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FALKNER HYBRID BLOCK METHODS FOR SECOND-ORDER IVPS:
A NOVEL APPROACH TO ENHANCING ACCURACY AND

STABILITY PROPERTIES

ROBERT IYEKEORETIN OKUONGHAE∗ and JOSHUA KAIDI OZOBOKEME†

Abstract. Second-order initial value problems (IVPs) in ordinary differential
equations (ODEs) are ubiquitous in various fields, including physics, engineer-
ing, and economics. However, their numerical integration poses significant chal-
lenges, particularly when dealing with oscillatory or stiff problems. This article
introduces a novel Falkner hybrid block method for the numerical integration of
second-order IVPs in ODEs. The newly developed method is of order six with
a large interval of absolute stability and is implemented using a fixed step size
technique. The numerical experiments show the accuracy of our methods when
compared with Falkner linear multistep methods, block methods, and other hy-
brid codes proposed in the scientific literature. This innovative approach demon-
strates improved accuracy and stability in solving second-order IVPs, making it
a valuable tool for researchers and practitioners.
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Keywords. Falkner hybrid method, hybrid block method, second-order initial
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1. INTRODUCTION

Ordinary differential equations (ODEs) are prevalent in various scientific
disciplines, allowing for the modeling of temporal and spatial changes in a
wide range of scenarios. Practical applications of ODEs include predicting
the movement of electricity, analyzing the oscillatory motion of objects like
pendulums, and explaining principles of thermodynamics. In medicine, ODEs
are used to estimate disease progression visually. The general nth-order ODE
can be written as,
(1) y(n) = f(x, y, y′, ..., y(n−1))

Solving (1) often involves converting it into a system of first-order equations
and using the appropriate method to solve the system, (see, [8], [18], [19],
[22], and [25]). [9] noted that this process can be time-consuming, especially
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when developing a computer program. In addition to the main program,
separate programs for initial values and functions from the equation system are
typically required. This complexity may discourage newcomers from exploring
promising numerical methods due to a lack of knowledge and confidence in
crafting programs to validate their results.

The second-order IVPs in ODEs that we aim to approximate on a given
interval in this research stem from (1) when n = 2, resulting in the following
IVPs,

(2)


y′′(x) = f(x, y(x), y′(x)),
y(0) = y0, y′(0) = y′

0,

x ∈ [x0, xn].

where y ∈ RN and f : R × R × RN → RN are continuous vector-valued
functions. The theoretical solutions to (1.2) are usually highly oscillatory.
Second-order IVPs are fundamental in modeling various phenomena, such as
oscillations, vibrations, and electrical circuits. However, their numerical in-
tegration requires careful consideration of accuracy, stability, and efficiency.
The earlier proposed schemes for the direct solution of second-order ODEs (2)
in literature can be found in the articles of the authors: [1], [2], [3], [4], [5], [6],
[7], [9], [10], [11]-[13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24],
[25], [26], [28], [29], and [30]. In this article we formulate and derive a fam-
ily of Falkner hybrid block methods with off-step points, using interpolation
and collocation techniques. The proposed scheme modifies the Falkner block
method in [29].

The paper is organized as follows: In Section 2, we reviewed the Falkner
block method in [29]. Section 3 deals with the formulation and the derivation
of the Falkner hybrid block method with an off-step point of order k + 2. In
Section 4, we give the main properties of the proposed method. Section 5 is
devoted to the numerical experiments of the method. We compared the accu-
racy of our methods with other methods proposed in the literature. Finally,
Section 6 is dedicated to conclusion.

2. REVIEW OF THE FALKNER METHOD AND ITS BLOCK FORM

Falkner method (FM) was introduced by V. M Falkner in 1936. This scheme
was for the numerical solution of second-order ODEs. The general form of a
couple k-step Falkner method is,

(3)
{

yn+k = yn+k−1 + hy′
n+k−1 + h2 ∑k

j=0 βjfn+j ,

y′
n+k = y′

n+k−1 + h
∑k

j=0 β̄jfn+j .

where, yn+k = y(xn+k), and y′
n+k = y′(xn+k) are approximations to the so-

lutions and its derivative at xn = x0 + nh, and f(xn+j , yn+j) = y′′
n+j is the

function emanating from the second order ODEs. The h denotes the step size,
k represents the step number and βj is a constant parameter. The algorithm
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in (3) is: (i). explicit, if βk = 0 and (ii) implicit, if βk ̸= 0. A subclass of
the formula in (3) is the explicit Falkner method in [14] and the two implicit
Falkner schemes in [20].

The Falkner method is another form of hybrid method, it combines different
numerical methods, to solve second-order boundary value problems (see [17]
and [29]). The block form of the Falkner method in (3) is,

(4) AYn = hBY ′
n + h2CFn,

where A, B, and C are matrices of coefficients of dimension 2k by (k+1), and

(5) Yn =


yn
...

yn+k−1
yn+k

 , Y ′
n =


y′

n
...

y′
n+k−1
y′

n+k

 , Fn =


fn
...

fn+k−1
fn+k

 .

The theoretical solution to (5) is the vectors,

Ψn =
(
y(xn) y(xn+1) . . . y(xn+k)

)T
,

(6) Ψ′
n =

(
y′(xn) y′(xn+1) . . . y′(xn+k)

)T
,

Ψ′′
n = Fn =

(
fn fn+1 . . . fn+k

)T =
(
y′′(xn) y′′(xn+1) . . . y′′(xn+k)

)T
.

The associated local truncation error of the methods in (5) is,

(7) En[y(xn); h] = AΨn − hBΨ′
n − h2CΨ′′

n,

where A, B, C are matrices of coefficients of dimension 2k by (k+1). The block
method in (4) and the associated linear difference operator in (7) is said to be
of order p if after expanding (6) by Taylor series about xn and inserting the
resulting expressions into (7) we obtain

(8) ∥En[y(xn); h]∥ = C̄hp+2 + O(hp+3),
∥ · ∥ may be the maximum norm we adopted for convenience.

To determine whether a numerical formula will yield realistic results as
step size h becomes large, there is a need for more insight into the types
of stability properties the method processes with zero stability being one of
them. In most numerical schemes proposed for solving second-order ODEs,
the stability properties are generally investigated by considering the linear test
equation in [25],

(9) y′′(x) = −µ2y(x), µ ≥ 0.

Recall that the second-order ODEs in (2) contain the first derivative com-
ponent, but the [25] test equation, does not contain the first derivative compo-
nent y′(x), thus, a generalized test equation that includes the first derivative
component, y′(x), as in ODEs (2) is,

(10) y′′(x) = −µ2y(x) − 2µy′(x), µ ≥ 0,
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which has bounded solutions for µ ≥ 0 that tend to zero as x → ∞ and this
shall be the test equation for the stability analysis in this article. For further
reading, see [29].

Definition 1. Zero stability is concerned with the stability of the difference
system in the limit as h tends to 0. Thus as h → 0, the difference system in
Equation (2) becomes

A(0)Ym − A(1)Ym−1 = 0,

where A(0) = I, and I is an identity matrix of order k, and A(1) is a coefficient
matrix of order k.

Definition 2 ([18]). A block method (4) is zero-stable if the roots of the
first characteristic polynomial have modulus less than or equal to one and those
of modulus one do not have multiplicity greater than 2, i.e., the roots of

ρ(w) = det[Iw − A(0)] = 0,

satisfy |wj | ≤ 1 and for those roots with |wj | = 1, the multiplicity does not
exceed 2. Since ρ(w) = (w − 1)wk−1 the block method in (4) is zero-stable.

Definition 3. The block method in (4) is p-stable if its interval periodicity
is (0, ∞).

An example of the two-step Falkner method in [29] is,

(11)


yn+2 = yn+1 + hy′

n+1 + h2

24 (3fn+2 + 10fn+1 − fn),
y′

n+2 = y′
n+1 + h

12(5fn+2 + 8fn+1 − fn),
yn = yn+1 − hy′

n+1 + h2

24 (3fn + 10fn+1 − fn+2),
y′

n = y′
n+1 − h

24(5fn + 8fn+1 − 2fn+2).

The methods in (11) have order p = 3 respectively. The block form of the
schemes in (11) is,

(12)


0 −1 1
0 0 0
1 −1 0
0 0 0


 yn

yn+1
yn+2

 =


0 1 0
0 1 −1
1 −1 0

−1 1 0


 hy′

n

hy′
n+1

hy′
n+2



+h2


−1
24

5
12

1
8−1

12
2
3

5
121

8
5
12

−1
24−5

24
−2
3

1
12


 fn

fn+1
fn+2


Applying (12) to (10) after eradicating the first derivatives yields the sta-

bility polynomial,
π(w, z) =(−2 − 8w − 2w2)z4 + (9 − 9w2)z3 + (3 + 30w + w2)z2

+ (−36 + 36w2)z + (36 − 72w + 36w2)
(13)
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Plotting the roots of the stability polynomial in (13) via boundary locus
sense gives the interval of absolute stability of the scheme in (12) as (0,
1.73205).

3. THE FALKNER HYBRID BLOCK (FHB) METHODS

In this section, we introduce Falkner hybrid methods for the numerical
solution of ODEs in (2). The proposed method modifies the Falkner method
discussed in [29]. The general form of the proposed FHM is
(14a)

yn+ci = αk0(ci)yn+k−1 + αk1(ci)hy′
n+k−1 + h2

k∑
j=0

βkjfn+j(ci) + h2βvfn+v(ci),

(14b)

y′
n+ci

= ϕk0(ci)y′
n+k−1 + h

k∑
j=0

β̄kjfn+j(ci) + hβ̄vfn+v(ci), i = 0, 1, 2, ...r,

c = (c1, c2, ..., cr−1, cr)T , c ∈ [k − 1, k], cr−1 = v, ci = (x − xn)/h,

where k − 1 < v < k. The αk0(ci), αk1(ci), {βkj(ci)}k
j=0, βv(ci), ϕk0(ci),

{β̄kj}k
j=0(ci) and β̄v(ci) are the continuous coefficients of the method, c is

the abscissa vector, c = (c1, c2, ..., cr−1, cr)T , and h is the step size. The
output points are yn+ci and y′

n+ci
. Also, in (14), y′

n+ci
and y′

n+k−1 are the
first derivative component while {y′′(xn+j)}k

j=0 = {f(xn+j , yn+j , y′
n+j)}k

j=0
and y′′(xn+v) = f(xn+v, yn+v, y′

n+v) is the second derivative function. The
v in formula (14) is the hybrid point (i.e., off-step point). if ci = v in (14) a
new hybrid LMM is defined. The block form of the Falkner hybrid methods
in (14) is,
(15) AYn+c = hBY ′

n+c + h2CFn+c,

where c = (c0, c1, ..., cr−1, cr)T , is the abscissa vector, A, B, and C are the
coefficients matrices of dimension 2k+2 by (k+2), and the vectors,

(16) Yn+c =


yn+c0

...
yn+cr−1
yn+cr

 , Y ′
n+c =


y′

n+c0...
y′

n+cr−1
y′

n+cr

 , Fn+c =


fn+c0

...
fn+cr−1
fn+cr

 .

The theoretical solution to (15) is the vectors,

Ψn+c =
(
y(xn+c0) y(xn+c1) . . . y(xn+cr )

)T
,

(17) Ψ′
n+c =

(
y′(xn+c0) y′(xn+c1) . . . y′(xn+cr )

)T
,

Ψ′′
n+c = Fn+c =

(
fn+c0 fn+c1 . . . fn+cr

)T

=
(
y′′(xn+c0) y′′(xn+c1) . . . y′′(xn+cr )

)T
.
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The associated local truncation error of the methods in (15) is,
(18) En[y(xn); h] = AΨn+c − hBΨ′

n+c − h2CΨ′′
n+c.

The block hybrid multistep method in (15) and the associated linear differ-
ence operator in (18) are said to be of order p if after expanding (17) by Taylor
series about xn and inserting the resulting expressions into (18) we obtain
(19) ∥En[y(xn); h∥ = C̄hp+2 + O(hp+3),
where C̄ is the error constant of the method in (15) and ∥ · ∥ is the maximum
norm we adopted for convenience.

4. CONSTRUCTION OF THE FALKNER HYBRID METHOD

This subsection introduces the derivation of the Falkner hybrid method in
(14). To do this we use the following polynomial interpolant,

(20) y(x) =
N∑

j=0
ajxj ,

Differentiating (20) with respect to x yields

(21) y′(x) =
N∑

j=1
jajxj−1,

Again, differentiating (21) with respect to x gives,

(22) y′′(x) = f(x, y, y′) =
N∑

j=2
j(j − 1)ajxj−2,

Collocating (21) at x = xn+j , j = 0 (1) k, and x = xn+v, and interpolating
(22) at x = xn+k−1, results in the linear system of equations,
(23) X1Θ1 = Ω1

where

X1 =



1 xn+k−1 x2
n+k−1 x3

n+k−1 . . . xN
n+k−1

0 1 2xn+k−1 3x2
n+k−1 . . . NxN−1

n+k−1
0 0 2 6xn . . . N(N − 1)xN−2

n

. . . . . . . . . . . . . . .

0 0 2 6xn+k . . . N(N − 1)xN−2
n+k

0 0 2 6xn+v . . . N(N − 1)xN−2
n+v


;

Θ1 =



a0
a1
a2
...

aN−1
aN


; Ω1 =



yn+k−1
y′

n+k−1
fn
...

fn+k

fn+v


.
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We obtained the value of a′
js by the Gaussian elimination method. Substi-

tuting the resulting values of a′
js, (j = 0(1)N) with x = xn + cih, i = 0(1)r

(without loss of generality we set xn = 0 so that x = cih) into (19) yields the
continuous formulas in (14a).

Inserting the value of c = (c0, c1, ..., cr−1, cr)T into the continuous formulas
gives the discrete form of (14a). Similarly, to obtain the second method (14b),
collocate (22) at x = xn+j , j = 0(1)k, and x = xn+v and interpolate (21) at
x = xn+k−1 gives the linear system of equations

(24) X2Θ2 = Ω2

where

X2 =


0 1 2xn+k−1 3x2

n+k−1 . . . NxN−1
n+k−1

0 0 2 6xn . . . N(N − 1)xN−2
n

. . . . . . . . . . . . . . .

0 0 2 6xn+k . . . N(N − 1)xN−2
n+k

0 0 2 6xn+v . . . N(N − 1)xN−2
n+v

 ;

Θ2 =


a0
a1
...

aN−1
aN

 ; Ω2 =


y′

n+k−1
fn
...

fn+k

fn+v

 .

Following the above procedures we obtain the formula in (14b).

4.1. The Falkner hybrid block method of order p = k+2 for k = 4
steps. In the spirit of [27], and [29], we fix k =4 in (23) and N = 7 in (20),
(21), and (22). Following the process in Section 4 gives the continuous formulas
in (14) Inserting v = 11

3 and c = (0, 1, 2, 11
3 , 4)T into the resulting continuous

method in (14) gives the discrete form of (14). Casting the resulting discrete
schemes in block format yields the Falkner hybrid block methods in (15) for
step number k = 4, with the coefficient matrices as,

A =



−1 0 0 1 0 0
0 0 0 0 0 0
0 −1 0 1 0 0
0 0 0 0 0 0
0 0 −1 1 0 0
0 0 0 0 0 0
0 0 0 −1 1 0
0 0 0 0 0 0
0 0 0 −1 0 1
0 0 0 0 0 0


; B =



0 0 0 −3 0 0
−1 0 0 1 0 0
0 0 0 −1 0 0
0 −1 0 1 0 0
0 0 0 −1 0 0
0 0 0 2

3 0 0
0 0 0 −1 1 0
0 0 0 1 0 0
0 0 0 −1 0 1


;
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(25) C =



885
12320

12573
12320

25542
12320

20724
12320

−6561
12320

2277
123201098

3520
4983
3520

1980
3520

3828
3520

−2187
3520

858
35204

13860
825

13860
15576
13860

13772
13860

−3645
13860

1188
138601

90
−34
90

−114
90

−34
90 0 1

90247
110880

−2244
110880

17490
110880

49544
110880

−14580
110880

4983
11088014

2880
−131
2880

1428
2880

2044
2880

−729
2880

254
2880−3884

10103940
30833

10103940
−133320
10103940

1629452
10103940

919755
10103940

−197516
10103940−271

240570
2134

240570
−9042
240570

87934
240570

95256
240570

−15631
240570−79

110880
624

110880
−2706
110880

30844
110880

29889
110880

−3135
110880−26

31680
209

31680
−924
31680

10604
31680

19683
31680

2134
31680


.

and the vectors as,

Yn+c =



yn

yn+1
yn+2
yn+3
yn+ 11

3
yn+4


; Y ′

n+c =



hy′
n

hy′
n+1

hy′
n+2

hy′
n+3

hy′
n+ 11

3
hy′

n+4


; Fn+c =



fn

fn+1
fn+2
fn+3
fn+ 11

3
fn+4


;

The Falkner hybrid block method in (15) is of order p = 6 with error
constant,

C̄8 =
(

−17
4480 , 59

6720 , −1
1134 , −1

756 , −253
362880 , 1901

12400290 , 757
1653372 , 103

362880 , 19
60480

)T

We obtain four stability polynomials by applying the order p = 6 Falkner
hybrid block method in (15) to the generalized test equation (10) and elimi-
nating the derivatives using the Eliminate package in Mathematica. Due to
their size, these polynomials are omitted. The boundary locus shows that the
Falkner hybrid block method in (15) is stable. The stability intervals are (0,
10.34), (0, 10.34), (0, 10.33), (0, 10.34), see Fig. 1. It is obvious from Fig. 1
that the new method has a wider range of stability regions compared to the
existing methods, (see [6], [29], and [30]).

5. NUMERICAL EXPERIMENTS

Our interest herein is to determine the performance of the proposed scheme
via a fixed step-size approach. The newly proposed block method (15) under
consideration is implicit. Hence, the set of non-linear equations arising from
the method when applied to IVPs in ODEs (1) is resolved using the Newton-
Raphson iterative method,

(26) Y
[s+1]

n+c = Y
[s]

n+c − J−1
(
Y

[s]
n+c

)
F

(
Y

[s]
n+c

)
, s = 0, 1, 2, . . . , m,

where, c = (c0, c1, . . . , cr)T , cr−1 = v, cr = k, c ∈ (k − 1, k) and, the function,

F
(
Y

[s]
n+c

)
= AY

[s]
n+c − hBY ′

n+c − h2CF
[s]
n+c,
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Stability plot for p=6

Fig. 1. The stability region (the interior) of the method in (15) using
π1(w, z).

where, A, B, and C are the coefficients matrices of dimension 2k +2 by (k +2)
form our proposed method and the vectors are,

(27) Y
[s]

n+c =


y

[s]
n+c0...

y
[s]
n+cr−1

y
[s]
n+cr

 , Y ′
n+c =


y′

n+c0...
y′

n+cr−1
y′

n+cr

 , F
[s]
n+c =


f

[s]
n+c0...

f
[s]
n+cr−1

f
[s]
n+cr

 .

The J
(
Y

[s]
n+c

)
in (12) is the Jacobian matrix given by

J
(
Y

[s]
n+c

)
=

∂F

(
Y

[s]
n+c

)
∂

(
Y

[s]
n+c

) =
∂

(
f

[s]
n+c0

,f
[s]
n+c1

,...,f
[s]
n+cr

)
∂

(
y

[s]
n+c0

,y
[s]
n+c1

,...,y
[s]
n+cr

)

=



∂f
[s]
n+c0

∂y
[s]
n+c0

∂f
[s]
n+c0

∂y
[s]
n+c1

. . .
∂f

[s]
n+c0

∂y
[s]
n+cr

∂f
[s]
n+c1

∂y
[s]
n+c0

∂f
[s]
n+c1

∂y
[s]
n+c1

. . .
∂f

[s]
n+c1

∂y
[s]
n+cr

...
...

...
...

∂f
[s]
n+cr

∂y
[s]
n+c0

∂f
[s]
n+cr

∂y
[s]
n+c1

. . .
∂f

[s]
n+cr

∂y
[s]
n+cr


.
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The starting value, Y
[0]

n+c for the Newton method (26) is obtained from an
explicit Runge-Kutta Nystrom method. To demonstrate the application of our
proposed Falkner hybrid block methods using constant step size (fixed step
size) we solve the following second-order IVPs given in Example 4-Example 8.

Example 4. Consider the non-linear problem given by
y′′ = x(y′)2, y(0) = 1, y′(0) = 1

2 ,

whose exact solution is
y(x) = 1 + 1

2 ln
(

2+x
2−x

)
.

This problem was solved by [2], [3], [4], [5], [9], [10], [21], [24], and [29]. The
accuracy of the methods was measured using maximum absolute error, |y(xn)−
yn|, see Table 2.

x Error in (15) Error in [2] Error in [4] Error in [24] Error in [9]
p = 6 p = 7 p = 6 p = 7 p = 6

0.1 1.80811E-12 0.00000 6.74394E-12 5.85088E-13 0.26075E-9
0.2 6.97864E-12 0.00000 5.57279E-11 2.84883E-12 1.98167E-9
0.3 1.59983E-11 0.00000 1.96574E-10 6.32872E-12 6.50741E-9
0.4 2.97453E-11 0.00000 4.94476E-10 6.75639E-9 1.55924E-8
0.5 4.96409E-11 0.00000 1.04362E-9 1.38012E-8 3.15045E-8
0.6 7.79117E-11 0.00000 1.98276E-9 2.17482E-8 5.63746E-8
0.7 1.18041E-10 1.00E-9 3.52778E-9 1.07305E-7 9.61640E-9
0.8 1.75567E-10 1.00E-9 6.02084E-9 2.00134E-7 1.56868E-7
0.9 2.59534E-10 1.00E-9 1.00199E-8 3.08838E-7 2.48698E-7
1.0 3.85260E-10 1.00E-9 1.64638E-8 9.80507E-7 3.87984E-7

Table 1. Comparison of the errors for Example 4 with step-size h = 0.003125.

Table 1 and Table 2 make known the accuracy of our order p = 6 method as
it outperforms the works of [2], [3], [4], [5], [9], [10], and [24] in the literature.

Error in [5] Error in [4] Error in[21] Error in [10] Error in [29]
x p = 8 p = 6 p = 6 p = 8 p = 7

0.1 1.95704E-13 1.32987E-10 0.71629E-11 0.66391E-13 3.11379E-12
0.2 6.03989E-13 5.87269E-9 0.15091E-10 0.20012E-9 6.65987E-12
0.3 1.26159E-12 1.32785E-8 0.45286E-10 1.72007E-9 9.83331E-12
0.4 3.71530E-12 2.31783E-8 1.08084E-10 5.89464E-9 2.17263E-11
0.5 7.91889E-12 3.21879E-8 1.78186E-10 1.44347E-8 3.57048E-11
0.6 1.41617E-11 6.87124E-8 4.44344E-10 4.18664E-8 4.85912E-11
0.7 3.61601E-11 1.01273E-7 7.44460E-10 5.31096E-9 1.30979E-10
0.8 7.47252E-11 1.23109E-7 1.50098E-9 9.11317E-8 2.31339E-10
0.9 1.33514E-10 2.01928E-7 3.75797E-9 1.49242E-7 3.28627E-10
1.0 4.31686E-10 2.99087E-7 4.74108E-9 2.37189E-7 1.33465E-9

Table 2. Continuation of Table 1.
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From Table 1 and Table 2, we observed that our new method (k = 4, p =
6) performed better than the existing methods in accuracy.

Example 5. Consider the non-linear problem given by

y′′ + 6
xy′ + 4

x2 y = 0, y(1) = 1, y′(1) = 1, h = 1
320 ,

whose exact solution is,
y(x) = 5x3−2

3x4 .

This problem was solved by [6], [11], [12] [13], [22], and [29]. We applied
the Falkner hybrid block method of order p = 6 to the problem given in Ex-
ample 5. The interest is to compare the new method’s accuracy with other
existing methods in the literature. To investigate the accuracy of the methods
we use absolute errors given by |y(xn) − yn|, see Table 3.

Error in Error in Error in Error in Error in Error in
(15) [6] [11] [12] [22] [13]

x p = 6 p = 8 p = 8 p = 8 p = 6 p = 6
1.003125 0.000E-0 6.452E-11 8.300E-8 1.645E-7 1.104E-7 3.835E-5
1.006250 6.351E-9 2.247E-10 1.160E-6 6.603E-7 1.860E-7 7.500E-4
1.009375 6.157E-9 4.791E-10 6.630E-6 4.414E-6 9.640E-7 1.059E-4
1.012500 6.005E-9 8.568E-10 9.491E-6 1.299E-5 3.675E-7 1.354E-4
1.015625 5.856E-9 1.324E-9 1.953E-6 1.637E-5 5.932E-6 1.555E-4
1.018750 5.712E-9 1.879E-9 9.416E-6 2.829E-5 6.216E-6 1.863E-4
1.021875 5.571E-9 2.551E-9 4.650E-5 5.051E-5 7.443E-6 1.960E-4
1.025000 5.434E-9 3.306E-9 4.712E-5 3.860E-5 7.737E-6 2.210E-4
1.028125 5.301E-9 4.143E-9 1.869E-4 7.490E-5 4.353E-6 2.056E-4
1.031250 5.171E-9 5.092E-9 4.433E-4 1.458E-4 1.161E-6 2.779E-4

Table 3. Comparison of the errors for Example 5 using step-size h = 0.003125.

It is clear from Table 3 that the proposed methods of order four and five
yielded better results when compared with to the existing methods.

Again, a comparison of the maximum absolute errors of the newly proposed
method of order p = 6 with [11], [13], and [22] shows that the new method is
better than methods in [11]–[12], [13], and [22] but compared with the method
of [6].

Example 6. Consider the non-linear problem given by

y′′ = y′ y(0) = 0, y′(0) = −1, h = 1
2 ,

whose exaction is y(x) = 1 − ex. The problem was solved by [7], [11], [13],
[23] and [29]. We applied our order p = 3 Falkner hybrid block method to the
problem given in Example 6. The interest is to compare the accuracy of our
new method with other existing methods in the literature. To investigate the
accuracy of these methods we use absolute errors given by |y(xn) − yn|, see
Table 4 and Table 5.
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Error in Error in Error in Error in Error in
(15) [7] [29] [28] [26]

x p = 6 p = 6 p = 5 p = 6 p = 5
0.1 3.619E-12 7.609E-8 - 2.509E-13 2.004E-7
0.2 3.999E-12 1.674E-7 3.397E-9 6.493E-11 5.386E-7
0.3 4.420E-12 2.604E-7 5.648E-9 1.683E-9 8.840E-7
0.4 4.885E-12 3.719E-7 7.633E-8 1.701E-8 1.229E-6
0.5 5.399E-12 4.854E-7 1.044E-8 1.025E-7 1.575E-6
0.6 5.966E-12 6.217E-7 1.439E-8 2.558E-6 1.920E-5
0.7 6.594E-12 7.604E-7 1.873E-8 5.273E-6 2.506E-6
0.8 7.287E-12 9.268E-7 2.277E-8 8.275E-6 3.106E-6
0.9 8.054E-12 1.096E-6 2.816E-8 1.161E-5 3.705E-6
1.0 8.900E-12 1.299E-6 3.538E-8 1.542E-5 4.304E-6

Table 4. Comparison of the errors for Example 6 with h = 0.1.

Error in [23] Error in [15] Error in [13] Error in [3]
x p = 6 p = 6 p = 6 p = 6, h = 0.01

0.1 - - - 2.095E-10
0.2 8.171E-7 1.16E-2 3.267E-4 2.092E-9
0.3 3.103E-6 3.50E-2 2.215E-3 7.842E-9
0.4 6.569E-6 7.18E-2 4.857E-3 2.009E-8
0.5 1.143E-5 1.23E-1 9.097E-3 4.199E-8
0.6 1.796E-5 1.91E-1 1.439E-2 7.728E-8
0.7 2.644E-5 2.77E-1 2.143E-2 1.303E-7
0.8 3.722E-5 3.84E-1 2.989E-2 2.064E-7
0.9 5.067E-5 5.12E-1 4.030E-2 3.116E-7
1.0 6.726E-5 6.65E-1 5.255E-2 4.531E-7

Table 5. Continuation of Table 4.

The results in Table 4 and Table 5 revealed that our order six methods give
better accuracy when compared with other existing methods in the literature.
In Table 4, our method clearly shows the best performance compared with the
existing method. In addition, Again, a comparison of the maximum absolute
errors of the new method with other existing formulas in the literature shows
that the new methods outperformed the methods developed by the authors,
like [7], [13], [15], [23], [28], and [26] as shown in Table 4 and Table 5.

As earlier stated, the methods in Table 4 were computed using a fixed step
size, h = 0.1 while, [3] uses order p = 6 method with a small step size, h =
0.01. At endpoint x = 1.0, the maximum error in [3] method was 4.531E-7,
see [3]. Despite the small step size h = 0.01, our new method outperformed
it.

Example 7. Consider the problem given by,

y′′ − 3y′ = 8e2x, y(0) = 1, y′(0) = 1, h = 0.005,
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whose exact solution is,

y(x) = −4e2x + 3e3x + 2.

The problem in Example 7 was solved by [6], [11], and [12]. The interest is to
compare the accuracy of our new method with other existing methods in the
literature, see Table 6.

Error in (15) Error in [12] Error in [11] Error in [6]
FHBM SPH DIB DI3PB

x p = 6 p = 8 p = 8 p = 8
0.005 4.440E-16 3.159E-7 1.580E-7 2.214E-16
0.01 6.661E-16 1.2709E-6 3.176E-6 0.000E+0
0.015 6.661E-16 8.655E-6 1.294E-5 2.202E-16
0.02 2.220E-16 2.591E-5 1.932E-5 0.000E+00
0.025 2.220E-16 3.395E-5 4.018E-5 2.189E-16
0.03 6.661E-16 5.990E-5 2.207E-5 1.091E-16
0.04 4.440E-16 8.885E-5 8.991E-5 1.087E-16

Table 6. Comparison of the errors for Example 7 with h = 0.005.

Note.
FHBM denotes Falkner hybrid block method in (15).

SPH denotes the direct seven-point hybrid block method, see [12, Table
4, pp. 2850].

DIB implies the direct implicit block method, see [11, Table 6, pp. 385].
DI3PD represents a 3-point block method [6].
We have solved the linear problem in Example 7 using the proposed Falkner

hybrid method in block form and the existing methods, the direct seven-point
hybrid block method in [12], and the direct implicit block method in [11] that
satisfied order eight. Table 6 shows the maximum absolute errors recorded
for various x. The new techniques show the best performance when compared
with other existing methods.

Example 8. We consider the non-linear IVP which was also solved by [9],
and [10],

y′′ = (y′)2

2y − 2y, y(π
6 ) = 1

4 , y(π
6 ) =

√
3

2 ,

whose exact solution is
y(x) = sin2(x).

In this example, our order p = 6 method is compared with the methods in
[9], and [10], each of order p = 6 and p = 8 respectively. The numerical results
at some selected points are given in Table 7.

From Table 7 observe that our method performs better than those given in
[9], and [10]. In the area of computational work, both methods required the use
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Error in Error in Error in
the new method [9] [10]
h = 0.013125 h = 0.013125 h = 0.013125

x p = 6 p = 6 p = 8
1.1 3.23432E-7 4.69215E-7 4.16328E-7
1.2 1.34427E-7 4.08029E-7 4.58667E-7
1.3 3.97887E-8 2.28974E-7 4.09282E-7
1.4 6.12886E-9 0.81287E-7 2.62955E-7
1.5 1.20186E-10 5.24472E-7 0.45539E-7
1.6 2.99104E-11 1.08974E-6 4.80548E-7
1.7 3.15426E-9 1.75373E-6 1.03225E-6
1.8 2.67396E-8 2.48148E-6 1.67850E-6
1.9 1.02089E-7 3.22842E-6 2.38575E-6
2.0 2.63776E-7 3.94302E-6 3.11084E-6

Table 7. Comparison of the errors for Example 8.

of a predictor to supply the starting values, using the exact solution values re-
duces the computational cost. Regarding accuracy, our method performs better
than those given in [9], and [10].

Table 8 shows the performance of the proposed method by [21] and our new
method on the interval [ π

6 , π] taking h = 0.013089.

Error in (15) Error in [21]
h = 0.013089 h = 0.013089

x p = 6 p = 6
π
5 4.17656E-5 8.27116E-15
π
4 2.59640E-5 4.29656E-14
π
3 6.67186E-6 1.08247E-13
π
2 1.38130E-9 1.64757E-13

2π
3 1.09568E-5 9.87987E-13

3π
4 3.35408E-5 1.22136E-12

5π
6 5.90202E-5 1.09268E-12
π 7.87947E-5 8.60810E-5

Table 8. Comparison of the errors for Example 8.

The results in Table 8 show that the new method compared favorably with
the earlier proposed by [21].

Example 9. Consider the system of ODEs,

y′′
1 = −y1

r , y1(0) = 1, y′
1(0) = 0,

y′′
2 = −y2

r , y2(0) = 0, y′
2(0) = 1,

r =
√

y2
1 + y2

2), x ∈ [0, 1],



338 R. I. Okuonghae and J. K. Ozobokeme 15

whose exact solution are: y1(x) = cos(x), and y2(x) = sin(x). In this example,
our order p = 6 method is used to solve the ODEs in Example 9 using step-size
h = 0.01 and the results are given in Table 9 and Table 10.

x Sol. Comp Exact Numerical Absolute
(y1, y2)T Solution Solution Error

0.1 y1 9.915618937147881E-1 9.915618937147880E-1 1E-16
y2 1.296341426196949E-1 1.296341426196949E-1 0E-00

0.2 y1 9.736663950053749E-1 9.736663950053749E-1 0E-00
y2 2.279775235351884E-1 2.279775235351884E-1 0E-00

0.3 y1 9.460423435283870E-1 9.460423435283871E-1 1E-16
y2 3.240430283948683E-1 3.240430283948683E-1 0E-00

0.4 y1 9.089657496748851E-1 9.089657496748851E-1 0E-00
y2 4.168708024292108E-1 4.168708024292108E-1 0E-00

0.5 y1 8.628070705147610E-1 8.628070705147610E-1 0E-00
y2 5.055333412048469E-1 5.055333412048471E-1 1E-16

0.6 y1 8.080275083121519E-1 8.080275083121519E-1 0E-00
y2 5.891447579422695E-1 5.891447579422695E-1 0E-00

0.7 y1 7.451744023448703E-1 7.451744023448703E-1 0E-00
y2 6.668696350036980E-1 6.668696350036980E-1 0E-00

0.8 y1 6.748757600712670E-1 6.748757600712670E-1 0E-00
y2 7.379313711099628E-1 7.379313711099628E-1 0E-00

0.9 y1 5.978339822872982E-1 5.978339822872981E-1 1E-16
y2 8.016199408837772E-1 8.016199408837772E-1 0E-00

1.0 y1 5.148188449699553E-1 5.148188449699553E-1 0E-00
y2 8.572989891886034E-1 8.572989891886035E-1 1E-16

Table 9. The solution components (Sol. Comp.), exact, numerical solutions, and the
absolute error for Example 9.

Table 9 shows the exact, numerical solutions and the maximum error using
step size h = 0.01. The small maximum absolute error generated by our
method is insignificant and this shows that the proposed method can solve a
system of ODEs.

Again, in Example 9, we have examined the maximum absolute errors in the
given interval using different total steps. Table 10, shows the results acquired
by the proposed method (FHBM in (15)) are compared with (DI3PB) of order
eight by [6] and (FPMBM) of order nine by [30] with regards to precision
and the same number of steps (NS). It is investigated that the results of the
proposed method are significantly improved and outperformed both DI3PB and
FPMBM.
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NS Error in (15) Error in DI3PB[6] Error in FPMBM[30]
p = 6 p = 8 p = 9

18 1.4432E-16 1.3207E-16 5.6512E-12
25 1.9845E-16 1.4247E-16 2.2223E-15
32 1.6653E-16 6.8052E-17 5.0902E-16
38 1.8318E-16 6.5156E-16 1.5108E-15
45 1.7763E-16 2.1578E-16 1.8765E-15

Table 10. The number of steps (NS), and the maximum absolute error.

Example 10. Consider the system of ODEs in [6],

y′′
1 = −e−xy2, y1(0) = 1, y′

1(0) = 0,
y′′

2 = 2exy′
1, y2(0) = 1, y′

2(0) = 1,

whose exact solution are: y1(x) = cos(x), and y2(x) = ex cos(x). The interval
of integration is x ∈ [0, 1].

x Sol. Comp. Exact Numerical Absolute
(y1, y2)T Solution Solution Error

0.1 y1 9.915618937147881E-01 9.915618937147880E-01 1E-16
y2 1.129218828385513E+01 1.129218828385513E+01 0E+00

0.2 y1 9.736663950053749E-01 9.736663950053749E-01 0E-00
y2 1.225456534421764E+00 1.225456534421764E+00 0E+00

0.3 y1 9.460423435283870E-01 9.460423435283871E-01 1E-16
y2 1.315914748025169E+00 1.315914748025169E+00 0E+00

0.4 y1 9.089657496748851E-01 9.089657496748851E-01 0E-00
y2 1.397314437335421E+00 1.397314437335421E+00 0E+00

0.5 y1 8.628070705147610E-01 8.628070705147610E-01 0E-00
y2 1.465850808202052E+00 1.465850808202052E+00 0E+00

0.6 y1 8.080275083121519E-01 8.080275083121519E-01 0E-00
y2 1.517160997943503E+00 1.517160997943503E+00 0E+00

0.7 y1 7.451744023448703E-01 7.451744023448703E-01 0E-00
y2 1.546296951640995E+00 1.546296951640995E+00 0E+00

0.8 y1 6.748757600712670E-01 6.748757600712670E-01 0E-00
y2 1.547705227921471E+00 1.547705227921471E+00 0E+00

0.9 y1 5.978339822872982E-01 5.978339822872981E-01 1E-16
y2 1.515215714798987E+00 1.515215714798987E+00 0E+00

1.0 y1 5.148188449699553E-01 5.148188449699553E-01 0E-00
y2 1.442041477704584E+00 1.442041477704584E+00 0E+00

Table 11. The solution components (Sol. Comp.), exact, numerical solutions, and the
absolute error for Example 10.
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Table 11 shows that the proposed scheme is capable of solving systems of
equations.

6. CONCLUSION

This article has demonstrated the effectiveness of Falkner hybrid block
methods in solving second-order differential equations. A comprehensive re-
view of existing literature and original research has shown that Falkner’s block
methods are powerful for tackling complex problems in various fields, includ-
ing physics, engineering, and applied mathematics. The results presented in
this article have validated the accuracy and efficiency of Falkner hybrid block
methods and expanded their applicability to a broader range of problems. The
novel approaches and techniques developed in this research have the poten-
tial to impact various areas of study, enabling researchers to tackle previously
intractable problems with ease and precision.

Acknowledgements. The authors wish to thank the Editor and the re-
viewers for drawing my attention to the irregularities in the first submission
of this paper.
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