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TWO STEP STEFFENSEN-TYPE METHODS WITH
OR WITHOUT MEMORY FOR NONDIFFERENTIABLE EQUATIONS

IOANNIS. K. ARGYROS' and GAGAN DEEP*

Abstract. In the current study, two step Steffensen-Type methods with and
without memory free from derivatives are considered for the nondifferentiable
equations and the local as well as semilocal convergence analysis is proved under
more generalized conditions. Numerical applications are provided which demon-
strate the theoretical results. Better results in terms of radii of convergence balls
and number of iterations are obtained using the proposed approach as compared
to the existing ones.
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1. INTRODUCTION

A significant and interesting challenge in numerical analysis is the problem
of solving a nonlinear equation or system of nonlinear equations of the form

(1) F(x) =0,

where F' is a Fréchet differentiable operator mapping from a Banach space
X into X, and D be an open convex subset of X. Formulation of problems
as an equation like (1) using Mathematical Modeling [2, 6, 11, 14, 24] arises
in multiple disciplines of science and engineering. Obtaining a solution z* €
D of (1) is in analytic form is another important issue. The non-analytic
and complex functions are thereby handled using a useful computational tool
called iterative methods which approximate the solution z* of (1). To further
overcome the issues like slow or no convergence, divergence and inefficiency,
an extensive literature can be found on convergence of iterative methods based
on algebraic or geometrical considerations [14, 24]. As a result, researchers all
around the world are persistently endeavoring to create higher order iterative
methods [1, 3, 7, 8, 5,9, 13, 16, 17, 18, 19, 20, 21]. Let L(X) denote the space
of bounded linear operators from X into itself and £ € R\ {0} be a parameter.
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We examine the convergence of a general Steffensen-type method free from
derivatives developed by Chicharro et. al [7] which is defined for all m =
0,1,2,... by

20 €D, Uy =xpm +EF (),
Ym =Tm — [Umaxm§ F]ilF(xm)a
(2) Tmt1 = Ym — [Ums Ymi F] 7 F (Ym),

where [, ; F] : D x D — L(X) is divided difference of order one [2, 14]. The
beauty of the method (2) lies in the fact that if £ is a nonzero constant then the
method is without memory and if is taken to be Kurchatov operator [7] then it
becomes method with memory. The fifth convergence order of the method (2)
is proved utilizing Taylor series expansions in [7] provided that X = R¥ and
by assuming the existence of at least the fourth derivative which is not on the
method. Hence, the application is limited to solving nonlinear equation (1)
where the operator is at least that many times differentiable. But the method
may converge even if F4) does not exist.

For an instance, consider D to be an interval [_75,2} and the function f
defined on D as
() = t3log(n?t?) + t°sin(3), t#0

0, t=0.

Clearly, f®)(t) is not continuous at ¢ = 0. As a result the convergence
of method (2) to the solution t* = 1 cannot be assured using results in [7]
although the method converges.

Moreover, notice that the method (2) does not have any derivatives. Also,
the iterates which contain z,, + F(z,,) may lead to loss of convergence when
F has large variations near the solution [15].

Some other limitations with local convergence analysis provided in [7] are:

(C1) The initial guess z( is “a shot in dark”and no information is available
on the uniqueness of the solution.

(C2) A priori upper bounds on ||z, — z*|| are not given, * € D being a
solution of the equation (1). The number of iterations to be performed
to reach a predecided error tolerance are not known.

(C3) The convergence of the method is not assured (although it may converge
to x*) if at least f(® does not exist.

(C4) The results are limited to the case only when X = RF.

(C5) The more interesting semi-local convergence is not given in [7].

The same concerns exist for numerous other methods with no derivatives [7,
21]. So, the technique of this study can also be used to extend the applicability
of such methods along the same lines.

The main feature of current study is that it takes up all the aforementioned
limitations positively. In particular, the local convergence is based on the
more general w-continuity condition [1, 2, 17] and uses only information from
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the operators appearing on the method. Moreover, the semi-local convergence
utilizes majorizing sequences [1, 2] is also provided.

The novelty of the article lies in the fact that the process leading to the
aforementioned benefits does not rely on the particular method (2). But it can
be utilized on other methods involving inverses of linear operators in a similar
manner. The numerical study includes the results considering both cases of
the method (2) i.e with memory and without memory. The results show
that lesser number of iterations are required to obtain the solution and larger
convergence radii are obtained using the presented approach as compared to
existing ones. The development of efficiency and computational benefits have
been discussed in [7], hence are not repeated in present article.

The paper is structured as follows: The local convergence of the method
(2) is followed by the semi-local convergence. The numerical applications and
concluding remarks, respectively complete the paper.

ANALYSIS I: LOCAL

In this section, local convergence of (2) for solving (1) is established. Sup-
pose U(x,r) and Ulz,r] denote the open and closed balls, respectively with
center x and radius r. Let B = [0,400). The hypotheses for the local conver-
gence analysis are: Assume there exist

(Th) Functions @ : B x B — B, w; : B — B, which are continuous, sym-
metric and nondecreasing (CSNF) such that ®g(w;(t),t) —1 = 0 admits
a minimal positive solution (MPS) denoted as ko. Let By = [0, ko).

(T;) A CSNF @ : By x By — B such that for J; : By — B, where

 P(wa (1), 1)
N =15 w0

J1(t) — 1 = 0 admits MPS in By denoted as k1. Let By = [0, k7).

(T3) ®o(wi(t), Ji(t),t) — 1 = 0 admits a MPS in B; denoted by k2. Let
BQ = [07 k?)

(Ty) For Jy: By — B, where

_ P(wi(t), a(B))
J2(0) 11— %éwl(t; Ji(t)t)’

Jo(t) — 1 =0 has a MPS in By denoted by k3.

(3) Let k™ = min{k;,k3} and B*=]0,k").
It follows by this definition that for all ¢ € B*

(4) 0 < @o(wi(t),t) <1,

(5) 0 < Dg(wi(t), J1(t)t) < 1,
and

(6) 0<J(t) <1 for j=1,2.



200 Toannis. K. Argyros and Gagan Deep 4

(T5) There exist * € D solving equation F'(xz) = 0 and an invertible operator
L so that for all z € D, u =z + £F(x)

[u— 2" < wi(llz —z[])
and
IL7HF (x) = L)|| < ®o(flu—2*[|, |z — 2*[]).

Define the set Dy = D N U (z*, ko).
(Ts) Forall x € Dy, u=x+ EF(x)

1L ([, 25 F] = [z, 2% F])IL < @(flu = 27|, [l2 = 27|).

and

(T7) Ulz*, k] C D, where
k = max{k*, w1 (k*)}.
The analysis follows for the method (2) via means of hypotheses (71)-(77).

THEOREM 1. Assume hypotheses (T1)-(T7) are valid. Then, the assertions
are validated

(7) {zmy C U(" k),
(8) [Ym = 2mll < Jillem — 2 Dzm — 27| < lom — 27| <7,
(9) [emi1 = 2" < Ja(llem — 2" [Dlem — 2| < [lam — 27

and the sequence {x,,} is convergent to x*, provided that the initial point
xo € U(z*, k*) — {z*}.
Proof. The application of hypotheses (11), (T5) and (4), (7) give
IL7H(F (o) — L)|| <@o(llu — ™[], [l — 2*||)
<@o(wi([lzo — 2*|), lzo — =)
(10) <Pg(wq(k™), k%) < 1.

The estimate (10) and the celebrated lemma attributed to Banach on linear
operators imply the invertibility of [ug, zo; F'| and the estimate

(11) w0, zo; FI7'L|| <

1
1= (w1 ([[zo—2*[),[leo—a*) -
Thus, the iterate yg exists and
(12) yo — a* = xo — 2 — [ug, wo; F] ' F(x0)
by the first substep of (2) if m = 0. It follows by the estimate (3), (6) (if
j=1), (11), (12) and (Tg) that
yo — & = [ug, zo; ]~ ([uo, x0; F] — [w0, 2*; FI) (z0 — 27),

SO

@([Juo—z*|,llzo—z*|)[|xo—2*|]
1=®o ([Jluo—z*[|,[|zo—2*|])

(13) <Ji(lwo — 2" [Dllwo — 2| < [lwo — 27| < &

lyo — ™| <
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Hence, the iterate yo € U(z*, k*) and the assertion (8) is validated if m = 0.
As in (10) but using (3), (5) and (75) we obtain

(14) w0, yo; FI'L|| <

1
1= ([luo—z*[|,[lyo—z*[)) *
so the iterate x1 exists.
Moreover,we can have if m = 0 in the method (2)

x1 — x* = [ug, yo; F) ™~ ([uo, yo; F] — [yo, 2*; F])(yo — 2*)
leading as in (13)

s < ®(luo—a* | llyo—=* Dllyo—a* |
— < )
121 = 27| <==g 0 rus—= T o271

(15) <Ja([lzo — 27|

So, the iterate z1 € U(z*, k*) and the assertion (7), (9) are validated if m =
1 and m = 0, respectively. The induction for assertions (7)—(9) is terminated
if xg, wo, Yo, x1 are exchanged by Xy, Um, Ym, Tm1 in previous calculations.
Furthermore, the estimate

2o — &*[| < [lwo — 27,

(16) [Zmyr — 27| < b(l|lzm —27]]) < K7,
for b = Jo(||lxo — z*||) € [0,1) give limy, 4100 Tm = 2* and complete the
induction for assertions (7)—(9). O

REMARK 2. The real function wy can be selected using the assumption (18)
and the following calculations:

u—x*=x—a"+EF(x) =x — 2" + &[z, 2" Fl(x — x¥)
= (I4+¢LL Y[z, 2" F] — L+ L))(z — %),
— (I +€L) + €L ([o, 0" F] — L)) (@ — o).
Thus, a possible choice for the function wi is
(17) wi(t) = (|1 + L[ + [[€][P1(2))t.

The function can be further specified if the linear operator L is precised.

A popular choice is L = F'(x*). But in this case although there are no
derivatives on the method (2) it cannot be used to solve non differentiable
equations under previous assumptions, since we assume x* is a simple solution
(i.e., F'(x*) is invertible). Thus L should be chosen so that functions “® ”
are as tight as possible but not L = F'(x*) in the case of nondifferentiable
equations.

The isolation of the solution domain is specified in the next result.

PROPOSITION 3. Assume conditions (1z) and (T5) are validated on the ball
U(x*,p) for some p > 0 and there exists p1 > p such that such that

IL7 [y, 2™ F] = L)l <@1(|ly — =*|D),
(I)l(p1> <17
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where ®1 : By x B — R is CSNF.
Then, the equation F(x) = 0 is uniquely solvable by x=* in the domain Dy =
D NU[z*, p|.

Proof. Suppose there exists a solution A € Dj such that F(A\) = 0 and
A # z*. Define the divided difference [\, z*; F]. Then, we get
(18) IL7H (x5 F) = )| <@1(|IA = 2*[])
S‘I’1(p1) < 1.
Thus, from identity

we conclude A = z*. O

REMARK 4. Notice that a possible choice for p = k*.

ANALYSIS II: SEMI-LOCAL

This time the role of * € D and the functions “®” are switched by xg € D
and the functions “¥” precised below.
Assume there exist:

(M;) Functions CSNF ¥ : BXxB — B, ws : B — B so that Wo(wa(t),t)—1 =
0 has MPS in B denoted as ¢. Let B3 = [0, q).
(MQ) Functions CSNF W : B3 X B3 X B3 — B, Uy B3 X Bg X B3 X Bg — B.
Let D1 =DnN U(xo,q)
(M3) There exist g € D and an invertible linear operator L so that for
x €D, u=ux+EF ()
[l — mol| < wa(l|z — zol])
and
1L~ (fu, 25 F] = L)|| < Wo(llu — ol Iz — zol))-
It follows by (M) and (M3) that
Po(lluo — @ol|, [[wo — wol|) < ¥(w2(0),0) <1,

so, [ug, xo; F] is invertible, thus yo exists and consequently we can let
I[uo, o3 Fo] ™' F(wo) || < 70
Consider the sequence {d,,} generated for §p = 0 and each m =

0,1,2... as
W (w2 (0m ),0m ,yYm ) (Ym —0m
b1 =m + FEEG G )
(19) Cm-i—l :\Ijl (w2(5m)a 6mu Ym» 5m+1)
and

<m+l
2(0m+1),0m+1)”

Ym+1 = Om+1 + T—Wo(w
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Uo(w2(0m),¥m) <1 Wo(wa(dm),dm) < 1

m =0,1,2,... and d,, < qo for some gy € Bs — {0}. It follows from

the definition (19) and this hypothesis that 0 < §,, < v < dmt1 < Qo

and there exists §* € [0, qo| so that limy,, 10 0, = 0*. Notice that 6*

is the least upper bound of the scalar sequence {d,,} which is unique.
(Ms) For each x,y,u € D1, u=z+EF(x)

1L [y, @5 F] = [w, 2; F])|| < ¥(||lz = 2oll, lu — o, lly — zo])
and
1L ([, .3 F] = [w, v F| < Wa([lz — zol|, ly — zoll, llu — zoll, [[v — o))

and
(Mg) Ul(xo,q*) C D, where

q¢* = max{d", wa(0")}.
Then as in local case we present the semi-local result.

THEOREM 5. Under the Assumptions (M7)—(My) there exists x* € Ulxg, ¢*|
solving the equation F(x) =0 so that

(20) |xm — || < 6" — 0 forall m=0,1,2,....
Proof. The assertions

(21) lyi = zill < v —

and

(22) @it1 = will < biv1 — v

must be shown by induction. Notice that (21) holds if m = 0 by the choice
of dp, 7o and the first substep of the method (2) if m = 0. Then, as in local
proof we have in turn the estimates

[i, yis F] 7L <
1
< 1-Wo(w2(0i),7:)’
F(yi) = F(yi) — F(xi) — [ui, 5 F(yi — 1),
= ([yi, xi; F| — [wi, i F))(yi — x4),
i — 2oll, l|lzi — ol [lyi — xoll)
Tiv1 — yi = — i, yi; F1 P (1),
@is1 — vill < |[wi, vi; F] L L F ()|

1
1=Wo([lui—=oll,lzi—oll)

1= F (yo)]

A
Iy
5

P; _ S .
1-Yo(w2(0;),v:) 51+1 - i
lzit1 — zoll < [|@iv1 — uill + llyi — 2o
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< 0ig1 — Vi + v — 00 = ip1 <07,
F(zip1) = Fxig) — F(yi) — [wi, 235 F)(@ig1 — vi),
= ([wi+1, yis F] = [wi, 5 F) (i1 — i),
1L F (i) | < a(lfui — zoll, s — 2oll, lyi — @oll, |zita — 2oll),
(23) < W(w2(6), 03, Vi 0it1) = Git1,
i1, @ig0; F]HL|| <

1
1—W(w2(di+1),0i+1)°
i1 — zigr || < [[wisr, zigr; FI7 LIL T F (i)

Gi

1—‘1’0(w2(gi1-&-1)75i+1) = Yi+1 = Oit1,
lyit1 — zoll < lyis1 — Zigall + [wita — ol
< Yit1 = Git1 + Oip1 — Go = Yir1 < 57
Thus, {z;}, {y;} € U(z*,6"), (21), (22) are validated and the sequences

are Cauchy in Banach space X. Hence, there exists x* € Ulz*,d*] so that
lim z; = z*. By letting i — 400 in (23) we get F'(z*) = 0. Finally, for i > 0

1—+00
the estimate

IN

[Zitm — il < Gipm — b
implies (20) if i — +o0. O

REMARK 6. The function we can be determined analogously to the function
wi as follows:

u—x0=1x—x9+ EF(x)
= (I + &z, o; F])(z — o) + EF (20),
= [(I +&L) + ELL Y[z, 0; F] — L)](z — x0) 4+ EF (20).
Assume: There exist FCN Vo : B3 — B such that
1L ([, z0: F] = L))|| < Wa(]|z — o))
for all x € By. Then, we can choose
wa(t) = ([[1 + LI + [ENILIW2 ()t + [[€][1IF (o)l
The next result determines the isolation of a solution region.

PROPOSITION 7. Assume there exists a solution T € B(xg,v) of solution
F(z) =0 for some v >0, The first condition in (Ms) is validated on the ball
B(xo,v) and there exists w > v such that

1L ([, 2; F) = L)|| <%o(llm — 2o, llz — zol]),
Uy (v, w) <1,
where Wy : B x B — R is FCN.

Let D3 = D N Blxg,w]. Then, the only solution of the equation F(z) = 0
is T in the region Ds.
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Proof. Let 7 € Ds satisfy F(7*) = 0. Define the divided difference
[7,7*; F]. This is possible if 7" # 7. Then, we obtain in turn by the con-
ditions

IL=([r, 7% F] = L)|| <%o(|l7 — woll, 7 — o)),
<Uy(v,w) < 1,

thus [, 7*; F]~! € L(B). But the identity
0=F(r) = F(%) = [7, 7" Fl(r = 77)

leads to a contradiction and the divided difference [7, 7*; F] can not be defined.
Therefore, we conclude that 7% = 7. ]

REMARK 8. (1) The point q can also be replaced by 6* in condition (My).
(2) If conditions (My)—(My) are all validated, let * = 7 and 0* = v.

APPLICATIONS

Method (2) can turn from without memory to with memory if the constant
¢ turns into a suitable linear operator. As in [7] choose £ to be the Kurchatov
operator [2, 14]

(24) Er —[2Tm — Timo1, Tm_1; F] L.

That is, we obtain the method with memory derived by (2) for £ replaced by
(24). Then, the local as well as the semi-local results hold say if wy, wy are
adjusted. In view of the calculation

_ [
1=®0(2zm—2m—1—2*|,|Zm—2*]])

_ 22|
1=@0 (2l|@m —z* ||+ [[zm—1—2*||,[|zm —2*|))

122 — Tm—1, Tm—1; F]*lLL*IH

IN

IN

provided that
IL7([z, 23 F] = L)|| < o(ll2 — ", l= — 2”])),

where @ : X — X — X is CSNF for all z,z € D.
L

Then, £ can be replaced in Remark 2 by ENETRY

®g(3t,t) — 1 has a MPS denoted as 3.
In this case we also require (%) to be replaced by

(T7)" Ulz*,<] where ¢ = max{3k*, wy(k*)}.

= a* provided that

EXAMPLE 9. Let X =R xR x R and D = B[z*,1]. Consider the mapping
on the ball D be given for p = (p1, p2, p3)* as

T
Fl(p) = (%P% + p1, p2, €’ — 1) :
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Method S M S Mo PM1y, My MWM HLMs PM25
Convergence Radius 0.274772 0.330032 0.111497 0.131305 0.184350 0.02763 0.118532

Table 1. Comparison of radius of convergence Example 9.

The Jacobian is given by

(e—Dpr+1 0 0
F'(p) = 0 1 0.
0 0 e

It follows that the solution x* = (0,0,0)T and F'(xz*) = I the identity map-
ping with choice L = F'(x*). The divided difference is defined by [z,y; F| =
fol F'(x 4+ 0(y — x))df. Then, the conditions (T3)-(Ty) are validated provided
that

Then, taking & = 1 i.e considering the case of method (2) (denoted by SM)
without memory, the radius of convergence k* from (4) is given as

kE* = 0.2747721282852604 . . .

If we consider the method (2) (denoted by SMs) with memory, then from
(24) the radius of convergence k* is given by

kE* = 0.33003245785816543 . . .

We compare the radius of convergence obtained by fourth order Kung-Traub
method (My) given by Sharma et al. [22], fifth-order Weerakoon method (MW M)
in Sharma and Parhi [23], fourth and fifth order methods (PM1y),

(HLMs5),(PM2s5) in Maroju et al. [12].

Thus, from Table 1 it is clear that enlarged convergence radius is obtained
by the our approach for the methods SMy and SMs in comparison to existing
methods.

REMARK 10. Notice that using the iterates of the type wm = Tpm + i F(zm,)
may lead to very small radius of attraction balls for the method, unless a small
x; 1s used.

ExamMpLE 11. Let Q : X — X be a mapping. Recall that the standard
divided difference of order one when B = R¥ is defined for & = (r1,22,...,Tk),
Y= (y17y27"'7yk‘)’ 7::07172a"'5k7 j:Oa152a"'ak by

_ (YL Wi 1Y it 1y sl ) — Q5 (YT ooy Ui — 155, Ti 1 e ey T
[y;x7Q]jz — Q](yl Yi—1,Yi,Ti+1 /;)._g?(yl Yi—1,27,Ti41 k)
i i

provided that y; # x;. It is known that for certain pairs of distinct vectors x, vy,
the formula is not applicable when some of the components are equal.
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The solution is sought for the nonlinear system
ti—ta+ 1435t —1/=0
ti+t3— T+ 3[ta| =0
Let Q = (Q1,Q2)T for (t1,t2) € R x R, where
Qi=t] —to+ 1+ 3t —1| and
Q2 =t1 +15— 7+ S[tal.
Then, the system becomes
Q(t)=0 for t=(t1,t2)7.

The divided difference L = [-,-; Q] belongs in the space Lox2(R) and is
the standard 2 x 2 matriz in R? [10]. Let us choose vg = (1.15,2.36)T and
& = 1. Then, the application of the method (2) gives the solution x* after three
iterations. The solution

r* = (2}, 25)7 = (1.159360850193 . . ., 2.361824342093 . . . ).

Taking into account (24) and x—1 = (1.22,2.37)T, if we consider the method
(2) with memory, the solution x* is obtained after two iterations. The number
of iterations required to obtain solution x* by two Kurchatov methods presented
in [4] are four and five, respectively. Thus, less number of iterations are re-

quired to obtain the solution by the methods SMy and SMs in comparison to
Kurchatov methods [4].

ExampLE 12. Consider the following system of ten equations:

10
Y owj—e =0, 1<i<10.
J=1j#i
The initial approvimations chosen are xg = (1,1,1,1,1,1,1,1,1, )T andz_1 =
(0,0,0,0,0,0,0,0,0,0)” to obtain the solution

x* = (0.10048840033731707 . ..,0.10048840033731707 .. ., ...,
0.10048840033731707 . .. )T

The comparison of error and norm of function for methods SMy and SM>
taking three iterations are presented in Table 2. The stopping criterion used
is [|zp1 — ol + || F ()] < 107190,

The number of iterations required to obtain solution z* by methods SM;
and SMy are three and two, respectively. Thus, the method (2) with memory
requires less number of iterations than the method without memory taking £ =
0.5.

REMARK 13. Summing up what we did in this study is that the local and
semilocal convergence of the method (2) are presented without Taylor series
expansions. Moreover, the limitations (C1)—(C5s) have been addressed as fol-
lows:
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Methods k lzg+1 — zkl] |1 (z)]]
1 0.283 — 001 1.29e — 001
S M 2 1.31e — 002 1.61e — 007
3 1.62e — 008 3.13e — 025
1 0.284 — 001 6.92¢ — 003
S Mo 2 6.98¢ — 004 1.80e — 013
3 1.82e — 014 3.11e — 048

Table 2. Comparison of the performances of methods for Example 12.

(C1)" The radius of convergence k* is provided in (3). So, the initial point is
selected from a certain ball centered at x* and of radius k*. Moreover,
the uniqueness of the solution is established in the Proposition 3 and
Proposition 7. Furthermore, the convergence conditions use only the
first derivative (see Theorem 1 and Theorem 5).

(C3) Computable error bounds on ||zmy — x*|| or |Tmi1 — Tm|| become avail-
able in Theorem 1 and Theorem &, respectively. Thus, the number of
iterations to be performed to reach a certain error tolerance is known
in advance.

(Cs) The method (2) converges t* = 1 in the motivational example of the
introduction if tg is chosen close enough to t* and inside D for € = 1.

(C4)' The results are established in more general setting of a Banach space.

(Cs) The more interesting and challenging semi-local convergence analysis is
provided using majorizing sequences [2, 14].

CONCLUDING REMARKS

The present study is based on the local and semi-local analysis of two step
Steffensen-type methods with and without memory. It is applicable to the case
when the problems formulated from varied areas of science and engineering
are nondifferentiable. However, this methodology can also be applied to solve
the differentiable equations and on other methods utilizing the inverses of
linear operators. Further, numerical experiments are performed on various
examples for both the cases i.e with and without memory that demonstrates
the theoretical results. The enlarged convergence radii have been obtained
by the presented approach as compared to the existing ones. In our future
research the methodology shall be extended to extend the applicability of
multipoint and multi-step methods [2, 14, 21, 24].
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