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EXPONENTIAL B-SPLINE COLLOCATION METHOD
FOR SINGULARLY PERTURBED TIME-FRACTIONAL

DELAY PARABOLIC REACTION-DIFFUSION EQUATIONS
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Abstract. The singularly perturbed time-fractional delay parabolic reaction-
diffusion of initial boundary value problem is provided in the present study. The
time-fractional derivative is applied by the Caputo fractional sense and handled
by implicit Euler method. Spatial domain is handled by implementing the expo-
nential B-spline collocation technique on Shishkin mesh. The convergence of the
method is verified and has an accuracy of O(N−2(ln N)2). In order to examine
the effectiveness of the scheme three model examples are considered. The find-
ings generated by tables and figures indicates the scheme is uniformly convergent
and has dual layers at the end spatial domain.
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1. INTRODUCTION

Fractional differential equations have been used to modify conventional in-
teger order derivatives to an arbitrary (non-integer) order that can be attained
in a time or space variable. It serves as great tool on assessing memory and
the fundamental characteristics of various material and procedures. Fractional
partial differential equations are widely employed in scientific and engineer-
ing domains, as well as numerous other fields like fluid mechanics, chemistry,
viscoelasticity, finance, physics and some others [1, 2, 3, 4, 5].

Time-fractional addresses anomalous diffusion processes that are associated
to time in unusual systems. Subsequently it is challenging to find analytical
solutions for these sorts of issues, hence numerical approaches serve to approx-
imate the solutions. Fractional differential equations have been the focus of
a variety of computational techniques that have been devised to approximate
the solution because of their capacity to simulate complicate processes [6, 7, 8].

The mathematical representation of oil reservoir simulations, flow of fluid in
porous media, global water production, and several other organic occurrences
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have been extensively investigated using time-fractional reaction-diffusion equa-
tions [9]. Being a part of an arbitrary order causes it tricky to find the exact so-
lutions of such issues. Finding the reliable and effective numerical approaches
for such equations become increasingly crucial. Attempts at time fractional
reaction-diffusion have been performed in the papers [10, 11, 12, 13].

This investigation is focused on singularly perturbed time-fractional delay
parabolic reaction-diffusion of initial boundary value problems in the domain
D = Dr × Dt = (0, 1) × (0, T ]; D̄ = D̄r × D̄t = [0, 1] × [0, T ] and ∂D = D − D̄:

(1)
(

∂α

∂tα − ε ∂2

∂r2 + b(r)
)

u(r, t) + p(r, t)u(r, t − τ) = f(r, t); (r, t) ∈ D

with the vector condition
(2) u(r, t) = κ(r, t), (r, t) ∈ [0, 1] × [−τ, 0]
and constraints
(3) u(0, t) = φ(t); u(1, t) = ϕ(t); t ∈ [0, T ]
where ε is a small perturbation parameter which fulfills 0 < ε < 1 , τ is
delay parameter and b(r) ≥ ϑ > 0 is a smooth function. As soon as the func-
tions b(r), p(r, t), κ(r, t), φ(t), ϕ(t), and f(r, t)) meet the required smoothness
and compatibility requirements, the initial-boundary value problem notes a
unique outcomes u(r, t). This solution illustrates twin boundary layers with a
thickness of O(

√
ε), that lies near the boundaries r = 0 and r = 1 [14, 15].

While treating parameter dependent delay parabolic reaction-diffusion is-
sues, an order of differential equation reduces as ε → 0, and the differential
equation solution is inevitably characterized by enormous gradient [16]. With
regard to the boundary layer behavior, when employing traditional numeri-
cal techniques on a uniform mesh, substantial oscillations might strike while
the perturbation parameter approaches zero over the whole areas of concern.
Thus, an effective numerical method which accuracy does not depend on the
perturbation parameter will be used to avoid such oscillations. In consequence,
plenty of efforts have been placed into inventing numerical techniques for solv-
ing one-dimensional singularly perturbed parabolic reaction-diffusion equa-
tions with time-lag [17, 18, 19, 20, 21, 22, 23].

In [24], the theory and computation of an exponential B-spline are defined.
It is commonly used in computer-aided design, surface approximation, and
the curve approximations. A free parameter in exponential B-spline indicates
the shape of B-spline which shows a good approximation for the data having
sharp changes. A variety of differential equations are approximated by using
an exponential B-spline. One of these equations involves singularly perturbed
differential equations which is concerned on the studies [25, 26, 27].

Owing to author’s observation, there has been an attempts to solve in-
teger order singularly perturbed delay differential equations using exponen-
tial B-spline approaches, however no one has successfully employed for sin-
gularly perturbed time-fractional delay parabolic reaction-diffusion equations.
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The present study introduces an approach for solving the initial boundary
value problem of one-dimensional singularly perturbed time-fractional delay
reaction-diffusion employing an exponential B-spline collocation technique on
Shishkin mesh.

This investigation has a specific structure: Preliminary information and
continuous solution properties are explored in Section 2. Section 3 and Sec-
tion 4 consist of numerical formulation and convergence analysis, respectively.
A discussion of the numerical results and conclusions are covered under Sec-
tion 5 and Section 6, correspondingly.

2. PRELIMINARIES AND PROPERTIES OF CONTINUOUS SOLUTION

Definition 1. Assume that Re(J) > 0 for any complex number J . The
function specified by

Γ(J) =
∫ ∞

0
e−rrJ−1dr

is a gamma function.

Definition 2. When the function h(t) possesses lowest bound of zero, then
Caputo fractional derivative is described as

∂α

∂tα h(t) = 1
Γ(k−α)

∫ t

0
h(k)(ζ)(t − ζ)k−α−1dζ; α ∈ (k − 1, k)

where h(k) is the kth order derivative of h(t).

Definition 3. A function u(r, t) and its Caputo fractional differentiation
with regarding t is described as

∂α

∂tα u(r, t) =


1

Γ(k−α)
∫ t

0
∂ku(r,ζ)

∂ζk (t − ζ)k−α−1dζ; if α ∈ (k − 1, k)

∂ku(r,t)
∂tk ; if α = k

Lemma 4. Let 0 < t0 < 1 be the lowest possible value of the function z,
where z ∈ C1[0, 1]. Then

∂α
Cz(t0) ≤ tα

0
Γ(1−α)

(
z(t0) − z(0)

)
≤ 0,

where, 0 < α < 1 and ∂α
C stands for the Caputo fractional derivative.

Proof. Give an auxiliary function, q(t) = z(t) − z(t0). Then, q(t) ≥ 0 and
q(t0) = z(t0) − z(t0) = 0. Now,

∂α
Cq(t0) = 1

Γ(1−α)

∫ t0

0
(t0 − ζ)−αq′(ζ)dζ.
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Applying integration by parts we obtain

∂α
Cq(t0) = 1

Γ(1−α)

(
−t−α

0 q(0) − α

∫ t0

0
(t0 − ζ)−α−1q(ζ)dζ

)
≤ 1

Γ(1−α)(−t−α
0 q(0))

≤ 1
Γ(1−α)(t−α

0 (z(t0) − z(0))) ≤ 0

□

Given the data b(r), p(r, t) and f(r, t) as Holder’s continuous, and the com-
patibility criteria at the corner points (0, 0), (1, 0), (0, −τ) and (0, τ) have been
met, it is shown, to ensure the existence of the unique solution for (1,2,3). That
is

κ(0, 0) = φ(0),(4)
κ(1, 0) = ϕ(0),
∂αφ(0)

∂tα − ε∂2κ(0,0)
∂r2 + b(0)κ(0, 0) + p(0, 0)κ(0, −τ) = f(0, 0),

∂αϕ(0)
∂tα − ε∂2κ(1,0)

∂r2 + b(1)κ(1, 0) + p(1, 0)κ(1, −τ) = f(1, 0).

Lemma 5. Given that ξ(r, t) is a sufficiently smooth function satisfying
ξ(r, t) ≥ 0, ∀(r, t) ∈ ∂D. Then, Lεξ(r, t) ≥ 0, ∀(r, t) ∈ D implies that ξ(r, t) ≥
0, ∀(r, t) ∈ D̄.

Proof. Let (ω, υ) be a point that satisfy

ξ(ω, υ) = min
(r,t)∈D̄

ξ(r, t)

and ξ(ω, υ) < 0. Then ξ(ω, υ) /∈ ∂D. Then we have,

Lεξ(ω, υ) = εξrr(ω, υ) − b(ω)ξ(ω, υ) − ∂αξ(ω,υ)
∂tα ≤ 0.

Since ξrr(ω, υ) ≥ 0 and ∂αξ(ω,υ)
∂tα = 0, then Lεξ(ω, υ) ≤ 0, which contradicts the

initial assumption. Thus, ξ(ω, υ) ≥ 0 which yields ξ(r, t) ≥ 0; ∀(r, t) ∈ D̄. □

Lemma 6. Consider that u(r, t) represents the solution to continuous prob-
lem (1). Consequently, [15]

∥u(r, t)∥ ≤ (1 + ϑT ) max {∥Lεu∥, ∥u∥∂D}

where, ϑ = maxD̄ {0, 1 − ϑ} ≤ 1 and, ∥.∥ is the maximum norm expressed in
terms of ∥u∥ = maxD̄ |u(r, t)|.

Lemma 7. The solution of problem (1) and its associated derivatives fulfill
[28] ∣∣∣∂l+nu(r,t)

∂rl∂tn

∣∣∣ ≤ C

[
1 + ε

−l
2

(
exp( −r√

ε
) + exp(−(1−r)√

ε
)
)]

with 0 ≤ l + 2n ≤ 4.
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3. NUMERICAL SCHEME FORMULATION

3.1. Temporal Discretization. An implicit Euler’s technique with uniform
mesh size ∆t serves to discretize the temporal domain of Eq. (1) on the domain
DM

t =
{

tj = j∆t; j = 0, 1, . . . , M, tM = T, ∆t = T
M

}
, where M is the number

of grid points along time axis. DM
τ =

{
tj = j∆t; j = 0, 1, . . . , m; tm = τ ; ∆t = τ

m

}
is specification of the mesh [−τ, T ].

In the Caputo notion, the time-fractional derivative is taken to account.
Therefore, the time-fractional derivative term of Eq. (1) at t = tj+1 will be

computed with the following quadrature formula:

∂α

∂tα u(r, t) = 1
Γ(1−α)

∫ tj+1

0

∂u(r,v)
∂v (tj+1 − v)−αdv

= 1
Γ(1−α)

j−1∑
n=0

(
u(r,tn+1)−u(r,tn)

∆t

) ∫ tn+1

tn

(tj+1 − v)−αdv + ej+1
∆t

= β
j−1∑
n=0

ϖn (u(r, tj−n+1) − u(r, tj−n)) + ej+1
∆t .

where

β = (∆t)−α

Γ(1−α) , ϖn =
(
(n + 1)1−α − (n)1−α

)
, ej+1

∆t = (∆t)
Γ(1−α)

∫ tn+1

tn

(tj+1−v)−αdv.

Therefore, the Caputo fractional derivative ∂α

∂tα u(r, t) at the point (r, tj+1)
is estimated as
(5)

∂α

∂tα U(r, tj+1) = β
(
(U(r, tj+1) − U(r, tj)) +

∑j−1
n=1 ϖn (U(r, tj−n+1) − U(r, tj−n))

)
.

Using Eq. (5) into (1) we acquire the time semi-discrete equation
(6)
β

(
(U(r, tj+1) − U(r, tj)) +

∑j−1
n=1 ϖn (U(r, tj−n+1) − U(r, tj−n))

)
− εU j+1

rr (r)+

b(r)U j+1(r) = f j+1(r) −
{

p(r, tj+1)κ(r, tj+1); j = 0, 1, . . . , m,

p(r, tj+1)U(r, tj−m+1); j = m + 1, . . . , M.

By rearranging Eq. (6) we get

(7)
(
β + L∆t

ε

)
U j+1(r) = Ri

where, (
β + L∆t

ε

)
U j+1(r) = −εU j+1

rr (r) + (β + b(r))U j+1(r)
Ri = β

(
U j −

∑j−1
n=1 ϖn

(
U j−n+1 − U j−n

))
(r) + f j+1(r)

−
{

pj+1(r)κ(r, tj+1); j ∈ [0, m] ,

pj+1(r)U j−m+1(r); j ∈ [m + 1, M ] .

which is the time semi-discrete of Eq. (1).
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Lemma 8. An error R in (6) is bounded as∣∣∣e. j+1
∣∣∣ ≤ C(∆t)(2−α).

Proof.

e.j+1 = O(∆t)
Γ(1−α)

j−1∑
n=0

∫ tn+1

tn

(tj+1 − v) dv

= O(∆t)
Γ(1−α)

j−1∑
n=0

(
(j−n+1)1−α−(j−n)1−α

1−α

)
(∆t)1−α

= O((∆t)2−α)
Γ(2−α)

j−1∑
n=0

(
(j − n + 1)1−α − (j − n)1−α

)
= O((∆t)2−α)

Γ(2−α)

(
(j + 1)1−α

)
≤ C(∆t)2−α.

Thus, ∣∣∣e.j+1
∣∣∣ ≤ C(∆t)(2−α)

with C is a number that is independent of ε and ∆t. □

3.2. Spatial Discretization. Mesh generation. Consider the non-overlapping
intervals as [0, σ], (σ, 1 − σ) and [1 − σ, 1] within N/4, N/2 and N/4 uniformly
spaced subintervals with σ = min {1/4, σ0

√
ε ln(N)}, where σ0 ≥ 2/

√
ϑ. Let

D̄N
r = {ri}N

i=0 be a set of grid nodes, define the piece-wise uniform grid points
as:

ri =


ihi, if i = 0, 1, . . . , N/4
σ + (i − N/4)hi, if i = N/4 + 1, . . . , 3N/4
1 − σ + (i − 3N/4)hi, if i = 3N/4 + 1, . . . , 1

with piece-wise uniform spacing hi = 4σ/N if i = 1, 2, . . . , N/4; i = 3N/4 +
1, . . . , 1 and hi = 2(1 − 2σ)/N if i = N/4 + 1, . . . , 3N/4. In order to discretize
the spatial domain we apply an exponential B-spline collocation method in
which its basis function EBi(r) is defined as:
(8)

EBi(r) =



µ3(ri−2 − r) − 1
ρ (sinh (ρ(ri−2 − r))) , ri−2 ≤ r ≤ ri−1,

µ1 + µ2(ri − r) + µ4 exp (ρ(ri − r)) + µ5 exp (−ρ(ri − r)) ; ri−1 ≤ r ≤ ri,
µ1 + µ2(r − ri) + µ4 exp (ρ(r − ri)) + µ5 exp (−ρ(r − ri)) ; ri ≤ r ≤ ri+1,
µ3(r − ri+2) − 1

ρ (sinh (ρ(r − ri+2))) , ri+1 ≤ r ≤ ri+2,

0, otherwise

where
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µ1 = ρhic
ρhic−s , µ2 = ρ

2

[
c(c−1)+s2

(ρhic−s)(1−c)

]
, µ3 = ρ

2(ρhic−s) , c = cosh(ρhi), s =

sinh(ρhi), µ4 = 1
4

[
exp(−ρhi)(1−c)+s(exp(−ρhi)−1)

(ρhic−s)(1−c)

]
, µ5 = 1

4

[
exp(ρhi)(c−1)+s(exp(ρhi)−1)

(ρhic−s)(1−c)

]
and ρ is a non-negative free parameter.

EB−1(r), EB0(r), . . . , EBN (r), EBN+1(r) are basis functions which are C2[0, 1].
The values of EBi(r), EB′

i(r) and EB
′′
i (r) at the knots ri can be computed in

the following table

r ri−2 ri−1 ri ri+1 ri+2

EBi(r) 0 η1 1 η1 0
EB′

i(r) 0 −η2 0 η2 0
EB

′′
i (r) 0 η3 η4 η3 0

Table 1. Exponential B-spline Coefficients and their derivatives at
knots.

where η1 = s−ρhi

2(ρhic−s) , η2 = ρ(c−1)
2(ρhic−s) , η3 = ρ2s

2(ρhic−s) and η4 = −ρ2s
ρhic−s . Suppose

Ψ(r) be an exponential B-spline interpolating function for an approximation
of u(r, t) provided by:

(9) Ψ(r) ≈
N+1∑
i=−1

δiEBi(r)

where δi is a parameter that can be found utilizing the boundary and initial
conditions in combination of the collocation approach. An approximation of
Ψi as well as its first and second derivatives at the knots implementing Eq.
(9) and Table 1 appears as follows:

(10)


Ψi = η1δi−1 + δi + η1δi+1
(∂Ψ

∂r )i = η2 (δi+1 − δi−1)
(∂2Ψ

∂r2 )i = η3δi−1 + η4δi + η3δi+1

Now, substituting Eq. (10) into Eq. (7) we obtain

(11) −ε
(
η3δj+1

i−1 + η4δj+1
i + η3δj+1

i+1

)
+(bi +β)

(
η1δj+1

i−1 + δj+1
i + η1δj+1

i+1

)
= R̄i

which is written as
(12) Eiδ

j+1
i−1 + Fiδ

j+1
i + Giδ

j+1
i+1 = Hi; for i = 0, 1, . . . , N.

where
Ei = Gi = −εη3 + (bi + β) η1Fi = −εη4 + bi + βHi = R̄i

Eq. (12) is a systems of linear equations with an order (N + 3) × (N + 3).
Imposing the boundary condition Eq. (10) and boundary conditions

(3) are used to produce:
for i = 0

(13) δ−1 = 1
η1

(φ0 − δ0 − η1δ1) ,
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and for i = N

(14) δN+1 = 1
η1

(ϕN − δN − η1δN−1) .

Substituting Eqs. (13–14) into Eq. (12) we obtain a systems of linear equations:

(15)


(
F0 − E0

η1

)
δj+1

0 + (G0 − E0) δj+1
1 = H0 + βφj

0 − E0
η1

φj+1
0 ,

Eiδ
j+1
i−1 + Fiδ

j+1
i + Giδ

j+1
i+1 = Hi; i = 1, 2, . . . , N − 1

(EN − GN ) δj+1
N−1 +

(
FN − GN

η1

)
δj+1

N = HN + βϕj
N − GN

η1
ϕj+1

N .

Eq. (15) is an (N + 1) × (N + 1) systems of linear equations.
Determination of the initial vector δ0

i To determine an initial vector
we use an initial condition into Eq. (15) at the boundaries and we obtain the
following:

U(0, 0) = κ0
0 = η1δ0

−1 + δ0
0 + η1δ0

1 ,

U(i, 0) = η1δ0
i−1 + δ0

i + η1δ0
i+1, i = 1, 2, . . . , N − 1(16)

U(1, 0) = κ0
N = η1δ0

N−1 + δ0
N + η1δ0

N+1.

Again from first derivative of Eq. (10) we have

δ0
−1 = δ0

1 − 1
η2

κ′(0
0),(17)

δ0
N+1 = δ0

N−1 + 1
η2

κ′(0
N ).

Substituting Eq. (17) into Eq. (16), we obtain

δ0
0 + 2η1δ0

1 = κ0
0 + η1

η2
κ′(0

0),

η1δ0
i−1 + δ0

i + η1δ0
i+1 = κ(i, 0), i = 1, 2, . . . , N − 1(18)

2η1δ0
N−1 + δ0

N = κ0
N − η1

η2
κ′(0

N )

This gives (N + 1) × (N + 1) systems of linear equations

4. CONVERGENCE ANALYSIS

Lemma 9. The exponential B-spline {EB−1(r), EB0(r), . . . , EBN (r), EBN+1(r)}
defined in (8) satisfy the inequality

(19)
N+1∑
i=−1

|EBi(r)| ≤ 5
2 ; r ∈ [0, 1]

Proof. From triangular inequality we have∣∣∣∣∣∣
N+1∑
i=−1

EBi(r)

∣∣∣∣∣∣ ≤
N+1∑
i=−1

|EBi(r)|
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From the values of Table 1, at the i-th nodal point r = ri we get
N+1∑
i=−1

|EBi(ri)| = |EBi−1(ri)| + |EBi(ri)| + |EBi+1(ri)|

=
∣∣∣ s−ρh

2(ρhc−s)

∣∣∣ + 1 +
∣∣∣ s−ρh

2(ρhc−s)

∣∣∣
Again from Taylor’s series expansion we have

s − ρh = (ρh)3

6 + (ρh)5

120 + O(ρh)7

ρhc − s = (ρh)3

3 + (ρh)5

30 + O(ρh)7

and hence, we obtain
N+1∑
i=−1

|EBi(r)| ≤ 3
2 < 5

2

Similarly, for any point r in the interval [ri−1, ri], we have
N+1∑
i=−1

|EBi(r)| = |EBi−2(r)| + |EBi−1(r)| + |EBi(r)| + |EBi+1(r)|

=
∣∣∣ s−ρh

2(ρhc−s)

∣∣∣ + 1 + 1 +
∣∣∣ s−ρh

2(ρhc−s)

∣∣∣ ≤ 5
2

□

Lemma 10. Consider Ψ(r) denote the collocation approximation of exponen-
tial B-spline in the space domain to the solution ū(ri) of Eq.(7). If R ∈ C2 [0, 1]
then, the estimate of the uniform error is provided as:

(20) ∥ū(ri) − Ψ(ri)∥∞ ≤ CN−2(ln N)2

where C is a positive constant which doesn’t depend on ε and h.

Proof. Suppose Ψ̄(r) denote a unique exponential spline collocation that
approximates the solution ū(ri) of semi-discrete (7), resulting in below:

(21) Ψ̄(ri) ≈
N+1∑
i=−1

δ̄iEBi(r)

If b(r), Ri ∈ C2[0, 1], then ū(r) ∈ C4[0, 1] for r ∈ [ri, ri+1] and hence from
error bound estimate [29] we have

(22)
∥∥∥Dn

(
ū(r) − Ψ̄(r)

)∥∥∥
∞

≤ ςn

∥∥∥d4ū(r)
dr4

∥∥∥
∞

h4−n
i ; n = 0, 1, 2

and ςn is constant independent of term hi and N .
Let

(
β + L∆t,h

ε

)
Ψ(ri) =

(
β + L∆t,h

ε

)
ū(ri) = Hi, and

(
β + L∆t,h

ε

)
Ψ̄(ri) =

H̄i that satisfies Ψ̄(r0) = φ(tj+1) and Ψ̄(rN ) = ϕ(tj+1). The estimation of
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Eq. (21-22) are then used to obtain∣∣∣(β + L∆t,h
ε

)
ū(ri) −

(
β + L∆t,h

ε

)
Ψ̄(ri)

∣∣∣ ≤(23)

≤ ε
∣∣∣ū′′(ri) − Ψ̄′′(ri)

∣∣∣ +
∣∣∣b(ri)

(
ū(ri) − Ψ̄(ri)

)∣∣∣
≤ ες2∥ū(4(ri)∥∞h2

i + ς0∥b(ri)∥∞∥ū(4(ri)∥∞h4
i .

Two instances emerges owing to the arguments depends on σ = 1/4 or
σ = 2

√
ε ln N < 1/4.

Case 1. When σ = 1/4, the mesh is uniform with spacing 1/N , that is hi =
1/N and 2

√
ε ln N ≥ 1/4 gives ε−1/2 ≤ C ln N which yields ε−1 ≤ (C ln N)2.

Applying the classical bound of Lemma 7, that is ∥ū(4(ri)∥ ≤ Cε−2 and Eq.
(23) it gives

∣∣∣(β + L∆t,h
ε

)
ū(ri) −

(
β + L∆t,h

ε

)
Ψ̄(ri)

∣∣∣ ≤ Cε−2
(
ες2N−2 + ς0∥b∥∞N−4

)(24)

≤ CN−2
(
(C ln N)2 + CN−2 (ln N)4

)
Since CN−2 (ln N)4 ≤ C (ln N)2, then Eq.(24) become

∣∣∣(β + L∆t,h
ε

)
ū(ri) −

(
β + L∆t,h

ε

)
Ψ̄(ri)

∣∣∣ ≤ Cε−2
(
ες2N−2 + ς0∥b∥∞N−4

)(25)

≤ CN−2 (ln N)2

Case 2. When Di is located in the boundary layer areas, subsequently the
mesh spacing hi ≤ C1/2N−1 ln N . By combining the estimate in Eq. (23) with
the bound in the layer region, we obtain∣∣∣(β + L∆t,h

ε

)
ū(ri) −

(
β + L∆t,h

ε

)
Ψ̄(ri)

∣∣∣ ≤(26)

≤ Cε−2
(
ες2C2N−2(ln N)2 + ς0∥b∥∞C4ε2N−4(ln N)4

)
≤ CN−2

(
(ln N)2 + N−2 (ln N)4

)
≤ CN−2 (ln N)2

Conversely, the mesh spacing for the outer region, or the sub-interval [σ, 1−
σ], is hi = 2N−1(1 − 2σ) = 2N−1 − Cε1/2N−1 ln N ≤ Cε1/2N−1 ln N . When
plug this into Eq. (23), we get∣∣∣(β + L∆t,h

ε

)
ū(ri) −

(
β + L∆t,h

ε

)
Ψ̄(ri)

∣∣∣ ≤(27)

≤ Cε−2
(
ες2C2N−2(ln N)2 + ς0∥b∥∞C4ε2N−4(ln N)4

)
≤ CN−2

(
(ln N)2 + N−2 (ln N)4

)
≤ CN−2 (ln N)2

Hence, Eqs. (26–27) result yields

(28)
∣∣∣(β + L∆t,h

ε

)
ū(ri) −

(
β + L∆t,h

ε

)
Ψ̄(ri)

∣∣∣ ≤ CN−2 (ln N)2
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Therefore, we have that∣∣∣(β + L∆t,h
ε

)
Ψ(ri) −

(
β + L∆t,h

ε

)
Ψ̄(ri)

∣∣∣ =
∣∣∣Hi −

(
β + L∆t,h

ε

)
Ψ̄(ri)

∣∣∣ =(29)

=
∣∣∣(β + L∆t,h

ε

)
ū(ri) −

(
β + L∆t,h

ε

)
Ψ̄(ri)

∣∣∣ ≤ CN−2 (ln N)2

Applying
(
β + L∆t,h

ε

)
Ψ(ri) = Hi, with Ψ(r0) = φ(tj+1) and Ψ(rN ) =

ϕ(tj+1) which generate system of equation Aδj+1
i = Hi, and

(
β + L∆t,h

ε

)
Ψ̄(ri) =

H̄i with the boundary condition Ψ̄(r0) = φ(tj+1) and Ψ̄(rN ) = ϕ(tj+1) also
yields a linear system of equation Aδ̄j+1

i = H̄i. As a result,

(30) A
(
δj+1

i − δ̄j+1
i

)
=

(
Hi − H̄i

)
where, δ̄j+1

i =
(
δ̄j+1

0 , . . . , δ̄j+1
N

)T
and

Hi − H̄i =


H0 − H̄0 + β

(
φj

0 − φ̄j
0

)
+ E0

η1

(
φ̄j+1

0 − φj+1
0

)
Hi − H̄i; 1 ≤ i ≤ N − 1

HN − H̄N + β
(
ϕj

N − ϕ̄j
N

)
+ GN

η1

(
ϕ̄j+1

N − ϕj+1
N

)
(31)

Based on Eq. (29), then we have

(32) ∥Hi − H̄i∥ ≤ CN−2(ln N)2

Whenever N is reasonable large, A is an invertible monotone matrix. Thus,
utilizing Eq. (29) and Eq. (32), we obtain

(33) ∥δj+1
i − δ̄j+1

i ∥∞ ≤ ∥A−1∥∞CN−2(ln N)2

From the theory of matrices of the row sum (ϑi)
N∑

i=0
A−1

m,iϑi = 1; m = 0, 1, . . . , N

where A−1
m,i is the (m, i)-th element of the matrix A−1. Therefore,

(34) ∥A−1∥∞ =
N+1∑
i=0

∥A−1
m,i∥ ≤ 1

ϑ ≤ 1
|ϑ|

where, |ϑ| = min {ϑ0, . . . , ϑN }.

Let γ = (γ0, . . . , γN )T , with γi = δj+1
i − δ̄j+1

i , then substituting Eq. (34)
into (33) we obtain

(35) ∥γ∥ ≤ CN−2(ln N)2.

At the boundaries we have

(36)
η1

(
δj+1

−1 − δ̄j+1
−1

)
+

(
δj+1

0 − δ̄j+1
0

)
+ η1

(
δj+1

1 − δ̄j+1
1

)
= φ(tj+1)

η1
(
δj+1

N−1 − δ̄j+1
N−1

)
+

(
δj+1

N − δ̄j+1
N

)
+ η1

(
δj+1

N+1 − δ̄j+1
N+1

)
= ϕ(tj+1)
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This straightforward task yields |δj+1
−1 − δ̄j+1

−1 | ≤ CN−2(ln N)2 and |δj+1
N+1 −

δ̄j+1
N+1| ≤ CN−2(ln N)2. As a result, the estimation that follows employs the

boundary conditions as

(37) max
−1≤i≤N

|δj+1
i − δ̄j+1

i | ≤ CN−2(ln N)2.

Moreover, using Eq. (37) and Lemma 9 provides

(38) ∥Ψ(ri) − Ψ̄(ri)∥∞ = ∥
∑N+1

i=−1

(
δj+1

i − δ̄j+1
i

)
EBi(ri)∥∞

≤ ∥δj+1
i − δ̄j+1

i ∥∞∥
∑N+1

i=−1 EBi(ri)∥∞ ≤ CN−2(ln N)2

Generally, from Eq. (28) and (38) we get

∥ū(ri) − Ψ(ri)∥∞ ≤ ∥ū(ri) − Ψ̄(ri)∥∞ + ∥Ψ̄(ri) − Ψ(ri)∥∞(39)
≤ CN−2(ln N)2.

□

Theorem 11. Suppose u(r, t) be the solution of Eq. (1) and Ψ(r) is its
collocation approximation. Under the hypothesis of Lemma 8 and Lemma 10,
then the ε−uniform estimate holds

(40) ∥u(r, t) − Ψ(r)∥ ≤ C
(
N−2(ln N)2 + (∆t)2−α

)
,

where C is the constant independent of ε, h and τ .

Proof. The proof is applying the triangle inequality. □

5. NUMERICAL EXAMPLES AND RESULTS

Three model examples were provided to illustrate the implementation of the
proposed approach. The point-wise maximum absolute error EN,M

ε is com-
puted by double mesh principle and the corresponding order of convergence
P N,M

ε as follow:

EN,M
ε = max

0≤i≤N
, max

0≤j≤M

∣∣∣UN,M
i,j − U2N,2M

2i,2j

∣∣∣
and

P N,M
ε = log2

(
EN,M

ε

E2N,2M
ε

)
.

The ε-uniform error EN,M and the corresponding ε−uniform rate of con-
vergence P N,M as:

EN,M = max
ε

EN,M
ε

and
P N,M = log2

(
EN,M

E2N,2M

)
.
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Example 12.
∂αu(r,t)

∂tα − ε∂2u(r,t)
∂r2 + (1.1 + r2)u(r, t) + u(r, t − 1) = t3

with regard to the constraints
u(r, t) = 0, (r, t) ∈ [0, 1] × [−1, 0]

and
u(0, t) = 0 = u(1, t); t ∈ [0, 2]

Example 13.
∂αu(r,t)

∂tα − ε∂2u(r,t)
∂r2 + r2u(r, t) + u(r, t − 1) = t3

with regard to the constraints
u(r, t) = 0, (r, t) ∈ [0, 1] × [−1, 0]

and
u(0, t) = 0 = u(1, t); t ∈ [0, 2]

Example 14.
∂αu(r,t)

∂tα − ε∂2u(r,t)
∂r2 + 4u(r, t) − 2e−1u(r, t − 1) = 0

with regard to the constraints

u(r, t) = e−(t+r/
√

ε), (r, t) ∈ [0, 1] × [−1, 0]
and

u(0, t) = e−t, u(1, t) = e−(t+1/
√

ε); t ∈ [0, 2]

(a) (b)
Fig. 1. Numerical solution for N = M = 64, α = 0.8 and ε = 2−10 of (a) Example 12
and (b) Example 13.

In order to validate the theoretical assumptions, an exponential B-spline
collocation method on a Shishkin mesh is engaged on problems Example 12,
Example 13 and Example 14. The maximum point-wise errors and the corre-
sponding order of convergence is presented in Table 2, Table 4 and Table 6 for
various values of ε and α = 0.8. As indicated by the tables, when ε → 0, the
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ε ↓ (N, M) → (32,4) (64,8) (128,16) (256,32) (512,64)
20 8.2314e-04 3.2703e-04 1.0058e-04 2.7745e-05 7.2773e-06

1.3317 1.7011 1.8580 1.9308 -
2−2 3.2825e-03 1.3071e-03 4.0223e-04 1.1097e-04 2.9109e-05

1.3284 1.7003 1.8579 1.9306 -
2−4 1.2917e-02 5.2120e-03 1.6077e-03 4.4381e-04 1.1643e-04

1.3094 1.6968 1.8570 1.9305 -
2−6 4.9460e-02 2.0591e-02 6.4106e-03 1.7738e-03 4.6563e-04

1.2642 1.6835 1.8536 1.9296 -
2−8 1.6565e-01 7.8446e-02 2.5326e-02 7.0733e-03 1.8611e-03

1.0784 1.6311 1.8402 1.9262 -
2−10 2.6673e-01 2.2179e-01 9.6493e-02 2.7945e-02 7.4211e-03

0.2662 1.2007 1.7878 1.9129 -
2−12 2.6032e-01 2.2324e-01 1.1284e-01 4.3892e-02 1.5044e-02

0.2217 0.9843 1.3622 1.5448 -
2−14 2.6032e-01 2.2324e-01 1.1284e-01 4.3892e-02 1.5044e-02

0.2217 0.9843 1.3622 1.5448 -

EN,M 2.6032e-01 2.2324e-01 1.1284e-01 4.3892e-02 1.5044e-02
P N,M 0. 2217 0.9843 1.3622 1.5448

Table 2. EN,M
ε and P N,M

ε with α = 0.8 for Example 12.

α ↓ (N, M) → (32, 4) (64, 8) (128, 16) (256, 32) (512,64)
0.25 3.0190e-01 2.6858e-01 9.7128e-02 2.7988e-02 7.4238e-03
0.50 2.9317e-01 2.6566e-01 9.6879e-02 2.7971e-02 7.4227e-03
0.75 2.8733e-01 2.6243e-01 9.6567e-02 2.7951e-02 7.4215e-03

Table 3. EN,M
ε with various values of α and ε = 2−10 for Example 12.
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Fig. 2. Boundary layer formation of (a) Example 12 and (b) Example 13, respectively.

numerical examples’ results exhibit uniform convergence and almost second-
order convergence in agreement with theoretical assumption. Additionally, the
maximum point-wise error falls as the number of grid points rises. The max-
imum point-wise absolute errors for various values α and fixed ε = 2−10 are
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ε ↓ (N, M) → (32,4) (64,8) (128,16) (256,32) (512,64)
20 8.2351e-04 3.2706e-04 1.0058e-04 2.7745e-05 7.2773e-06

1.3322 1.7012 1.8580 1.9308 -
2−2 3.2883e-03 1.3077e-03 4.0227e-04 1.1098e-04 2.9109e-05

1.3303 1.7008 1.8579 1.9308 -
2−4 1.3063e-02 5.2214e-03 1.6084e-03 4.4385e-04 1.1643e-04

1.3230 1.6988 1.8575 1.9306 -
2−6 5.0848e-02 2.0737e-02 6.4221e-03 1.7764e-03 4.6568e-04

1.2940 1.6911 1.8541 1.9315 -
2−8 1.8318e-01 8.0646e-02 2.5507e-02 7.0860e-03 1.8619e-03

1.1836 1.6607 1.8478 1.9282 -
2−10 3.4230e-01 2.5941e-01 9.9199e-02 2.8144e-02 7.4344e-03

0.4000 1.3868 1.8175 1.9205 -
2−12 3.5483e-01 2.6907e-01 1.2837e-01 4.8828e-02 1.6608e-02

0.3991 1.0677 1.3945 1.5558 -
2−14 3.5483e-01 2.6907e-01 1.2837e-01 4.8828e-02 1.6608e-02

0.3991 1.0677 1.3945 1.5558 -

EN,M 3.5483e-01 2.6907e-01 1.2837e-01 4.8828e-02 1.6608e-02
P N,M 0.3991 1.0677 1.3945 1.5558

Table 4. EN,M
ε and P N,M

ε with α = 0.8 for Example 13.

α ↓ (N, M) → (32, 4) (64, 8) (128, 16) (256, 32) (512,64)
0.25 3.9662e-01 2.9749e-01 9.9865e-02 2.8188e-02 7.4371e-03
0.50 3.8290e-01 2.9403e-01 9.9604e-02 2.8171e-02 7.4360e-03
0.75 3.7337e-01 2.9019e-01 9.9277e-02 2.8150e-02 7.4347e-03

Table 5. EN,M
ε with various values of α and ε = 2−10 for Example 13.
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Fig. 3. Log-log scale plot for (a) Example 12 and (b) Example 13.

provided in Table 3, Table 5 and Section 5. The results demonstrate that as α
decreases, so does the maximum absolute error, providing that the fractional
order model accurately depicts problems in the real world. The physical be-
havior of the system is displayed in Fig. 1(a) and (b) which provides numerical
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ε ↓ (N, M) → (32,4) (64,8) (128,16) (256,32) (512,64)
20 3.1036e-05 9.2541e-06 2.8569e-06 9.3164e-07 3.2464e-07

1.7458 1.6956 1.6166 1.5209 -
2−2 1.1453e-04 3.4213e-05 1.0628e-05 3.5104e-06 1.2423e-06

1.7431 1.6867 1.5982 1.4986 -
2−4 4.1612e-04 1.2967e-04 4.1065e-05 1.3721e-05 4.8948e-06

1.6822 1.6589 1.5815 1.4871 -
2−6 1.3436e-03 4.7282e-04 1.5716e-04 5.3660e-05 1.9347e-05

1.5067 1.5891 1.5503 1.4717 -
2−8 3.0694e-03 1.5073e-03 5.7005e-04 2.0514e-04 7.5719e-05

1.0260 1.4028 1.4745 1.4379 -
2−10 9.0224e-03 3.3380e-03 1.7609e-03 7.3181e-04 2.8717e-04

1.4345 0.9227 1.2668 1.3496 -
2−12 9.0224e-03 7.6483e-03 5.2832e-03 2.6412e-03 1.0121e-03

0.2384 0.5337 1.0002 1.3838 -
2−14 9.0224e-03 7.6483e-03 5.2832e-03 2.6412e-03 1.0121e-03

0.2384 0.5337 1.0002 1.3838 -

EN,M 9.0224e-03 7.6483e-03 5.2832e-03 2.6412e-03 1.0121e-03
P N,M 0. 2384 0.5337 1.0002 1.3838

Table 6. EN,M
ε and P N,M

ε with α = 0.8 for Example 14.

α ↓ (N, M) → (32, 4) (64, 8) (128, 16) (256, 32) (512,64)
0.25 9.0224e-03 5.2065e-03 2.6092e-03 9.0975e-04 3.7892e-04
0.50 9.0224e-03 4.4390e-03 2.4335e-03 9.5310e-04 3.3381e-04
0.75 9.0224e-03 3.5339e-03 1.9081e-03 7.9781e-04 3.1096e-04

Table 7. EN,M
ε with various values of α and ε = 2−10 for Example 14.

examples with twin layers at the end of spatial domain. The boundary layer
behavior is confirmed by figures Fig. 2(a) and (b), which show a potential par-
abolic boundary layers at r = 0 and r = 1. The point-wise maximum absolute
error on log-log scale is also displayed in Fig. 3 and Fig. 4. It exhibits when
the number of grid points increases and ε → 0 the maximum absolute error
decreases monotonically, showing a correlation with the theoretical results.

6. CONCLUSIONS

An exponential B-spline collocation technique is implemented to address
the one-dimensional initial boundary value problem of singularly perturbed
time fractional delay parabolic reaction-diffusion equations. Using the im-
plicit Euler’s method, the time-fractional derivative is utilized by the Caputo
fractional sense. An exponential B-spline collocation approach is conducted
to handle the spatial domain on Shishkin mesh. The convergence analysis of
the scheme is established and has an accurate of order O(N−2(ln N)2). The
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Fig. 4. Log-log scale plot for Example 14.

findings from numerical examples verified an agreement of the method, which
has twin layers at r = 0 and r = 1.

REFERENCES

[1] R.L. Bagley, P.J. Torvik, A theoretical basis for the application of fractional calculus
to viscoelasticity, J. Rheol., 27 (1983) no. 3, pp. 201–210. https://doi.org/10.1122/
1.549724

[2] D.A. Benson, S.W. Wheatcraft and M.M. Meerschaert, Application of a frac-
tional advection-dispersion equation, Water. Resour. Res., 36 (2000) no. 6, pp. 1403–1412.
https://doi.org/10.1029/2000WR900031

[3] A.D. Fitt, A.R.H. Goodwin, K.A. Ronaldson and W.A. Wakeham, A fractional differen-
tial equation for a MEMS viscometer used in the oil industry, J. Comput. Appl. Math.,
229 (2009) no. 2, pp. 373–381. https://doi.org/10.1016/j.cam.2008.04.018

[4] M. Oeser and S. Freitag, Modeling of materials with fading memory using neural
networks, Int. J. Numer. Methods. Eng., 78 (2009) no. 7, pp. 843–862. https://doi.or
g/10.1002/nme.2518

[5] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and applications of frac-
tional differential equations, 204, Elsevier, 2006.

[6] C. Jadhav, T. Dale and S. Dhondge, A Review on Applications of Fractional Dif-
ferential Equations in Engineering Domain, MSEA, 71 (2022) no. 4, pp. 7147–7166.
https://doi.org/10.17762/msea.v71i4.1331

[7] R. Choudhary, S. Singh and D. Kumar, A second-order numerical scheme for the
time-fractional partial differential equations with a time delay, Comput. Appl. Math., 41
(2022) no. 3, 114. https://doi.org/10.1007/s40314-022-01810-9

[8] W.T. Aniley and G.F. Duressa, Nonstandard finite difference method for time-
fractional singularly perturbed convection-diffusion problems with a delay in time, Results
Appl. Math., 21 (2024), 100432. https://doi.org/10.1016/j.rinam.2024.100432

[9] P. Pandey, S. Kumar, J.F. Gomez-Aguilar and D. Baleanu, An efficient technique
for solving the space-time fractional reaction-diffusion equation in porous media, Chin. J.
Phys., 68 (2020), pp. 483–492. https://doi.org/10.1016/j.cjph.2020.09.031

https://doi.org/10.1122/1.549724
https://doi.org/10.1122/1.549724
https://doi.org/10.1122/1.549724
https://doi.org/10.1122/1.549724
https://doi.org/10.1122/1.549724
https://doi.org/10.1029/2000WR900031
https://doi.org/10.1029/2000WR900031
https://doi.org/10.1029/2000WR900031
https://doi.org/10.1029/2000WR900031
https://doi.org/10.1016/j.cam.2008.04.018
https://doi.org/10.1016/j.cam.2008.04.018
https://doi.org/10.1016/j.cam.2008.04.018
https://doi.org/10.1016/j.cam.2008.04.018
https://doi.org/10.1002/nme.2518
https://doi.org/10.1002/nme.2518
https://doi.org/10.1002/nme.2518
https://doi.org/10.1002/nme.2518
https://doi.org/10.1002/nme.2518
https://doi.org/10.17762/msea.v71i4.1331
https://doi.org/10.17762/msea.v71i4.1331
https://doi.org/10.17762/msea.v71i4.1331
https://doi.org/10.17762/msea.v71i4.1331
https://doi.org/10.1007/s40314-022-01810-9
https://doi.org/10.1007/s40314-022-01810-9
https://doi.org/10.1007/s40314-022-01810-9
https://doi.org/10.1007/s40314-022-01810-9
https://doi.org/10.1016/j.rinam.2024.100432
https://doi.org/10.1016/j.rinam.2024.100432
https://doi.org/10.1016/j.rinam.2024.100432
https://doi.org/10.1016/j.rinam.2024.100432
https://doi.org/10.1016/j.cjph.2020.09.031
https://doi.org/10.1016/j.cjph.2020.09.031
https://doi.org/10.1016/j.cjph.2020.09.031
https://doi.org/10.1016/j.cjph.2020.09.031


296 F.E. Merga and G.F. Duressa 18

[10] V. Gafiychuk, B. Datsko and V. Meleshko, Mathematical modeling of time frac-
tional reaction-diffusion systems, J. Comput. Appl. Math., 220 (2008) no. 1-2, pp. 215–
225. https://doi.org/10.1016/j.cam.2007.08.011

[11] J. Zhang and X. Yang, A class of efficient difference method for time fractional
reaction-diffusion equation, Comput. Appl. Math., 37 (2018) no. 4, pp. 4376–4396. http
s://doi.org/10.1007/s40314-018-0579-5

[12] K. Van Bockstal, M.A. Zaky and A.S. Hendy, On the existence and uniqueness
of solutions to a nonlinear variable order time-fractional reaction-diffusion equation with
delay, Commun. Nonlinear Sci. Numer. Simul., 115 (2022), 106755. https://doi.org/
10.1016/j.cnsns.2022.106755

[13] T. Hamadneh, Z. Chebana, I. Abu Falahah, Y.A. Al-Khassawneh, A. Al-
Husban, T.E. Oussaeif and A. Abbes, On finite-time blow-up problem for nonlin-
ear fractional reaction-diffusion equation: analytical results and numerical simulations,
Fractal Fract., 7 (2023) no. 8, 589. https://doi.org/10.3390/fractalfract7080589

[14] N.T. Negero, A robust fitted numerical scheme for singularly perturbed parabolic
reaction-diffusion problems with a general time delay, Results Phys., 51 (2023), 106724.
https://doi.org/10.1016/j.rinp.2023.106724

[15] A.R. Ansari, S.A. Bakr and G.I. Shishkin, A parameter-robust finite difference
method for singularly perturbed delay parabolic partial differential equations, J. Comput.
Appl. Math., 205 (2007) no. 1, pp. 552–566. https://doi.org/10.1016/j.cam.2006.0
5.032

[16] J.J. Miller, E. O’riordan, and G.I. Shishkin, Fitted numerical methods for singular
perturbation problems: error estimates in the maximum norm for linear problems in one
and two dimensions, World scientific, 1996.

[17] A.R. Ansari, S.A. Bakr and G.I. Shishkin, A parameter-robust finite difference
method for singularly perturbed delay parabolic partial differential equations, J. Comput.
Appl. Math., 205 (2007) no. 1, pp. 552–566. https://doi.org/10.1016/j.cam.2006.0
5.032

[18] R.N. Rao and P.P. Chakravarthy, A fitted Numerov method for singularly perturbed
parabolic partial differential equation with a small negative shift arising in control theory,
Numer. Math-Theory M.E., 7 (2014) no. 1, pp. 23–40. https://doi.org/10.1017/S100
4897900000271

[19] F.W. Gelu and G.F. Duressa, A uniformly convergent collocation method for sin-
gularly perturbed delay parabolic reaction-diffusion problem, Abstr. Appl. Anal., 2021
(2021), pp. 1–11. https://doi.org/10.1155/2021/8835595

[20] E.A. Megiso, M.M. Woldaregay and T.G. Dinka, Fitted tension spline method
for singularly perturbed time delay reaction diffusion problems, Math. Probl. Eng., 2022
(2022). https://doi.org/10.1155/2022/8669718

[21] A.A. Tiruneh, G.A. Derese and D.M. Tefera, A nonstandard fitted operator method
for singularly perturbed parabolic reaction-diffusion problems with a large time delay, Int.
J. Math. Sci., 2022 (2022), pp. 1–11. https://doi.org/10.1155/2022/5625049

[22] K. Khari and V. Kumar, Finite element analysis of the singularly perturbed parabolic
reaction-diffusion problems with retarded argument, Numer. Methods Partial Differ. Equ.,
38 (2022) no. 4, pp. 997–1014. https://doi.org/10.1002/num.22785

[23] J. Howlader, P. Mishra and K.K. Sharma, An orthogonal spline collocation method
for singularly perturbed parabolic reaction-diffusion problems with time delay, J. Appl.
Math., Comput., 70 (2024) no. 2, pp. 1069–1101. https://doi.org/10.1007/s12190-0
24-01993-w

[24] B.J. McCartin, Computation of exponential splines, SIAM J. Sci. Comput., 11 (1990)
no. 2, pp. 242-–262. https://doi.org/10.1137/0911015

https://doi.org/10.1016/j.cam.2007.08.011
https://doi.org/10.1016/j.cam.2007.08.011
https://doi.org/10.1016/j.cam.2007.08.011
https://doi.org/10.1016/j.cam.2007.08.011
https://doi.org/10.1007/s40314-018-0579-5
https://doi.org/10.1007/s40314-018-0579-5
https://doi.org/10.1007/s40314-018-0579-5
https://doi.org/10.1007/s40314-018-0579-5
https://doi.org/10.1007/s40314-018-0579-5
https://doi.org/10.1016/j.cnsns.2022.106755
https://doi.org/10.1016/j.cnsns.2022.106755
https://doi.org/10.1016/j.cnsns.2022.106755
https://doi.org/10.1016/j.cnsns.2022.106755
https://doi.org/10.1016/j.cnsns.2022.106755
https://doi.org/10.1016/j.cnsns.2022.106755
https://doi.org/10.3390/fractalfract7080589
https://doi.org/10.3390/fractalfract7080589
https://doi.org/10.3390/fractalfract7080589
https://doi.org/10.3390/fractalfract7080589
https://doi.org/10.3390/fractalfract7080589
https://doi.org/10.3390/fractalfract7080589
https://doi.org/10.1016/j.rinp.2023.106724 
https://doi.org/10.1016/j.rinp.2023.106724 
https://doi.org/10.1016/j.rinp.2023.106724 
https://doi.org/10.1016/j.rinp.2023.106724
https://doi.org/10.1016/j.cam.2006.05.032 
https://doi.org/10.1016/j.cam.2006.05.032 
https://doi.org/10.1016/j.cam.2006.05.032 
https://doi.org/10.1016/j.cam.2006.05.032
https://doi.org/10.1016/j.cam.2006.05.032 
https://doi.org/10.1016/j.cam.2006.05.032
https://doi.org/10.1016/j.cam.2006.05.032
https://doi.org/10.1016/j.cam.2006.05.032
https://doi.org/10.1016/j.cam.2006.05.032
https://doi.org/10.1016/j.cam.2006.05.032
https://doi.org/10.1016/j.cam.2006.05.032
https://doi.org/10.1016/j.cam.2006.05.032
 https://doi.org/10.1017/S1004897900000271
 https://doi.org/10.1017/S1004897900000271
 https://doi.org/10.1017/S1004897900000271
https://doi.org/10.1017/S1004897900000271
 https://doi.org/10.1017/S1004897900000271
https://doi.org/10.1017/S1004897900000271
https://doi.org/10.1155/2021/8835595
https://doi.org/10.1155/2021/8835595
https://doi.org/10.1155/2021/8835595
https://doi.org/10.1155/2021/8835595
https://doi.org/10.1155/2022/8669718 
https://doi.org/10.1155/2022/8669718 
https://doi.org/10.1155/2022/8669718 
https://doi.org/10.1155/2022/8669718 
https://doi.org/10.1155/2022/5625049
https://doi.org/10.1155/2022/5625049
https://doi.org/10.1155/2022/5625049
https://doi.org/10.1155/2022/5625049
https://doi.org/10.1002/num.22785
https://doi.org/10.1002/num.22785
https://doi.org/10.1002/num.22785
https://doi.org/10.1002/num.22785
https://doi.org/10.1007/s12190-024-01993-w
https://doi.org/10.1007/s12190-024-01993-w
https://doi.org/10.1007/s12190-024-01993-w
https://doi.org/10.1007/s12190-024-01993-w
https://doi.org/10.1007/s12190-024-01993-w
https://doi.org/10.1007/s12190-024-01993-w
https://doi.org/10.1137/0911015
https://doi.org/10.1137/0911015
https://doi.org/10.1137/0911015


19 Fitted mesh Exponential B-spline for TF PDEs 297

[25] D. Radunovic, Multiresolution exponential B-splines and singularly perturbed boundary
problem, Numer. Algor., 47 (2008), pp. 191–210. https://doi.org/10.1007/s11075-0
08-9171-1

[26] O. Ersoy, and I. Dag, The exponential cubic B-spline algorithm for Korteweg-de Vries
equation, Adv. Numer. Anal., 2015 (2015) no. 1, 367056. https://doi.org/10.1155/20
15/367056

[27] S.C.S. Rao and M. Kumar, Exponential B-spline collocation method for self-adjoint
singularly perturbed boundary value problems, Appl. Numer. Math. 58 (2008) no. 10,
pp. 1572–1581. https://doi.org/10.1016/j.apnum.2007.09.008

[28] P.A. Selvi and N. Ramanujam, A parameter uniform difference scheme for singularly
perturbed parabolic delay differential equation with Robin type boundary condition, Appl.
Math. Comput., 296 (2017), pp. 101–115. https://doi.org/10.1016/j.amc.2016.10.
027

[29] C. Hall, On error bounds for spline interpolation, J. Approx. Theory, 1 (1968) no. 2,
pp. 209–218. https://doi.org/10.1016/0021-9045(68)90025-7

Received by the editors: July 23, 2024; accepted: November 3rd, 2024; published online:

December 18, 2024.

https://doi.org/10.1007/s11075-008-9171-1
https://doi.org/10.1007/s11075-008-9171-1
https://doi.org/10.1007/s11075-008-9171-1
https://doi.org/10.1007/s11075-008-9171-1
https://doi.org/10.1007/s11075-008-9171-1
https://doi.org/10.1155/2015/367056
https://doi.org/10.1155/2015/367056
https://doi.org/10.1155/2015/367056
https://doi.org/10.1155/2015/367056
https://doi.org/10.1155/2015/367056
https://doi.org/10.1016/j.apnum.2007.09.008
https://doi.org/10.1016/j.apnum.2007.09.008
https://doi.org/10.1016/j.apnum.2007.09.008
https://doi.org/10.1016/j.apnum.2007.09.008
https://doi.org/10.1016/j.amc.2016.10.027
https://doi.org/10.1016/j.amc.2016.10.027
https://doi.org/10.1016/j.amc.2016.10.027
https://doi.org/10.1016/j.amc.2016.10.027
https://doi.org/10.1016/j.amc.2016.10.027
https://doi.org/10.1016/j.amc.2016.10.027
https://doi.org/10.1016/0021-9045(68)90025-7
https://doi.org/10.1016/0021-9045(68)90025-7
https://doi.org/10.1016/0021-9045(68)90025-7

	1. Introduction
	2. Preliminaries and Properties of Continuous Solution
	3. Numerical Scheme Formulation
	3.1. Temporal Discretization
	3.2. Spatial Discretization

	4. Convergence analysis
	5. Numerical Examples and Results
	6. Conclusions
	References

