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HIGHER-ORDER APPROXIMATIONS
FOR SPACE-FRACTIONAL DIFFUSION EQUATION

ANURA GUNARATHNA WICKRAMARACHCHI∗ and HANIFFA M. NASIR†

Abstract. Second-order and third-order finite difference approximations for
fractional derivatives are derived from a recently proposed unified explicit form.
The Crank-Nicholson schemes based on these approximations are applied to
discretize the space-fractional diffusion equation. We theoretically analyze the
convergence and stability of the Crank-Nicholson schemes, proving that they are
unconditionally stable. These schemes exhibit unconditional stability and con-
vergence for fractional derivatives of order α in the range 4

3 ≤ α ≤ 2. Numerical
examples further confirm the convergence orders and unconditional stability of
the approximations, demonstrating their effectiveness in practice.
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1. INTRODUCTION

Fractional derivatives, for example, the Riemann-Liouville, Caputo, and
Grünwald-Letnikov derivatives, have found numerous applications across vari-
ous applied fields, including physics [9, 12, 26, 27], biology[6, 28, 29], finance[24,
25], and engineering [10, 11, 14, 15, 16, 17]. Their unique characteristics such
as non-locality give more suitable descriptions for various phenomena, includ-
ing anomalous diffusion, population dynamics, fractional Brownian motion,
etc. compared to traditional derivatives. However, the non-local nature of
fractional derivatives often leads to complex formulas, making it difficult to
solve fractional-order differential equations, such as fractional-order diffusion
equations, using both analytical and approximate methods [5, 7, 23].

The Grünwald difference (GD) approximation presents a finite difference
technique for approximating fractional derivatives. It utilizes an infinite sum
of terms derived from the power series expansion of the generator W1(z) =
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(1 − z)α about zero [5]. Despite its first-order accuracy, the GD approxima-
tion yields unstable results, even with stable methods like Euler and Crank-
Nicholson, which are typically reliable for integer-order diffusion equations.
To address this, a shifted version with shift r = 1 was introduced [7], aim-
ing to restore unconditional stability while preserving first-order accuracy for
fractional derivatives.

The shifted Grünwald approximation has served as a cornerstone for con-
structing higher-order finite difference approximations for fractional order dif-
ferential equations. Meerchaert et al. [19] employed extrapolation technique
on the Crank-Nicholson scheme of the Shifted Grünwald approximation for the
fractional diffusion equation to obtain the second-order accuracy for the space
discretization. Nasir et al. [18], from the shifted Grünwal approximations with
a non-integer shift r = 1

2 , obtained a second-order accuracy which displays su-
per convergence. Convex combinations of the shifted form of the Grünwal ap-
proximation with various shifts were used to obtain some second-order approx-
imations [20]. This technique is referred in the literature as the weighted and
shifted Grünwald difference(WSGD) approximations. A third-order approxi-
mation through WSGD was not successful as it fails to give the desired stability
for a fractional derivative order α in the range 1 ≤ α ≤ 2. However, achiev-
ing stability for the third-order approximation is possible within a restricted
range of the fractional order as shown in [22]. Hao [21] derived a fourth-order
approximation using a quasi compact difference approximation technique on
a WSGD approximation. Additionally, by utilizing super-convergent approx-
imations for fractional derivatives, Zhao and Deng [33] proposed a series of
higher-order difference schemes for the space fractional diffusion equation.

Moreover, Lubich [4] proposed generators in the form of power or rational
polynomials to construct higher-order approximations for fractional deriva-
tives. While these generators provide coefficients for higher-order accuracy
without shifts, their shifted forms only yield first-order approximations re-
gardless of the original accuracy orders.

Nasir and Nafa [3] introduced polynomial-type generators for higher-order
approximations with shifts and derived a second-order finite-difference scheme
for the one-dimensional fractional diffusion equation. In construction of this
work, Nasir and Nafa [2] and Gunarathna et al. [13] developed quasi-compact
schemes with third-and fourth-order accuracy, respectively, both derived from
the second-order approximation and applied them to the one-dimensional frac-
tional diffusion equation.

The generators for the Nasir and Nafa [3] approximations are usually ob-
tained manually by hand calculations, solving a resulting system of linear
equations or by symbolic computations and these processes are specific to the
problem at hand. To alleviate those difficulties, Gunarathna et al. [8] have ob-
tained an explicit form for generators that gives approximations for fractional
derivatives with shifts retaining their higher orders. This form generalizes the
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Lubich form with shift and hence the Lubich form becomes a special case with
no shift. Gunarathna et al. [30] then extended the explicit form developed in
[8] to a more general unified explicit form that gives more new approximations
for fractional derivatives and various finite difference formulas for any classical
derivative.

In this paper, we apply the unified explicit form in [8] to the space fractional
diffusion equation given by (1). We consider a second-order approximation
derived from this unified form. Subsequently, a new quasi-compact third-order
approximation is derived from this second-order approximation. Using these
approximations, second-and third -order Crank-Nicholson (C-N) schemes are
constructed for the space fractional diffusion equation. Theoretical analyses
of stability and convergence are established for both the C-N schemes.

(1) ∂u(x,t)
∂t = K1Dα

x−u(x, t) + K2Dα
x+u(x, t) + f(x, t),

with the initial and boundary conditions:
u(x, 0) = s0(x), x ∈ [a, b]; u(a, t) = Z1(t), u(b, t) = Z2(t), t ∈ [0, T ],(2)

where u(x.t) is the unknown function to be determined; K1, K2 are non-
negative constant diffusion coefficient with K1 + K2 ̸= 0, i.e., not both are
simultaneously zero; f(x, t) is a known source term. The fractional derivatives
Dα

x− and Dα
x+, in Riemann-Liouville sense, are given in Definition 1.

The remaining sections of this paper are structured as follows: Section 2
presents essential preliminaries and terminologies. Section 3 applies the uni-
fied form to obtain new second-and third-order approximations for fractional
derivatives and obtain their Crank-Nicholson (C-N) schemes with order 2 and
order 3 to solve the space fractional diffusion equation. Section 4 analyses
the C-N schemes derived in Section 3. Section 5 presents numerical examples.
Section 6 concludes the paper.

2. PRELIMINARIES AND TERMINOLOGIES

This section presents the requisite materials and definitions relevant to the
subject of the paper. Let f(x) be a sufficiently smooth function defined on a
real domain R.

Definition 1 ([5]). The left(-) and right(+) Riemann-Liouville (R-L) frac-
tional derivatives of a real order α > 0 are defined as

(3) RLDα
x−f(x) = 1

Γ(n−α)
dn

dxn

∫ x

−∞

f(η)
(x−η)α+1−n dη,

and

(4) RLDα
x+f(x) = (−1)n

Γ(n−α)
dn

dxn

∫ ∞

x

f(η)
(η−x)α+1−n dη

respectively, where n = [α]+1, an integer with n−1 < α < n and Γ(·) denotes
the gamma function.
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Definition 2 ([3]). Let {w
(α)
k } be a sequence of real numbers with generat-

ing function

W (z) =
∞∑

k=0
w

(α)
k zk.

Define a shifted difference formula with shift r as

(5) ∆α
±h,p,rf(x) = 1

hα

∞∑
k=0

w
(α)
k f(x ∓ (k − r)h).

1) W (z) is said to approximate the fractional derivatives Dα
x∓ if

(6) lim
h→0

∆α
±h,p,rf(x) = Dα

x∓f(x).

2) W (z) is said to approximate the fractional derivatives Dα
x∓ with order p

if
(7) ∆α

±h,p,rf(x) = Dα
x∓f(x) + O(hp).

Proposition 3 (Theorem 1 [3, 2]). Let α > 0, n = [α] + 1, and a non-
negative integer m be given. Let a function f(x) ∈ Cm+n+1(R) and Dkf(x) =
dk

dxk f(x) ∈ L1(R) for 0 ≤ k ≤ m+n+1. Then, a generator W (z) approximates
the fractional derivatives Dα

x±f(x) with order p and shift r, 1 ≤ p ≤ m, if and
only if
(8) G(z) = 1

zα W (e−z)erz = 1 + O(zp).
Moreover, if G(z) = 1 +

∑∞
l=p alz

l, where al ≡ al(α, r), then we have

∆α
±h,p,rf(x) = Dα

x±f(x) + hpapDα+p
x± f(x) + hp+1ap+1Dα+p+1

x± f(x) + . . .

+ hmamDα+m
x± f(x) + O(hm+1).(9)

2.1. The unified explicit form. In this section, the unified form appearing
in [30] is presented. This unified form extends the explicit form in [8] to a
more general form that covers compact finite difference formulas for higher
order classical derivatives as well as some new Lubich type generators for
fractional derivatives. For this, we introduce a base differential order d, a
positive integer, to express the fractional differential operator as

Dα
x± =

(
Dd)α

d
x±,

and consider approximating the fractional derivative by a Lubich type gener-
ator of the form

(10) W (z) =
(
β0 + β1z + . . . + βN−1zN−1

)α
d = (P (z))

α
d ,

where P (z) corresponds to the classical derivative operator Dd. The coeffi-
cients βj in (10) are to be determined based on the fractional order α, the
required approximation order p, and shift r. The degree N − 1 of P (z) is
similarly determined based on p and d. This setup leads to the following
theorem.
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Theorem 4. With assumptions of Proposition 3, the generator of the form
W (z) = Wp,r,d(z) =

(
β0+β1z+. . .+βN−1zN−1)α

d , where d is a positive integer,
approximates the fractional derivatives Dα

x∓f(x) at x with order p and shift r
if and only if the coefficients βj satisfy the linear system

(11)
N−1∑
j=0

(λ − j)kβj = d!δd,k, k = 0, 1, . . . , N − 1,

where λ = rd/α, N = p + d and δd,k is the Kronecker delta having value of
one for k = d and zero otherwise.

Proof. In view of Proposition 3, we have G(z) = 1
zα W (e−z) erz = 1+O(zp).

This gives

G(z) = 1
zα

N−1∑
j=0

βje−jz

α
d

erz = 1
zα

N−1∑
j=0

βje(rd/α−j)z

α
d

=

 1
zd

N−1∑
j=0

βjeλjz

α
d

=

 1
zd

N−1∑
j=0

βj

∞∑
k=0

1
k!λ

k
j zk

α
d

=
(

1
zd

∞∑
k=0

bkzk

)α
d

=

 b0
zd + b1

zd−1 + . . . + bd−1
z + bd +

∞∑
k=d+1

bkzk−d

α
d

= 1 + O(zp),

where λj = λ − j, λ = rd
α and

(12) bk = 1
k!

N−1∑
j=0

λk
j βj , k = 0, 1, 2, . . . .

Since G(z) does not have any pole singularities by virtue of (8), we have bk = 0
for k = 0, 1, . . . , d − 1. Moreover, since G(0) = 1, we have bd = 1. These are
the consistency condition for the GTA with generator W (z). Now, for order
p = 1, these conditions give the system (11) with N = 1 + d and the proof
ends. For p > 1, G(z) reduces to

G(z) =

1 +
∞∑

k=d+1
bkzk−d

α
d

=: (1 + X)γ = 1 + O(zp),

where γ = α
d and

(13) X =
∞∑

k=d+1
bkzk−d.

Expansion of (1 + X)γ gives

(14) 1 + γX + γ(γ−1)
2! X2 + . . . = 1 + O(zp).
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The term with z appears in the term γX only on the left-hand side of (14).
This gives bd+1 = 0. The same is true for bk, k = d + 1, d + 2, . . . , p + d −
1, by successively comparing the coefficients of zk−d to gain O(zp) in (14).
Altogether, we have bk = δd,k, k = 0, 1, 2, . . . , p + d − 1 which yield the linear
system (11) with (12) and N = p + d. □

Theorem 5. Let α > 0, a positive integer d ≥ 1 and f(x) be a sufficiently
smooth function such that Dα

x±f(x) is defined. For an approximation (5)
for Dα

x±f(x) of order p and shift r with the generator in the form (10), the
coefficients βj are given by

(15) βj = Nj

Dj
, j = 0, 1, . . . , N − 1,

where N = p + d and

(16) Nj =
∑

0≤m1<m2<...<mp−1≤N−1
mi ̸=j,1≤i≤p−1

p−1∏
k=0

(λ − mk), Dj = (−1)d

d!

N−1∏
m=0
m̸=j

(j − m).

For the proof of Theorem 5, the interesting readers are referred to [30].

3. APPLICATIONS OF THE UNIFIED EXPLICIT FORM

This section applies the unified explicit form to derive a second and third
order approximations.

3.1. Second-order approximation. To derive the second order approxima-
tion, the following generating function form:
(17) W2,2(z) = (β0 + β1z + β2z2 + β3z3)α/2

is considered. The coefficients β0, β1, β2, and β3 are computed using the unified
form equation (15). The computed coefficients are: β0 = −λ + 2,
β1 = 3λ − 5, β2 = −3λ + 4, and β3 = λ − 1, where λ = 2r

α .

3.2. Third-order approximation: Quasi-compact form. Now, we derive
a new quasi-compact third-order approximation from the second-order approx-
imation described in the Section 3.1. In view of Proposition 3, we have

H(z) = Hr,2(z) = 1
zα Wr,2(e−z)erz = 1 + a2(r)z2 + a3(r)z3 + a4(r)z4 + . . . ,

where a2(r) = − 1
24α

(
11α2 − 36αr + 24r2) and

a3(r) = 1
6α2

(
3α3 − 13α2r + 18αr2 − 8r3). Also, Equation (9) gives

∆α
∓h,2,rf(x) = Dα

x±f(x) + a2h2D2+α
x± f(x) + O(h3)

=
(
1 + a2h2D2

)
Dα

x±f(x) + O(h3)

= PxDα
x±f(x) + O(h3),(18)

where Px =
(
I + h2a2Dα

x

)
and I is the identity differential operator. The dif-

ferential operator D2
x may be approximated by the standard central difference
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operator δ2
hf(x) with D2

xf(x) = δ2
hf(x)+O(h2). Using this, an approximation

is obtained for Px such that
Pxf(x) = (I + a2h2D2

x)f(x)
= (I + a2h2(δ2

h + O(h2)))f(x)
= (I + a2h2δ2

h)f(x) + O(h4)
= Phf(x) + O(h4),(19)

where
(20) Ph = (I + a2h2δ2

h).
Then (18) and (19) reason to give

∆±h,2,rf(x) = (Ph + O(h4))Dα
x±f(x) + O(h3)

= PhDα
x±f(x) + O(h3).(21)

3.3. Discretization of the space fractional diffusion equation. The dis-
cretization of the space fractional diffusion equation (1) in the domain [a, b] ×
[0, T ] is considered. The function u(x, t) is zero-extended outside the space
domain interval [a, b] so that the left and right fractional derivatives are ap-
plicable. For a numerical scheme, the space domain [a, b] is partitioned into
a uniform mesh of size N with sub-interval length h = (b − a)/N , and the
time domain [0, T ] into a uniform partition of size M with sub-interval length
τ = T/M . These form a uniform partition on the 2-D domain [a, b] × [0, T ]
with grid points (xi, tm), 0 ≤ i ≤ N, 0 ≤ m ≤ M , where xi = a + ih and
tm = mτ . The following notations are also introduced for conciseness:

um
i = u (xi, tm) , tm+1/2 = 1

2

(
tm+1 + tm

)
, f

m+1/2
i = f

(
xi, tm+1/2

)
,

Um = (um
0 , um

1 , . . . , um
N )T , and F m+1/2 =

(
f

m+1/2
0 , f

m+1/2
1 , . . . , f

m+1/2
N

)T
.

Furthermore, prior to the construction of the C-N schemes, it should be noted
that the time derivative at (x, t + τ/2) may be approximated with order 2
accuracy as follows:

∂u(x,t+τ/2)
∂t = 1

τ (u(x, t + τ) − u(x, t)) + O(τ2),(22)
and

u(x, t + τ/2) = 1
2(u(x, t + τ) + u(x, t)) + O(τ2).(23)

3.4. Second-order Crank-Nicholson scheme. Using Equations (22) and
(23) the FDE at (xi, tm+1/2) gives the C-N scheme:

(24) um+1
i −um

i
τ = 1

2∆2,2,(um+1
i + um

i ) + f
m+1/2
i + O(τ2 + h2),

where ∆2,2 = K1∆α
−h,2,1 + K2∆α

+h,2,1. Rearranging (24) gives

(25) um+‘1
i − τ

2 ∆2,2um+1
i = um

i + τ
2 ∆α

2,2um
i + τf

m+1/2
i + O(τ3 + τh2)
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for all i = 0, 1, 2, . . . , N and m = 0, 1, 2, . . . , M − 1. The corresponding matrix
form of (25) is given by

(26) (I − Bα)Um+1 = (I + Bα)Um + τF m+1/2 + O(τ3 + τh2)

for all m = 0, 1, 2, . . . , M − 1, where Bα = τ
2

(
K1A2,1 + K2AT

2,1

)
,

A2,1(i, j) =
{

1
hα w

(α)
i−j+1,2,1, if i ≥ j − 1,

0, elsewhere,

where wi−j+1,2,1 are the power series coefficients of the generating function
W = W2,2(z) as seen in (17). They can be computed using the J. C. P. Miller
recurrence.

Now, let Ûm be the solution of (26) after neglecting the O(τ3 + τh2) terms
with Ûm = [ûm

1 , ûm
2 , . . . , ûm

N−1]T , where its entries ûm
i become the approximate

values of the exact values um
i . Also, let P̂α and B̂α be the reduced matrix from

Pα and Bα, respectively by deleting the first and last rows and columns, and
F̂ m+1/2 be the reduced vector obtained from F m+1/2 by removing its first
and last entries. After imposing the boundary conditions (2), Equation (26)
becomes to be on the ready-to-solve form:

(27) (Î − B̂α)Ûm+1 = (Î + B̂α)Ûm + τF̂ m+1/2 + b̂m, m = 1, 2, . . . , M − 1,

where b̂m = B̂0(um+1
0 +um

0 )+B̂N (um+1
N +um

N ) and B̂0 and B̂N are the first(0th)
and last(N th) column vectors of the matrix Bα reduced again as before.

3.5. Third-order quasi-compact Crank-Nicholson scheme. The new or-
der 3 quasi compact approximation is applied to numerically solve the space
fractional diffusion equation with third-order accuracy. Pre-operating (1) by
Ph which is given by (20) gives

(28) Ph
∂u(x,t)

∂t = K1PhDα
x−u(x, t) + K2PhDα

x+u(x, t) + Phf(x, t).

With the aid of the second-order approximations given by Equations (22) and
(23), the FDE at (xi, tm+1/2) gives the C-N scheme

(29) Ph
1
τ (um+1

i − um
i ) = 1

2Ch(um+1
i + um

i ) + Phf
m+1/2
i + O(τ2 + h3),

where Ch = K1∆α
−h,2,1 + K2∆α

+h,2,1 Rearranging (29) yields

(30)
(
Ph − τ

2 Ch

)
um+1

i =
(
Ph + τ

2 Ch

)
um

i + τPhf
m+ 1

2
i + O(τ3 + τh3).

Consequently, in matrix language, the C-N scheme (30) can be read as

(31) (Pα − Cα) Um+1 = (Pα + Cα) Um + τPαF m+1/2 + O
(
τ3 + τh3

)
for m = 0, 1, 2, . . . , M − 1, where Pα = Tri[c2, 1 − 2c2, c2] is a tri-diagonal
matrix with size N + 1 and Cα = τ

2

(
K1A2,1 + K2AT

2,1

)
. After imposing the
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boundary conditions (2), Equation (31) reduces to the following form:
(32)
(P̂α − Ĉα)Ûm+1 = (P̂α + Ĉα)Ûm + τP̂αF̂ m+1/2 + b̂m, m = 0, 1, 2, . . . , M − 1,

where b̂m = Ĉ0(um+1
0 +um

0 )+ĈN (um+1
N +um

N ) and Ĉ0 and ĈN are the first(0th)
and last(N th) column vectors of the matrix Cα reduced again as before.

4. STABILITY AND CONVERGENCE ANALYSIS

This section analyzes the stability and convergence of the C-N schemes
presented in Section 3.4 and Section 3.5 for the fractional diffusion equation.
The analysis also requires certain properties of definite matrices and equivalent
norms, to which the reader is referred in the references [32, 33], in addition to
the following useful results.

Lemma 6 ([32]). Let H = (A + A∗)/2 be the Hermiatian part of a complex
matrix A. For any eigenvalue λ(A) of A with its real part ℜ(λ) , we have

λmin(H) ≤ ℜ(λ(A)) ≤ λmax(H),

where λmin(H)and λmax(H) are the minimum and maximum eigenvalues of
H, respectively.

Definition 7 ([33]). A function G(x) =
∑∞

n=0 tnxn is called the generator
of a Toeplitz matrix T = [ti−j ] if

tn = 1
2π

∫ π

−π
G(x)einxdx.

Lemma 8 (Grenander-Szego theorem, [31]). Let the generator G(x) of a
Toeplitz matrix T be a 2π-periodic continuous real-valued function. Then

Gmin ≤ λmin(T ) ≤ λmax(T ) ≤ Gmax,

where Gmin, Gmax denote the minimum and maximum values of G(x) respec-
tively in [−π, π]. Moreover, if Gmin < Gmax, then all eigenvalues of T satisfy
Gmin < λ(T ) < Gmax and furthermore, if Gmin ≥ 0, then T is positive defi-
nite.

Lemma 9. If G(x) is the generating function for a Toeplitz matrix T =
[ti−j ], then G(x)eirx is the generating function of the shifted Toeplitz matrix
Tr = [ti−j+r].

Proof. Let Tr = si−j be the Toeplitz matrix for the generating function
G(x)eirx. Then

sn = 1
2π

∫ π

−π
G(x)eirxeinxdx = 1

2π

∫ π

−π
G(x)ei(n+r)xdx = tn+r.

The result follows with n = i − j. □
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Lemma 10. The generating functions of the matrices A2,r and AT
2,r corre-

sponding to the approximation operators ∆−h,r,2 and ∆+h,r,2 of the second-
order approximation with shift r are given by W2,r(e−ix)eirx and its conjugate
W2,r(eix)e−irx, respectively.

Proof. The matrix A2,r is Toeplitz given by A2,r = [ti−j ] = [wi−j+r]. Now,

1
2π

∫ π

−π
W2,r(e−ix)eirxeinxdx = 1

2π

∞∑
k=0

∫ π

−π
wke−ikxei(n+r)xdx = wn+r.

The result follows with n = i − j. A similar argument follows for the AT
2,r as

well. □

Note that the two generating functions are mutually conjugate. Further-
more, the following results are also required.

Let Vh = {v|v = (v0, v1, . . . , vN ), vi ∈ R, v0 = 0 = VN )} be the space
of grid functions in the interval computational domain [a, b] with N uniform
subintervals of length h. Associated with the analysis carried out in [21], for
u, v ∈ Vh, the following discrete inner products and the corresponding norms
are defined below:

(u, v) = h
N−1∑
i=1

uivi, ∥u∥ =
√

(u, u),

⟨δhu, δhv⟩ = h
N−1∑
i=1

(
δhui−1/2

) (
δhvi−1/2

)
, |u|1 =

√
⟨δhu, δhv⟩.

Define difference operators on the component of v ∈ Vh as

vi+1/2 = 1
2(vi+1 + vi) and δhvi−1/2 = 1

h(vi − vi−1).

Theorem 11. Let P be a self adjoint operator defined on Vh such that
µ1∥u∥ ≤ ∥u∥P ≤ µ2∥u∥, µ1, µ2 > 0 and A be a negative definite operator.
Suppose that there exists a vector vm = (vm

0 , vm
1 , . . . , vm

N−1, vm
N ) ∈ Vh such that

(33) Pδhvm+1/2 = Avm+1/2 + Sm, 1 ≤ m ≤ M − 1,

provided

(34) v0 = v0(xi) for all i = i = 0, 1, . . . , N.

Then,

∥vm∥ ≤ 1
µ1

(
µ2∥v0∥ + τ

µ1

m−1∑
l=0

∥Sl∥
)

,

where Sl =
[
Sl

0, Sl
1, . . . , Sl

N

]T
with Sl

0 = 0 and Sl
N = 0 for all l = 0, 1, . . . , M .
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Proof. The negative definiteness of the operator A implies that
(v, vm+ 1

2 ) < 0.
Now, applying inner product on (33) with vm+1/2 yields:(

Pδτ vm+1/2, vm+1/2
)

=
(
Avm+1/2, vm+1/2

)
+
(
Sm, vm+1/2

)
≤
(
Sm, vm+1/2

)
.(35)

Also, (
Pδτ vm+1/2, vm+1/2

)
=
(

P 1
τ (vm+1 − vm), 1

2(vm+1 + vm
)

= 1
2τ

(
∥vm+1∥2

P − ∥vm∥2
P

)
= 1

2τ

(
∥vm+1 − ∥vm∥P

) (
∥vm+1 + ∥vm∥P

)
(36)

≤
(
Sm, vm+1/2

)
≤ ∥Sm∥∥vm+1/2∥

≤ 1
µ1

∥Sm∥∥vm+1/2∥P

≤ 1
2µ1

∥Sm∥
(
∥vm+1∥P + ∥vm∥P

)
.(37)

The inequality relating (36) and (37) reduces, for 0 ≤ m ≤ M − 1, to
∥vm+1∥P ≤ ∥vm∥ + τ

µ1
∥Sm∥. Summing this for the first m inequalities

results:

∥vm∥P ≤ ∥v0∥P + τ
µ1

m−1∑
l=0

∥Sl∥, 1 ≤ m ≤ M − 1.

Equivalence of the two norms concludes the proof. □

Lemma 12. Leading to the above inner products and norms, the following
results :
(a) The operator δ2

h is self adjoint on Vh.
(b) |u|21 ≤ 4

h2 for any u ∈ Vh.
(c) The operator Th = 1 + kh2δ2

h is selft–adjoint on Vh, where k is a given
constant.

Proof. (a) Take any u, v ∈ Vh. Then, we must show that ⟨δ2
hu, v⟩ =

⟨u, δ2
hv⟩. We first note that u0v1 = v0u1 and uN vN−1 = vN uN−1, since

the vectors u and v have zero boundary values; thereby, we have:(
δ2

hu, v
)

= h
N−1∑
i=1

δ2
huivi = h

N−1∑
i=1

(
ui+1−2ui+ui−1

h2

)
vi

= h
N−1∑
i=1

ui+1vi−2uivi+ui−1vi

h2 = h
N−1∑
i=1

uivi+1−2uivi+uivi+1
h2

= h
N−1∑
i=1

ui

(
(vi+1−2vi+vi−1)

h2

)
=
(
u, δ2

hv
)
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for all u, v ∈ Vh. That is, δ2
h is self adjoint on Vh.

(b) From Part (a), we have:

|u|21 = ⟨δhu, δhu⟩ = h
N−1∑
i=1

(
δhui−1/2

) (
δhui−1/2

)

= h
N−1∑
i=1

(
ui−ui−1

h

)2
= h

N−1∑
i=1

(u2
i −2uiui−1+u2

i−1)
h2

≤ h
N−1∑
i=1

(u2
i +(u2

i +u2
i−1)+u2

i−1))
h2 = 2

h2

(
h

N−1∑
i=1

u2
i + h

N−2∑
i=1

u2
i

)

≤ 2
h2

(
h

N−1∑
i=1

u2
i + h

N−1∑
i=1

u2
i

)
≤ 4

h2 ∥u∥2.

(c) Letting Th = 1 + kh2δ2
h and using Part (a), we get:

(Thu, v) = (u, v) + b2h2(δ2
hu, v) = (u, v) + b2h2(u, δ2

hv)
= (u, (1 + b2h2δ2

h)v) = (u, Thv).

for all u, v ∈ Vh. Therefore, Th is a self–adjoint operator.
□

4.1. Analysis of the second-order C–N scheme. This section gives the
stability and convergence analysis of the C–N scheme presented in Section 3.4.
First, Lemma 13 is presented along with its proof:

Lemma 13. The matrices Â2,1 and ÂT
2,1 are negative definite for 4

3 ≤ α ≤ 2.
Therefore, the corresponding operators ∆+h,2,1 and ∆−h,2,1 are also negative
definite.

Proof. The generating function of matrix Â2,1 is given by Gα = (1 −
e−ix)α(β0 + β3e−ix)α/2eix, 4

3 ≤ α ≤ 2.

Gα(x) =
(
R1eiθ1

)α (
R2eiθ2

)α/2
eix = Rei(αθ1+ α

2 θ2+x),

where θ1 = (π−x)
2 , θ2 = − tan−1

(
β3 sin(x)

β0+β3 cos(x)

)
,

and R = Rα
1 R

α/2
2 = (2 sin(x/2))α

(
β2

0 + 2β0β3 cos(x) + β2
3
)α/4. The real part

of Gα(z) is given below: ℜ(Gα)(x) = R cos
(
αθ1 + α

2 θ2 + x
)

= RH1(x, α) for
4
3 ≤ α ≤ 2, where H1(x, α) = cos

(
αθ1 + α

2 θ2 + x
)
. It must be shown that

ℜ(Gα)(x) < 0. Now, ℜ(Gα)(x) < 0 if and only of H1(x, α) < 0, since R ≥ 0.
Therefore, it will be proved that H1(x, α) < 0 over the domain [0, π]× [4/3, 2].
Let Z(x, α) = αθ1 + α

2 θ2 + x. For a fixed α ∈ [4/3, 2], differentiating Z with
respect to x gives

d
dxZ(x.α) = − (1−cos(x))(α−1)(α−2)(3α−4)

[2(1−α)+(2−α) cos(x)]2+[(2−α) sin(x)]2 .
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The foregoing derivative assumes positive values over the interval (0, π) for
an α ∈ (4/3, 2) and thus, the function Z is monotonically non-decreasing
function over the interval (0, π). Therefore, the maximum and minimum val-
ues of Z are Zmax = Z(π, α) = π and Zmin = Z(0, α) = απ

2 , respectively.
Therefore, H1(x, α) is a non increasing function and thereby its maximum
(H1(x, α))max = cos

(
απ
2
)

< 0 for 4
3 < α < 2. Now, by Lemma 8, we have

λ(Â2,1) < 0.
Now, for any non–zero vector v, consider vTA2,1v = ∥v∥2λ(Â2,1) < 0. Thus,

the matrix Â2,1 is negative definite. Consequently, ÂT
2,1, ∆+h,2,1, and ∆−h,2,1

are negative definite. This completes the proof. □

Remark 14. Since the matrices Â2,1 and ÂT
2,1 are negative definite, the

matrix c1Â2,1 + c2ÂT
2,1 is also negative definite for any positive constants c1

and c2. Therefore, the operator ∆2 = c1∆+h,2,1+c2∆−h,2,1 is negative definite.
Or, we may prove this using the linearity property of inner product: Let any
u ∈ Vh. Then, we have

(∆2u, u) = c1(∆+h,2,1u, u) + c2(∆−h2,1u, u) < 0.

Theorem 15. The Crank–Nicholson scheme (27) with the approximation
from the generating function W2,1(z) given by (17) for the space fractional
diffusion equation is unconditionally stable for 4

3 ≤ α ≤ 2.

Proof. We have from Equation (27) that the iteration matrix of the C–
N scheme, M2 = (I − B̂)−1(I + B̂). To establish a stability criterion, we
must have the spectral radius of M2, ρ(M2) < 1. Now, for any λ(B̂α) ̸= 1,
we have λ(M2) = 1+λ(B̂α)

1−λ(B̂α) . Then, λ(B̂α) < 0 if and only if
∣∣∣1 + λ(B̂α)

∣∣∣ <∣∣∣1 − λ(B̂α)
∣∣∣ if and only if ρ(M2) < maxλ

1+λ(B̂α)
1−λ(B̂α) < 1. Also, we have B̂α =

τ
2

(
K1Â2,1 + K2ÂT

2,1

)
. Now, λ(B̂α) = τ(K1+K2)

2 λ(Â2,1). Therefore, since τ, K1,
and K2 are positive, (λ(B̂α)) < 0 if and only if λ(Â2,1) < 0. Now, from
Lemma 13, we have λ(Â2,1) < 0. This completes the proof. □

Theorem 16. The Crank-Nicholson finite difference scheme (24) with given
initial and boundary conditions converges with order 2 for 4

3 ≤ α ≤ 2.

Proof. Let em
i = um

i − ûm
i be error at grid point (xi, tm), where um

i and ûm
i

denote the exact solution of the diffusion equation (1) and the corresponding
approximate solution given by (24). Then, em

0 = 0 and em
N = 0.

Also, let em = (em
0 , em

1 , . . . , em
N−1, em

N ) and Rm =
(
Rm

0 , Rm
1 , . . . , Rm

N−1, Rm
N

)
,

where Rm
i denotes the remainder term of (24) at (xi, tm), 0 ≤ i ≤ N, 0 ≤

m ≤ M − 1, Rm
0 = 0, and Rm

N = 0.
Now,
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∥Rm∥2 = h
∑N−1

i=1 (Rm
i )2 = h

∑N−1
i=1 |Rm

i |2 ≤ h
∑N

i=1 |Rm
i |2 ≤ Nhc2

1(τ2 +
h2)2 = (b−a)c2

1(τ2 +h2)2, where c1 is a positive constant. Therefore, ∥Rm∥ ≤√
(b − a)c1(τ2 + h2)/].
Also, it is easy to see that, the error vector em governs the difference system:

(38) δτ em+ 1
2 − ∆2,2em+ 1

2 = Rm, e0 = 0.

In comparison with Equation (33), in Equation (38), P is the identity op-
erator and hence it is self–adjoint and its norm is equivalent to that of u.
So, µ1 = 1 = µ2. Also, from Remark 14, for K1, K2 ≥ 0, the operator
∆2,2 = K1∆+h,2,1 + K2∆−h,2,2,1 is negative definite. Then, Theorem 11 views

∥em∥ ≤ ∥e0∥ + τ
m−1∑
l=0

∥Rl∥ ≤ τ
M∑
l=0

∥Rl∥ ≤ τM
√

(b − a)c1(τ2 + h2)

= T
√

(b − a)c1(τ2 + h2) = c2(τ2 + h2),

where c2 = T
√

(b − a)c1.
So, we complete the proof. □

4.2. Analysis of the third–order C–N quasi-compact scheme. In this
section, the analysis of the proposed third order quasi–compact approximation
is presented.

Lemma 17. The QCD operator of order 3 in (21) leads to the following for
4
3 ≤ α ≤ 2:
(a) 1

12 ≤ a2(r) < 1
6 for r = 1.

(b) The operator Ph is self–adoint and 1
3∥u∥2 ≤ ∥u∥2

P ≤ ∥u∥2 for r = 1,
where ∥u∥2

P = (Phu, u).

Proof. (a) It is not hard to see that, the maximum of a2 over the domain[4
3 , 2
]

is 3
2 −

√
11
6 , occurring at α =

√
24
11 and the minimum of a2 over

[4
3 , 2
]

is
1
12 , occurring at α = 2. Therefore, 1

12 ≤ a2(r) ≤
(

3
2 −

√
11
6

)
< 1

6 for r = 1.

(b) Take any u, v ∈ Vh. Applying Part (c) of Lemma 12 with k = a2 gives
that the operator Ph is self–adjoint.

Now, using Part (b) of Lemma 12, we have: (Phu, u) = ∥u∥2 − a2h2|u|21 ≥
∥u∥2 − 4

6∥u∥2 = 1
3∥u∥2. Hence, we complete the proof. □

Theorem 18. The quasi compact Crank–Nicholson scheme (32) with the
approximation from the generating function W2,1(z) is unconditionally stable
for 4

3 ≤ α ≤ 2.

Proof. Consider the iteration matrix, M3, of the C–N scheme set off in Equa-
tion (32) given by M3 = (P̂α−Ĉα)−1(P̂α+Ĉα) = (I−P̂ −1

α Ĉα)−1(I+P̂ −1
α Ĉα) =

(I−Bα,3)−1(I+Bα,3), where Bα,3 = P̂ −1
α Ĉα. Now, arguing analogously to Sec-

tion 4.1, the spectral radius of matrix M3, ρ(M3) < 1 if and only if λ(Bα,3) < 0.



15 Higher-order approximations 371

The eigen-values of P̂α are given by
λ(P̂α)m = 1 − 2a2 + 2a2 cos

(
mπ
N

)
= 1 − 2a2(1 − cos

(
mπ
N

)
= 1 − 4a2 sin2 (mπ

2N

)
= 4a2

(
1

4a2
− sin2 (mπ

2N

))
> 0, m = 1, 2, . . . , N,

since when r = 1, 1
12 ≤ a2 ≤

(
3
2 −

√
11
6

)
< 1

6 for 4
3 ≤ α ≤ 2. Thus, λ(P̂ α

α ) > 0;
thereby we have λ(Bα,3) < 0 if and only if λ(Ĉα) < 0.

Now, λ(Ĉα) = τ(K1+K2)
2 λ(A2,1) < 0, since λ(A2,1) < 0 owing to Lemma 13.

This results in giving ρ(M3) < 1. Therefore, the order 3 Crank–Nicholson
scheme is unconditionally stable for 4/3 ≤ α ≤ 2. □

Theorem 19. The quasi compact Crank–Nicholson finite difference scheme
(31) with the given initial and boundary conditions converges with order 3 to
the exact solution of the diffusion problem (1) for 4

3 ≤ α ≤ 2.

Proof. In Part (b) of Lemma 17, we have proved that the operator Ph is
self–adjoint and 1

3∥u∥2 ≤ ∥u∥2
P ≤ ∥u∥2. Also, it is not hard to see that the

error vector em governs the difference system:

(39) Phδtem+ 1
2 − ∆2,2em+ 1

2 = Rm, e0 = 0,

where R = (Rm
0 , Rm

1 , . . . , Rm
N−1, Rm

N ), where Rm
i denotes the remainder term

of (29) at (xi, tm), 0 ≤ i ≤ N, 0 ≤ m ≤ M, Rm
0 = 0 and Rm

N = 0. Now,
∥Rm∥2 = h

∑N−1
i=1 (Ri)2 ≤ h

∑N
i=1 |Rm

i |2 ≤ (b − a)c2
3(τ2 + h3)2. where c3 is a

positive constant. This implies that ∥Rm∥ ≤
√

(b − a)c3(τ2 + h3).
Now, using Theorem 11 with µ1 = 1√

3 , µ2 = 1 and Sm = Rm, we have:

∥em∥ ≤ ∥e0∥ + 3τ
m−1∑
l=1

∥Rl∥ ≤ τM
√

b − ac3(τ2 + h3) = T
√

(b − a)(τ2 + h3)

= c4(τ2 + h3),

where c4 = T
√

(b − a)c3. So, we complete the proof. □

5. NUMERICAL RESULTS

In this section, numerical examples are given to demonstrate the uncon-
ditional stability, convergence order, and accuracy of each scheme derived in
Section 3. The following test example is considered:

Example 20. Let H(x, m, α) = Γ(m+1)
Γ(n+1−α)(xm−α + (1 − x)m−α) and s0(x) =

x5(1 − x)5. The following example uses constant diffusion coefficients.
K1(x) = 1, K2(x) = 1,

f(x, t) = −e−t(s0(x) + H(x, 5, α) − 5H(x, 6, α) + 10H(x, 7, α)
− 10H(x, 8, α) + 5H(x, 9, α) − H(x, 10, α))
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u(x, 0) = s0(x), u(0, t) = 0, u(1, t) = 0.

Exact Solution u(x, t) = s0(x)e−t.

Let, at a time final time t = T , the exact solution vector be defined by U
and a corresponding approximate solution vector be denoted by Û . Then the
maximum norm of error vector Û − U at grid size h is given by Eh = ∥Û −
U∥∞ = max1≤i≤n |Ui − Ûi∥. The numerical convergence order c is calculated
by c = log(Eh/Eh/2)/ log 2. First, the second-order Crank-Nichoslon scheme
is applied to Example 20 to calculate the errors and convergence orders for
α = 1.34, 1.5, and 1.9. We choose N = 8, 16, 32, 64, 128, 256, 512, 1024, 2048 =
M with uniform sub-interval sizes h = 1/N and τ/M . We then apply the new
order 3 quasi compact C-N-scheme presented in Section 3.5 to Example 20.
The space domain is handled with N sub-partitions and time domain is handled
with M = [N3/2]+1 sub-partitions. Table 1 and Table 2 demonstrate maximum
absolute errors and convergence orders of these schemes.

h = τ α = 1.34 α = 1.5 α = 1.9
N = M ∥Û − U∥∞ c ∥Û − U∥∞ c ∥Û − U∥∞ c

8 3.6245e-05 – 3.4278e-05 – 1.3912e-05 –
16 8.5169e-06 2.08 8.3193e-06 2.04 5.6605e-06 1.29
32 2.0773e-06 2.03 2.0709e-06 2.00 1.4222e-06 1.99
64 5.1597e-07 2.00 5.1907e-07 1.99 3.5503e-07 2.00

128 1.2880e-07 2.00 1.3012e-07 1.99 8.8753e-08 2.00
256 3.2192e-08 2.00 3.2587e-08 1.99 2.2192e-08 1.99
512 8.0477e-09 2.00 8.1546e-09 1.99 5.5488e-09 1.99

1024 2.0120e-09 1.99 2.0397e-09 1.99 1.3877e-09 1.99
2048 5.0323e-10 1.99 5.1009e-10 1.99 3.4964e-10 1.98

Table 1. Maximum errors and for order 2 convergence of C-N scheme at T = 1.

h = 1
N

τ = 1
M

α = 1.34 α = 1.5 α = 1.9
N M ∥Û − U∥∞ c ∥Û − U∥∞ c ∥Û − U∥∞ c

8 23 3.3799e-06 – 1.3300e-06 – 1.3815e-06 –
16 65 1.1898e-07 4.82 2.1456e-07 2.63 3.0808e-08 5.48
32 182 5.3530e-09 4.47 3.1650e-08 2.76 1.9968e-09 3.94
64 513 2.8116e-10 4.25 4.2935e-09 2.88 4.6661e-10 2.09

128 1449 3.6421e-11 2.94 5.5870e-10 2.94 7.2068e-11 2.69
256 4097 6.5222e-12 2.48 7.1243e-11 2.97 9.8501e-12 2.87
512 11586 9.2923e-13 2.81 8.9930e-12 2.98 1.2345e-12 2.99

Table 2. Maximum errors and order 3 convergence of C-N scheme at T = 1.

Both Table 1 and Table 2 confirm convergence orders, unconditional stabil-
ity, and the accuracy of the second and third schemes, respectively. Further-
more, Fig. 1 exhibits the surface plot of the exact solution of the fractional
diffusion equation in Example 20 over the domain [0, 1] × [0, 1].
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Fig. 1. Surface plot of the exact solution of Example 20 over [0, 1] ×
[0, 1].

6. CONCLUSION

In this paper, we present two new approximations for fractional deriva-
tives, utilizing a recently developed unified explicit form. The first approxima-
tion achieves second-order accuracy, while the second approximation demon-
strates third-order accuracy, derived from the former using a quasi-compact
technique. These approximations were employed, together with the Crank-
Nicholson method, to solve the space fractional diffusion equation. The un-
conditional stability and convergence of the resulting Crank-Nicholson schemes
were established for fractional derivatives of order α in the interval 4

3 ≤ α ≤ 2.
Furthermore, numerical results confirm the unconditional stability and con-
vergence orders.
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