0 and X • Q(Y ) = Q(X) • Y, ∀X, Y ∈ Sn.
The first assumption implies

- −∞ < p⋆ = d⋆ < ∞.
- SP

opt and SD
opt are two non empty bounded convex sets.

Meanwhile, the second assumption is only to ensure that the dual variables
Z and y are in one to one correspondence. By assumption three, P and D
are two convex optimization problems, therefore the set of primal and dual
optimal solutions consists of all solutions (X, y, Z) ∈ Sn

+ × Rm × Sn
+ of the

following Karush-Khun-Tucker optimality system:

(1)


Ai • X − bi = 0, ∀i = 1, . . . , m, X ⪰ 0,

C + Q(X) −
m∑

i=1
yiAi − Z = 0Sn , Z ⪰ 0,

X • Z = 0.

Therefore, by Lemma 1 finding an optimal solution for P and D is equivalent
to solving the system

(2)


Ai • X = bi, i = 1, . . . , m, X ⪰ 0,

C + Q(X) − Z −
m∑

i=1
yiAi = 0Sn , Z ≻ 0,

XZ+ZX
2 = 0.

2.2. The central-path of CQSDO. The basic idea behind primal-dual IPAs
is to replace the third equation in (2) by the parameterized equation

XZ+ZX
2 = σµI,

with µ > 0. Thus we consider the system

(3)


Ai • X − bi = 0, ∀i = 1, . . . , m, X ≻ 0,

C + Q(X) − Z −
m∑

i=1
yiAi = 0Sn , Z ≻ 0,

XZ+ZX
2 = σµI, µ > 0,

where σ ∈ (0, 1) is the centrality parameter. Under our assumptions, system
(3) has a unique solution (X(µ), y(µ), Z(µ)), for each µ > 0. The set

C = {(X(µ), y(µ), Z(µ)) : µ > 0}

of µ-centers is called the central-path of P and D. If µ tends to zero then
the limit of C exists and since the limit point satisfies the complementarity
condition, the limit yields an approximated optimal solution of P and D (e.g.,
[8, 10]).
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2.3. The Newton search directions for CQSDO. Next, we want to define
search directions (∆X, ∆y, ∆Z) that move in the direction of the central-path
C. Applying Newton’s method for (3), for a given µ > 0 and an infeasible point
(X ≻ 0, y, Z ≻ 0). Then the Newton direction (∆X, ∆y, ∆Z) at this point is
the unique symmetric solution of the linear system:

(4)


Ai • ∆X = RP , i = 1, . . . , m,
m∑

i=1
(∆y)iAi + ∆Z − Q(∆X) = RD,

∆XZ + X∆Z + ∆ZX + Z∆X = RC , X ≻ 0, Z ≻ 0,

with
RP = bi − Ai • X, i = 1, . . . , m,

RD = C − (Z − Q(X) +
m∑

i=1
yiAi),

RC = 2σµI − (XZ + ZX).
The search direction obtained via system (4) is named as the AHO-direction.

It is worth mentioning that beside the AHO direction, there are other impor-
tant search directions such as Kojima et al. [16], Helmberg et al. [12], Monteiro
and Nesterov and Todd (NT) [19].

We will refer to the assignment:
X+ = X + α∆X, y+ = y + α∆y, Z+ = Z + α∆Z

as a damped Newton step with α > 0 is the step-size along this direction.

2.4. Computation of AHO directions. We have seen that the direction of
AHO is given by system (4). So to compute this direction, we apply the
”svec” operator to the three equations of (4). For the first equation

Ai • ∆X = RP , i = 1, . . . , m,

svec⊤(Ai) svec(∆X) = RP , i = 1, . . . , m,

A svec(∆X) = RP ,

such that

A =


svec⊤(A1)

...
svec⊤(Am)

 ∈ Rm×n̄ and svec(∆X) ∈ Rn̄, with n̄ = n(n+1)
2 .

The second equation

svec(
m∑

i=1
(∆y)iAi + ∆Z) − svec

[
1
2 (Q(X)∆X + ∆XQ(X))

]
= RD,

m∑
i=1

svec(Ai)(∆y)i + svec(∆Z) − (Q(X) ⊗s I) svec(∆X), = RD,
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A⊤∆y + svec(∆Z) − Q(X)svec(∆X) = RD,

such that
A⊤ =

[
svec(A1), . . . , svec(Am)

]
∈ Rn̄×m.

The third equation becomes
(Z∆X + ∆XZ) + (X∆Z + ∆ZX) = RC ,

E svec(∆X) + F svec(∆Z) = RC ,

such that
E = (Z ⊗s I), F = (X ⊗s I), RC = svec(µσI − 1

2(XZ + ZX)),
where ⊗s denotes the symmetric Kronecker product.

Finally, we obtain the following system
A svec(∆X) = RP ,

A⊤∆y + svec(∆Z) − Q svec(∆X) = RD,
E svec(∆X) + F svec(∆Z) = RC ,

which can be written as the following matrix form:

(5)

 0 A 0
A⊤ −Q In̄

0 E F


 ∆y

svec(∆X)
svec(∆Z)

 =

 RP
RD
RC

 .

We note that the system (5) is a linear system whose blocked matrix is a
square matrix of order (m + 2n̄), by using any linear system solver we get

(svec(∆X), ∆y, svec(∆X)) .

Then, we introduce smat the reciprocal application of svec to this last result.

2.5. Computation of a step-size α. For computing the step size α > 0 in
each iteration such that

X + α∆X ≻ 0 and Z + α∆Z ≻ 0,

we need to determine the maximum step-size αmax so that if 0 < α ≤ αmax
then X + α∆X ≻ 0 and Z + α∆Z ≻ 0. Let αX and αZ be the maximum
possible step-size in the direction ∆X and ∆Z, respectively. The natural step
length for a Newton direction is α = 1, but a step length of 1 may cause us
to exceed the positive definite region to which we are constrained. Therefore,
we need to determine the maximum possible step length αmax such that if
0 < α < αmax, then Z + α∆Z ≻ 0. and X + α∆X ≻ 0. The maximum step
length in the direction ∆X can easily be seen as being the smallest positive
number αX such that

det(X + α∆X) = 0,

or αX = ∞ if no positive solutions exist. Similarly, the maximum step length
in the direction ∆Z is defined as the smallest positive number αZ such that

det(Z + α∆Z) = 0,
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or αZ = ∞ if no positive solutions exist. Our maximum possible step length
is then the minimum of these two numbers:

αmax = min(αX , αZ).

We can compute αX and αZ as the minimum positive eigenvalues of the
respective generalized eigenvalue problems

Xν = λ(−∆X)ν and Zν = λ(−∆Z)ν.

Since algorithms for solving generalized eigenvalue problems prefer to have
the matrix on the right-hand-side be positive definite [17], it is better compu-
tationally to find the maximum eigenvalues λmax and λ

′
max of the respective

problems
−∆Xν = λXν and − ∆Zν = λZν.

Thus

αX =
{

1
λmax

if λmax > 0
∞ otherwise,

and

αZ =


1

λ′
max

if λ
′
max > 0

∞ otherwise.

Once these two allowed maximum step-sizes are determined, then the step
size α is taken as follows

α = min(1, ρ min(αX , αZ)) : ρ ∈ (0, 1).

For specifying the barrier parameter µ > 0, it is easily seen from the last
equation in (3) that µ = X•Z

σn .

3. AN INFEASIBLE PATH-FOLLOWING ALGORITHM FOR CQSDO

We present an infeasible path-following interior-point algorithm for com-
puting an optimal solution of CQSDO that uses the primal-dual interior-point
framework proposed by many authors. In each iteration the algorithm starts
with guesses (matrices) X0, Z0 ≻ 0, y0 ∈ Rm not necessarily feasible but only
symmetric positive definite. We would like to update these matrices until
we are within our desired tolerance of satisfying equations. We will stop our
algorithm when the

max (∥RD∥F , ∥RP∥2 , nµ)

is small enough.
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Algorithm 1 The generic IFIPA for CQSDO.
Input:

An accuracy parameter ϵ > 0;
initial guesses (X0, Z0 ≻ 0, y0 ∈ Rm) and µ > 0;

begin
k := 0;
While max

(∥∥∥RD
k
∥∥∥

F
,
∥∥∥RP

k
∥∥∥

2
, nµk

)
> ϵ do

• Compute (∆Xk, ∆yk, ∆Zk) by solving system (5);
• Determine a step-size α > 0 s.t. Xk + α∆Xk ≻ 0 and Zk + α∆Zk ≻ 0;
• Update Xk+1 := Xk + α∆Xk, yk+1 := yk + α∆yk, Zk+1 := Zk + α∆Zk;
k := k + 1;
endWhile
end.

4. NUMERICAL RESULTS

In this section, we implemented Algorithm 1 in the software Matlab en-
vironment and run it on a personal computer. In the implementation, we
take ϵ ∈ [10−4, 10−6] as our tolerance and (X0 ≻ 0, y0, Z0 ≻ 0) stand for
the initial guessing point of the algorithm. In below tables of the obtained
numerical results, the number of iterations and the time obtained by the algo-
rithm are denoted by “Iter” and “CPU”, respectively. Our testing examples
are inspired from different well known optimization problems. For each ex-
ample, (X⋆, y⋆, Z⋆) denotes an approximated primal-dual optimal solution for
CQSDO problems.

Example 1. Consider the CQSDO problem whose primal-dual pair P and
D have the following data:

Q(X) = 0S4 , A1 =


0.9 0 0 −1.5
0 3 0.75 0
0 0.75 1.098 0

−1.5 0 0 −0.5

 ,

A2 =


1.414 1.386 0 0
1.386 1.732 −1 0

0 −1 2 0
0 0 0 −2

 , C =


1.7071 0.6931 −0.1 0
0.6931 1.366 −0.5 0.02
−0.1 −0.5 2 0

0 0.02 0 0


A3 = diag(1, 0.5, 1.333, −0.333), b =

[
7, 4, 2

]⊤
.

The initial point is defined as follows

X0 =


1 0 −0.1 0
0 0.5 0 0.02

−0.1 0 1 0
0 0.02 0 1

 , y0 =

 0
0.5
0

 , Z0 = I.

The obtained primal-dual optimal solution is
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X⋆ =


0.4419 −1.0091 0.3849 −0.2336

−1.0091 2.3044 −0.8790 0.5335
0.3849 −0.8790 0.3353 −0.2035

−0.2336 0.5335 −0.2035 0.1235

 , y⋆ =

0.2015
0.1656
0.1603

 ,

Z⋆ =


1.1314 0.4636 0.1000 0.3023
0.4636 0.3946 0.5144 0.0200
0.1000 0.5144 1.2338 0
0.3023 0.0200 0 0.4853

 .

Example 2 ([4]). The semidefinite least squares optimization, (SDLS) is a
convex optimization problem which is defined as follows:

minX f(X) = 1
2 ∥BX − N∥2

F

s.t.
Ai • X = bi, i = 1, . . . , m, X ⪰ 0,

where b ∈ Rm and N, B ∈ Sn. Because

1
2 ∥BX − N∥2

F = 1
2B2X • X − (NB • X + BN • X)/2 + 1

2N • N,

then, the SDLS can be restated as a CQSDO problem with

f(X) = C • X + 1
2X • Q(X) + 1

2N • N, Q(X) = B2X and C = −(NB + BN)/2.

For the size (m = 5, n = 7), the data of the SDLS is stated as follows:
A1 = diag(6.4, 1.03, 1.03, 8.21, 1.69, 0, 4.2), b =

[
−4, 4, 9, 2.16, 3

]⊤
,

A2 = diag(1.22, 3, 3.33, 0, 0, 0, 2, 0), A3 = diag(0, 0, 6.67, 4, 1, 0, 8, 0),

A4 =



0.66 4 5.6 0 0 0 5.9
4 0 0 0 −1.6 0 0

5.6 0 8.88 0 0 0 0
0 0 0 3.93 0 0 0
0 −1.6 0 0 0 0 0
0 0 0 0 0 3.03 0

5.9 0 0 0 0 0 9


,

A5 =



0.1 10.2 0 0 0 2.828 −1.4
10.2 2 6.7 0 −1.5 0 0

0 6.7 7.6 0 0 0 0
0 0 0 0 0 0 0
0 −1.5 0 0 0 0 0

2.828 0 0 0 0 7.6 0
−1.4 0 0 0 0 0 8


,
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N =



−1.376 −19.758 −2.711 −0.102 0 −5.42 −1.485
−19.758 −3.501 −11.287 −0.032 3.487 −0.0043 0
−2.711 −11.287 −27.252 −0.067 0 0.287 −0.175
−0.102 −0.0329 −0.067 −4.7048 0.015 0 0

0 3.4875 0 0.015 −0.5 0.0008 0
−5.4205 −0.0043 0.2877 0 0.0008 −16.0725 0
−1.485 0 −0.175 0 0 0 −23.678



B =



0.9947 −10.2 0.3705 0 0 2.3284 1.4
−10.2 −0.3335 −6.7 −0.0209 1.5 0.0008 0
0.3705 −6.7 −8.1762 0 0 0 0

0 −0.0209 0 −0.4452 0 0 0
0 1.5 0 0 0.5 0 0

−2.3284 −0.0008 0 0 0 −7.1 0
1.4 0 0 0 0 0 −6.945


.

The initial point is defined as follows

X0 =



1.4 0 −0.25 0 0 0 0
0 0.55 0 0.02 0 0.001 0

−0.25 0 1.7 0 0 0 0
0 0.02 0 1.7 0 0 0
0 0 0 0 1 0 0
0 0.001 0 0 0 1 0
0 0 0 0 0 0 1


, y0 =


0.

0.75
0

0.75
0

 ,

Z0 =



2.106 0 −0.017 0 0 0.5 0
0 1.1818 0 0.0016 0 0 0

−0.017 0 0.9 0 0 0 0
0 0.0016 0 1 0 0 0
0 0 0 0 1 0 0

0.5 0 0 0 0 1 0
0 0 0 0 0 0 1.9


.

The approximated primal-dual optimal solution is

X⋆ =



0.938 0.1464 −0.368 −0.2052 −0.0855 −0.0359 −0.002
0.1464 0.2592 0.041 −0.048 −0.1211 0.0926 0.072
−0.368 0.0419 1.494 0.044 −0.0857 −0.1702 −0.043
−0.2052 −0.0480 0.044 2.2875 0.2740 0.0616 −0.052
−0.0855 −0.1211 −0.085 0.274 0.1010 0.0668 0.002
−0.0359 0.0926 −0.170 0.0616 0.0668 0.7594 0.041
−0.0021 0.0729 −0.043 −0.0523 0.0018 0.0413 1.337
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Z⋆ =



0 −0.0007 0 0.0002 −0.001 0.0002 0
−0.0007 0.0983 0.0058 −0.0211 0.196 −0.026 −0.0054

0 0.0058 0.0004 −0.0013 0.011 −0.0015 −0.0003
0.0002 −0.0211 −0.0013 0.0045 −0.042 0.0056 0.0012
−0.001 0.196 0.0117 −0.0422 0.393 −0.052 −0.011
0.0002 −0.026 −0.0015 0.0056 −0.05 0.0069 0.0014

0 −0.0054 −0.0003 0.0012 −0.011 0.0014 0.0003


y⋆ =

[
0.0849, 0.7007, 0.1591, 1.0552, 0.0357

]⊤
.

Example 3. This example is reformulated from the following Nearest Cor-
relation Matrix Problem (NCMP):

(P)


minX f(X) = 1

2 ∥X − N∥2
F

s.t.
Ai • X = bi, i = 1, . . . , m, X ⪰ 0.

Here, f(X) = −N • X + 1
2X • Q(X) + 1

2N • N, Q(X) = X and C = −N.
For the size m = 4, n = 8, the data of NCMP is given by

A1 =



−1.2 0 0.3 0.22 0 0 0 1
0 2 0 5.3 0 0 0 0

0.3 0 0 0 1.87 0 0 0
0.22 5.3 0 0 0 0 0 0

0 0 1.87 0 −1 0 0 0
0 0 0 0 0 3.5 −4 0
0 0 0 0 0 −4 0 0
1 0 0 0 0 0 0 −3


,

A3 =



6 2.55 0 0 6.3 0 0 0
2.55 −5 0 0 0 7 0 0

0 0 1.1 0 0 0 0 0
0 0 0 4.4 0 0 6.03 0

6.3 0 0 0 0 0 0 0
0 7 0 0 0 2 0 0
0 0 0 6.03 0 0 −0.22 0
0 0 0 0 0 0 0 2


,

A4 =



0.1 10.2 0 0 0 2.828 −1.4 −3
10.2 2 6.7 0 −1.5 0 0 0

0 0 7.6 0 0 0 0 0
0 0 0 0 0 0 0 0
0 −1.5 0 0 0 0 0 0

1.7321 0 0 0 0 7.6 0 0
−1.4 0 0 0 0 0 1.05 0
−3 0 0 0 0 0 0 −3


,
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b =


−0.4

4
11

14.5

 , A2 =



0.66 4 5.6 0 0 0 9.5 0
4 0 0 0 −10.6 0 0 0

5.6 0 8.8 0 0 0 0 0
0 0 0 3.3 0 0 0 0
0 −10.6 0 0 0 0 0 0
0 0 0 0 0 3.03 0 0

9.5 0 0 0 0 0 −6.9 0
0 0 0 0 0 0 0 −4


,

N =



−0.772 −10.65 −4.201 0 0 −1.304 −6.075 2.25
−10.65 −2.768 0 0.0005 9.075 0.001 0 0
−4.201 0 −12.286 0 0 0 0 0

0 0.0005 0 −2.461 0 0 0 0
0 9.075 0 0 0 0 0 0

−1.304 0.001 0 0 0 −7.972 0 0
−6.075 0 0 0 0 0 4.446 0

2.25 0 0 0 0 0 0 5.25


.

The initial point is defined as follows:

X0 =



0.904 0 −0.0025 0 0 0 0 0
0 0.55 0 0.0019 0 0.001 0 0

−0.0025 0 1.007 0 0 0 0 0
0 0.0019 0 1.007 0 0 0 0
0 0 0 0 1 0 0 0
0 0.001 0 0 0 1 0 0
0 0 0 0 0 0 1.03 0
0 0 0 0 0 0 0 1


,

y0 =
[
0, 0.25, 0, 0.3, 0

]⊤
,

Z0 =



1.106 0 −0.0013 0 0 0.005 0 0
0 1.818 0 0.0014 0 0 0 0

−0.0013 0 0.993 0 0 0 0 0
0 0.0014 0 0.993 0 0 0 0
0 0 0 0 1 0 0 0

0.5 0 0 0 0 1 0 0
0 0 0 0 0 0 0.9708 0
0 0 0 0 0 0 0 1


.

An approximated optimal solution is:
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X⋆ =



0.4253 0.1903 −0.0251 −0.0633 0.1488 0.1709 −0.0891 −0.1536
0.1903 0.0932 −0.0044 −0.0419 0.056 0.1339 −0.0371 −0.0617

−0.0251 −0.0044 0.6 −0.0006 −0.0543 0.0008 −0.0001 −0.0014
−0.0633 −0.0419 −0.0006 0.2219 0.0107 −0.0016 0.1956 −0.0009
0.1488 0.056 −0.0543 0.0107 0.0741 −0.0006 −0.018 −0.0600
0.1709 0.1339 0.0008 −0.0016 −0.0006 0.5576 0.1037 −0.0169

−0.0891 −0.0371 −0.0001 0.1956 −0.018 0.1037 0.2044 0.0237
−0.1536 −0.0617 −0.0014 −0.0009 −0.0600 −0.0169 0.0237 0.0644



Z⋆ =



0.3486 −0.6608 0.0008 −0.0569 −0.1009 0.0466 0.0423 0.0997
−0.6608 1.4689 −0.0044 0.1134 0.1379 −0.1446 −0.0371 −0.0617
0.0008 −0.0044 0.0001 −0.0006 0.0007 0.0008 −0.0001 −0.0014

−0.0569 0.1134 −0.0006 0.0429 0.0107 −0.0016 −0.0434 −0.0009
−0.1009 0.1379 0.0007 0.0107 0.0447 −0.0006 −0.018 −0.06
0.0466 −0.1446 0.0008 −0.0016 −0.0006 0.0225 −0.0139 −0.0169
0.0423 −0.0371 −0.0001 −0.0434 −0.018 −0.0139 0.0559 0.0237
0.0997 −0.0617 −0.0014 −0.0009 −0.06 −0.0169 0.0237 0.1096


y⋆ =

[
−0.0294, 0.2472, 0.0396, 0.3746

]⊤
.

Example 4. This example of CQSDO is reformulated from the computation
of the smallest eigenvalue of a symmetric positive definite matrix denoted by
(EVP):

λmin(B) =
{

minx f(x) = x⊤Bx

s.t. ∥x∥2 = 1.

The EVP becomes a CQSDO as follows:

λmin(B) =


minX f(X) = B • X

s.t.
I • X = 1, X ⪰ 0,

since
x⊤Bx = tr(x⊤Bx) = tr(Bxx⊤) = tr(BX) = B • X,

and
∥x∥2

2 = x⊤x = tr(x⊤x) = tr(xx⊤) = tr(XI) = I • X

with X = xx⊤. For the size n = 8, we consider the following EVP where its
data is given by

B =



7.29 0 −1 0 4.301 0 0 −4 0
0 13.29 0 7.2 0 −2 0 0 2

−1 0 15.3869 0 0 0 0 3.3 0
0 7.2 0 5.69 0 0 0 0 0

4.301 0 0 0 4.4969 0 0 0 0
0 −2 0 0 0 13.25 0 0 −1
0 0 0 0 0 0 6.76 0 0

−4 0 3.3 0 0 0 0 10 0
0 2 0 0 0 −1 0 0 1


.
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The initial point is defined as follows: Z0 = 2I, y0 = 0.5, and

X0 =



9.21 1 −6.75 1 1 1 1 0 4.4
1 11.1125 1 1.4845 1 2.9 1 0 3

−6.75 1 10.14 1 1 1 1 0 0.5
1 1.4845 1 3.9261 1 1 1 0 3
1 1 1 1 2 1 1 0 3
1 2.9 1 1 1 2 1 0 3
1 1 1 1 1 1 5 0 3
0 0 0 0 0 0 0 1 0

4.4 3 0.5 3 3 3 3 0 10


.

An approximated optimal primal-dual solution is:

X⋆ =



0 0 0 0 0 0 0 0 0
0 0.1458 0 −0.1854 0 −0.0007 0 0 −0.3003
0 0 0 0 0 0 0 0 0
0 −0.1854 0 0.2357 0 0.0008 0 0 0.3818
0 0 0 0 0 0 0 0 0
0 −0.0007 0 0.0008 0 0 0 0 0.0013
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 −0.3003 0 0.3818 0 0.0013 0 0 0.6185



Z⋆ =



7.2634 0 −1 0 4.301 0 0 −4 0
0 13.2634 0 7.2 0 −2 0 0 2

−1 0 15.3603 0 0 0 0 3.3 0
0 7.2 0 5.6634 0 0 0 0 0

4.301 0 0 0 4.4703 0 0 0 0
0 −2 0 0 0 13.2234 0 0 −1
0 0 0 0 0 0 6.7334 0 0

−4 0 3.3 0 0 0 0 9.9734 0
0 2 0 0 0 −1 0 0 0.9734


y⋆ = 0.0266,

finally we get p⋆ = d⋆ = λmin(B) = 0.0266. With the help of Matlab, the exact
spectrum of B, denoted by Sp B is given by

Sp(B) = {0.0266, 0.693, 1.991, 6.76, 6.9907, 11.6838, 12.7608, 17.805, 18.4509}.

So it is clear that our algorithm gives the exact smallest eigenvalue of B.

Example 5 ([12]). This example is reformulated from the following Max-cut
problem (MCP):

(MCP)
{

maxx f(x) = 1
4x⊤Cx

s.t. xi ∈ {−1, 1}n,
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where its reformulation as a CQSDO is as follows:
max

X
f(X) = C • X

s.t. diag(X) = 1
4e,

X ⪰ 0,

with X = 1
4xx⊤, the matrix C is called the Laplacian matrix associated with

the graph. For the size n = m = 6, we consider the following MCP where

C =



0.5225 0.1 0.075 0.3325 0 0
0.1 0.5925 0 0.1 0.275 0

0.075 0 0.25 0.275 0 0
0.3325 0.1 0.275 0.975 0.3348 0.3250

0 0.275 0 0.3348 0.5152 0.2575
0 0 0 0.325 0.2575 0.25


.

The initial point is defined as follows

Z0 = 2I, y0 = 0.2e,

and

X0 =



0.5 0.725 0.125 0 0.275 0
0.725 1.715 0.575 0 0.5225 0
0.125 0.575 0.4225 0 0 0

0 0 0 0.25 0 0
0.275 0.5225 0 0 0.55257 0.25

0 0 0 0 0.25 0.5


.

An approximated optimal primal-dual solution is:

X⋆ = 1
4



1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1



Z⋆ =



0.5077 −0.1 −0.075 −0.3325 0 0
−0.1 0.4768 0 −0.1 −0.275 0

−0.075 0 0.3496 −0.275 0 0
−0.3325 −0.1 −0.275 1.3681 −0.3347 −0.325

0 −0.275 0 −0.3347 0.8671 −0.2575
0 0 0 −0.325 −0.2575 0.5806


,

y⋆ = [1.0302, 1.0693, 0.5996, 2.3431, 1.3823, 0.8305]⊤.

In Table 1, the number of iterations and the elapsed time for each problem
are summarized.
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Algorithm 1

(n, m) ↓ ITER CPU

Example 1 (4,3) 11 0.0528
Example 2 (7,5) 15 0.3887
Example 3 (8,4) 12 0.5901
Example 4 (9,1) 13 0.0506
Example 5 (6,6) 40 0.0279

Table 1. Number of iterations and CPU time for the previous examples.

4.1. Comparison study. In this subsection, in order to compare our obtained
numerical results, we suggest beside the first alternative described in subsec-
tion 2.5 where we denote it by Alternative 1 , a second alternative.

4.1.1. Alternative 2. The latter was suggested by Touil et al. [23] for solving
the SDO problems using a feasible starting point. Here we adapted it for our
IFIPA.

This alternative is described as follows, let

αX =



−1
λ̄X−δX

√
n−1 − ϵ if −1

λ̄X−δX

√
n−1 > 0 and minn

i=1 λi(∆X) < 0

ω if −1
λ̄X−δX

√
n−1 < 0 and minn

i=1 λi(∆X) < 0

1 if minn
i=1 λi(∆X) > 0,

such that

λ̄X = 1
n

n∑
i=1

(L−1
X ∆XL−⊤

X )ii,

δ2
X = 1

n

n∑
i=1

n∑
j=1

(L−1
X ∆XL−⊤

X )2
ii − λ̄2

X ,

λi(X), i = 1, . . . , n, are the eigenvalues of L−1
X ∆XL−⊤

X , ω is a small positive
real and X = LXL⊤

X is the Cholesky factorization.
We mention that the same formula αZ with respect to the dual variable

Z. The numerical results obtained through these enhancements are presented
in Table 2. For consistency, all experiments were conducted under the same
parameters, µ, ϵ, and ρ, to ensure a fair comparison.

4.2. Analysis. Results indicate that Alter 1 often demonstrates improved
convergence rates across multiple problem types, especially in cases involving
complex data matrices or stricter tolerance levels. While Alter 2 is com-
petitive, particularly in problems with simpler structure or fewer constraints,
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Alter 1 Alter 2
Example 1 (4, 3) Iter 11 23

CPU 0.0528 0.0877
Example 2 (7, 5) Iter 15 24

CPU 0.3887 0.6201
Example 3 (8, 4) Iter 12 21

CPU 0.5901 1.1124
Example 4 (9, 1) Iter 13 32

CPU 0.0506 0.1536
Example 5 (6, 6) Iter 40 67

CPU 0.0279 0.0651
Table 2. Number of iterations and CPU time for the ameliorated Algorithm.

where it shows fewer iterations yet longer CPU times. Overall, these find-
ings emphasize that Alter 1 (Algorithm 1) offers significant advantages for
CQSDO problems, balancing computational efficiency with robustness. These
comparatives confirm that this algorithm is effective and show that it could
be useful for a wide range of complex tasks in semidefinite programming.

5. CONCLUSION AND FUTURE WORK

In this paper, we implemented an infeasible primal-dual IPA for solving
CQSDO based on AHO search directions and on efficient step-sizes for com-
puting an approximated optimal solution of it. The advantage of this algo-
rithm is that it can be started with any initial arbitrary symmetric positive
definite matrix. The obtained numerical results on a set of problems which are
taken from different benchmarked examples like NCMP, SDLS, the Max-Cut
problem and eigenvalue problems are very encouraging. Finally, using other
symmetrization scheme for computing the search directions remains a good
topic of research in the future.
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