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ADDITIVE OPERATOR SPLITTING SCHEME
FOR A GENERAL MEAN CURVATURE FLOW

AND APPLICATION IN EDGES ENHANCEMENT

RAFAA CHOUDER∗ and NOUREDDINE BENHAMIDOUCHE∗

Abstract. Many models that use non-linear partial differential equations (PDEs)
have been extensively applied for different tasks in image processing. Among
these PDE-based approaches, the mean curvature flow filtering has impressive
results, for which feature directions in the image are important.

In this paper, we explore a general model of mean curvature flow, as pro-
posed in [G.I. Barenblatt, Self-similar intermediate asymptotics for nonlinear
degenerate parabolic free-boundary problems that occur in image processing, Pro-
ceedings of the National Academy of Sciences of the United States of America
(2001)], [ G.I. Barenblatt and J.L. Vazquez, Nonlinear diffusion and image
contour enhancement, Interfaces and Free Boundaries (2003)]. The model can be
re-arranged to a reaction-diffusion form, facilitating the creation of an uncondi-
tionally stable semi-implicit scheme for image filtering. The method employs the
Additive Operator Split (AOS) technique. Experiments demonstrated that the
modified general model of mean curvature flow is highly effective for reducing
noise and has a superior job of preserving edges.

MSC. .
Keywords. Nonlinear diffusion equations, mean curvature flow, additive oper-
ator splitting, unconditionally stable schemes, edge enhancement.

1. INTRODUCTION

Partial differential equation (PDE) based techniques have been widely ap-
plied for various image processing tasks over the past few decades [29, 3, 31, 6,
13]. Designing numerical schemes that take into consideration accuracy, sta-
bility, and computational cost is fundamental for the effective implementation
of these schemes.

Local geometric properties of images are usually dominated by two main
directions: the direction perpendicular to the edge, called the flow-line, and
parallel to the level or isophote, which is aligned with the edge. By selecting
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the appropriate degree of diffusion in these two directions, several approaches
can be achieved [2, 25, 17, 8, 9].

Mean curvature flow is a prominent example where diffusion only occurs
along edges. The theoretical properties of this were first studied by Gage,
Hamilton and Huisken in the 1980s [15, 16, 14]. It is known that a plane curve
moving at a normal speed equal to its curvature will shrink to a point, its
shape becoming smoother and circular. In higher dimensions, the phenomena
are more complex, with no classification is available yet. In the context of
image processing, Osher and Sethian [21, 26] provided a more rigorous view,
realization that the iso-intensity contours of an image can be moved under their
curvature was achieved. This led to numerous papers where the images were
viewed as a set of level contours, then moved under their curvature. Image
smoothing by level-set curvature motion [18, 19] preserves edge information by
thwarting diffusion in the edge direction. This work showed that, in addition
to this basic approach, a natural stopping criterion can also be chosen to
prevent over-smoothing a given image.

A general mathematical framework for feature-preserving image smoothing,
applicable to gray-level, vector-value (color) images, volumetric images, and
movies was achieved by Sochen, Kimmel, and Malladi in [27, 28]. The main
idea is to view the image as a two-dimensional manifold embedded in a hybrid
spatial-feature space. The authors in [28] showed that many classical geometric
flows emerge as special cases in this view, along with a new flow known as the
Beltrami flow, which moves a Gray-level image under a scaled mean curvature.
By following a different approach, Yezzi in [32] arrived at a similar equation.

As a result of the certain degeneracy of the asymptotic forms of equations
mentioned in [19, 28], Barenblatt [4] noted the possibility of constructing a
more general class of equations that generalized mean curvature motion and
Beltrami flow. An asymptotic treatment in the one-dimensional case of this
class of equations has been investigated theoretically in [4, 5]. The authors
report that the general mean curvature flow equation forms a sharp step in
the vicinity of edges.

The task of smoothing noisy images and enhancing their edges generally in-
volves solving partial differential equations using numerical integration. This
process is often the most time-intensive aspect of nonlinear image processing
algorithms. Recently, a lot of research efforts have focused on developing nu-
merical methods and techniques for solving equations dependent on curvature
in image processing (see, e.g., [23, 24, 20, 33]).

Our objective is to numerically solve the modified general model of mean
curvature flow and to confirm the one-dimension theoretical results obtained
in [4]. This is achieved through the development of finite difference schemes
for the two-dimensional model. We aim to investigate two critical aspects:
The phenomenon of edge enhancement within the image, and the model’s
efficacy in noise reduction. Using explicit finite difference schemes can be
very time-consuming due to the scaling and small time step requirements
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in order to achieve stability. Therefore, developing fast and unconditionally
stable schemes is preferable. The additive operator splitting (AOS) method,
introduced by Weickert et al. [30] for the nonlinear diffusion flow, as an
unconditionally stable scheme, is effective and efficient. Applying the (AOS)
method in the modified general model of mean curvature flow requires writing
the model to allow this method’s application, which we will detail in this
paper.

The paper is structured as follows: In Section 2, we present the mathemat-
ical model associated to a general mean curvature flow for edge enhancement.
Section 3 is devoted to the presentation of the numerical processing, partic-
ularly splitting the model and spatial discretization are presented, then the
proposed numerical scheme for solving the discretized problem are exposed.
Section 4 presents the numerical experiments for image processing. Finally,
the paper concludes by a short conclusion.

2. A GENERAL MEAN CURVATURE FLOW

The level set method [21, 26] elegantly handles mean curvature flow. Es-
sentially, it views the curve as the level set u = 0 of a function u constrained
to solve the degenerate diffusion equation:

(1) ∂tu = |∇u| div
(

∇u
|∇u|

)
,

where ∇ = (∂x, ∂y) denotes the gradient operator and div stands for the
divergence operator. To avoid a division by zero, according to [12], a positive
parameter is adopted to regularize the term |∇u|. Thus, we have:

∂tu(x, y, t) =
√

1 + |∇u|2 div
(

∇u√
1+|∇u|2

)
= (1+u2

y)uxx−2uxuyuxy+(1+u2
x)uyy

1+u2
x+u2

y
,(2)

which called the mean curvature flow equation.
Sochen et al. [28] used a differential-geometric approach with various as-

sumptions regarding the image intensity flux, leading them to derive the fol-
lowing equation for image intensity u

(3) ∂tu(x, y, t) = (1+u2
y)uxx−2uxuyuxy+(1+u2

x)uyy

(1+u2
x+u2

y)2 ,

which called the Beltrami flow (selective mean curvature flow). Here, x and y
are the Cartesian coordinates in the image plane, t is time. Thus, according
to [19] and [28], image processing is reduced to the solution of the chosen
equation under an initial condition u(x, y, 0) = u0(x, y) corresponding to a
gray level of the image being processed.

As a result of a certain degeneracy of the asymptotic forms of equations
(2) and (3), Barenblatt in [4], proposed to consider a more general class of
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equations

(4) ∂tu(x, y, t) = (λ2+u2
y)uxx−2uxuyuxy+(λ2+u2

x)uyy

λ−2α(λ2+u2
x+u2

y)α+1 ,

where α and λ are constant parameters (λ ̸= 0). In the other words, it is
appropriate to consider a more general flow defined by:

(5) ∂tu =
(

1 +
∣∣∣∇u

λ

∣∣∣2) 1
2 −α

div
(

∇u√
1+
∣∣∇u

λ

∣∣2
)

.

Here, the variable λ plays the role of a contrast parameter to distinguish
between regions to be smoothed and edges to be preserved. For |∇u| > λ,
edges are preserved, signifying the diffusion effect is small; whereas for |∇u| <
λ, the diffusion coefficient has a high amplitude, leading to a strong smoothing
effect. In other words, regions where |∇u| > λ are considered as edges, and
the diffusion process has a low effect. Perona and Malik in [22] have pointed
out the problem with the setting of λ. This presents an interesting problem
because a suitable value of the parameter λ turns into a general problem of
region separation, object extraction, and edge preservation.

Equation (5) is regard as a generalization of mean curvature flow and the
Beltrami flow. To justify this, consider the special case α = 0 and λ = 1, to
obtain the mean curvature flow equation (2), and we can obtain Beltrami flow
equation (3) for α = 1. It can be observed that in the case of α = 1

2 , it is the
Perona-Malik diffusion equation with the Charbonier edge indicator function
g(s) = 1√

1+(s/λ)2 .
The difference of equation (5) to mean curvature flow and Beltrami flow

is the exponent α on the term
(
1 + |∇u|2

) 1
2 −α

on the right-hand-side. This
factor is used for the enhancement of edges. Indeed, it controls the speed of
the diffusion: if |∇u| has a small mean in the neighborhood of an interior
point of a smooth region of an image, and the diffusion is therefore strong. On
the other hand, at the position of an edge, |∇u| is large, the diffusion spread

is lowered, since
(
1 + |∇u|2

) 1
2 −α

is small for α > 1
2 , whereas for α ≤ 1

2 , the
factor becomes much large then 1, this leads to a higher evolution velocity
close to an edge.

The asymptotic treatment of this model, for α = 0 and α = 1, done in the
papers [19, 28], shows the enhancement of the intensity contrasts by formation
of regions of large intensity gradients, i.e., the normal component of the image
intensity gradient becomes quite large. This phenomenon was analyzed, for
α ≥ 0, in [4, 5], where a further 1-D simplification of the model was proposed
in order to focus on the boundary layer where large gradients concentrate.
Authors proved that the edge enhancement will take place if any equation
of class (4) will be used. In [11, 10] the one-dimensional model have been
investigate by using the traveling profiles method proposed in [7].
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Solving nonlinear PDEs using explicit methods can be very time consuming
due to the scaling and small time step requirement. In this paper our goal
is to build a fast and reliable method to solve the general mean curvature
flow equation (GMCF) (5) and it is based on AOS technique by using a semi-
implicit finite difference scheme. The mathematical model is achieved by the
following additional homogeneous Neumann boundary condition expressing
the conservation of energy

∂u
∂n = 0,

where n represents the outward vector normal to the boundary of the domain
where the image is defined.

3. ADDITIVE OPERATOR SPLITTING SCHEME FOR THE GENERAL MEAN

CURVATURE FLOW

To numerically solve equation (5), we utilize the Additive Operator Splitting
(AOS) technique, originally introduced by Weickert et al. [30], as an efficient,
reliable, and unconditionally stable schemes for nonlinear diffusion in image
processing. We adapt the AOS technique to the general mean curvature flow
(GMCF), which, although distinct from nonlinear diffusion, can be treated
similarly.

Splitting the GMCF. Consider the general mean curvature flow compared
with the nonlinear diffusion of a gray-level image. Let u be the pixel value.
Equation (5) can be rewritten as:

(6) ∂tu = h
1
2 −α div

(
∇u√

h

)
,

where
h = 1 +

∣∣∣∇u
λ

∣∣∣2 = 1 +
(ux

λ

)2 +
(uy

λ

)2
.

To simplify Equation (6), we have:

∂tu = 1
hα−1/2

[
1√
h

(uxx + uyy) − 1
2

(
uxhx

h
√

h
+ uyhy

h
√

h

)]
= uxx+uyy

hα − 1
2

(
uxhx
hα+1 + uyhy

hα+1

)
=
(
1 − 1

2α

)
uxx+uyy

hα + 1
2α

uxx+uyy

hα − 1
2

(
uxhx
hα+1 + uyhy

hα+1

)
=
(
1 − 1

2α

)
uxx+uyy

hα + 1
2α

{
uxx+uyy

hα − α
(

uxhx
hα+1 + uyhy

hα+1

)}
=
(

2α−1
2α

)
uxx+uyy

hα + 1
2α

{
∂

∂x

( ux
hα

)
+ ∂

∂y

( uy

hα

)}
.

We set g = 1
hα . By reducing the above equation, we obtain a reaction-

diffusion form:
(7) ∂tu = 2α−1

2α g△u + 1
2α∇ (g∇u) .

In this form, the equation is not a pure diffusion equation. It has both an
“parabolic” edge-preserving and an “hyperbolic” edge-sharpening terms. In
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addition, the reaction-diffusion form of equation (7) hides the mixed derivative
∂xyu, there by making it conducive to the AOS approach.

In more concise terms, the equation can be rearranged as:

(8) ∂tu = (Ax + Ay) u,

where Ax and Ay are the following differential operators:

(9)

 Ax = 1
2α

∂
∂x

(
g ∂

∂x

)
+ 2α−1

2α g ∂2

∂x2

Ay = 1
2α

∂
∂y

(
g ∂

∂y

)
+ 2α−1

2α g ∂2

∂y2

Applying the backward difference formula to (8) we get,

(10) Uq+1−Uq

dt = (Ax + Ay) U q+1.

Here, the superscript q corresponds to the current time step, while q + 1
denotes the next time step. The subscripts i, j indicate the discrete pixel
location. U q

i,j are the known values, and U q+1
i,j are the unknown values to

be determined. Using U q+1 on the right side of (10), the integration scheme
becomes implicit and unconditionally stable,

(11) [I − dt (Ax + Ay)] U q+1 = U q,

where I is the identity matrix. Before proceeding in time, we calculate the
values of the edge indicator function g, using the known values of U q. Thus,
the scheme is only semi-implicit. Although g depends of the gradient of U ,
we treat it like a given function of (x, y), making the governing PDE “quasi-
linear”.

Note that equation (11) includes a large bandwidth matrix, because all
equations related to new pixel values U q+1 are coupled. Our aim is to decou-
ple the set (11) so that each row and each column of pixels can be handled
separately. For this, we rearrange the equation into the following form:
(12)

U q+1 = [I − dt (Ax + Ay)]−1 U q =
[

1
2 (I − 2dtAx) + 1

2 (I − 2dtAy)
]−1

U q

Of course, we do not intend to invert the matrix to solve the linear set. This
is merely a symbolic form used for further derivation.

Equation (12) is interesting form in the sense that the system matrix is
decomposed. The problem is that the decomposed system matrix is inside the
[ ]−1 operator. Instead, we aim to construct the solution in parts as follows:

(13) U q+1 =
([

1
2 (I − 2dtAx)

]−1
+
[

1
2 (I − 2dtAx)

]−1
)

U q

The problem is that the right hand sides of equations (12) and (13) are not
equal, as can be easily verified. Therefore, we pose the question if there exist
a simple variable m, when used to multiplay the right hand side of (13), would
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make them equal:

m

([
1
2 (I − 2dtAx)

]−1
+
[

1
2 (I − 2dtAx)

]−1
)

U q =

=
[

1
2 (I − 2dtAx) + 1

2 (I − 2dtAy)
]−1

U q

This can be simplified into:

m
i=2∑
i=1

[
1
2 (I − 2dtAi)

]−1
U q =

[
i=2∑
i=1

1
2 (I − 2dtAi)

]−1

U q

Putting I − 2dtAi = B−1, we find:

4mB−1 = B−1.

Thus we have:

m = 1
4

Based on this, to use the additive operator splitting scheme given by equa-
tion (12), we multiply the right hand side by 1

4, and obtain the following:

U q+1 = 1
4

i=2∑
i=1

[
1
2 (I − 2dtAi)

]−1
U q =

i=2∑
i=1

[
41

2 (I − 2dtAi)
]−1

U q

which is the same as:

U q+1 = (2I − 4dtAx)−1 U q + (2I − 4dtAy)−1 U q.

Now, the whole idea of this scheme is to bring the equation to a simpler
form, allowing us to use efficient block-wise solvers, such as Tri-diagonal matrix
algorithm.

Introducing the notations V = (2I − 4dtAx)−1 U q and W = (2I − 4dtAy)−1 U q.
The solution now includes two components:

(14) U q+1 = V + W.

We finally obtain the equation sets for V and W as follows:

(15)
{

(2I − 4dtAx) V = U q

(2I − 4dtAy) W = U q

The differential operators Ax and Ay are similar, hence we derive here the
difference equation for a single row of pixels. Equation for the column of pixels
is identical. Consider a row with N + 1 pixels enumerated from 0 to N .
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Discretisation. To discretize the first derivative, we approximate it using a
centered finite difference scheme as follows:(

∂V
∂x

)
i+1/2

= Vi+1−Vi

dx + O
(
h2

x

)(
∂V
∂x

)
i−1/2

= Vi−Vi−1
dx + O

(
h2

x

)
For the classical finite difference approximation of the second derivative, we

utilize the classical three points scheme:(
∂2V
∂x2

)
i

= Vi+1−2Vi+Vi−1
dx2 + O

(
h2

x

)
.

Note that the omitted error terms are of order h2
x.

(16) 4 (AxV )i = 2
α

[
gi+1/2(Vi+1−Vi)−gi−1/2(Vi−Vi−1)

h2
x

+ (2α − 1) gi
Vi+1−2Vi+Vi−1

h2
x

]
To avoid establishing the values of the edge indicator function g at non-

nodal points i − 1/2 and i + 1/2, we average the values of the two neighbour
nodes:

(17) gi+1/2 = gi+1 + gi

2 , and gi−1/2 = gi−1 + gi

2
Substituting these averages into the equation (16), we get

4 (AxV )i = 1
αh2

x

[
(gi−1 + (4α − 1) gi) Vi−1−

(18)

− (gi−1 + gi+1 + 2 (4α − 1) gi) Vi−1 + (gi+1 + (4α − 1) gi) Vi+1
]

Denote:

βi = dt
αh2

x
(gi−1 + (4α − 1) gi) , and γi = dt

αh2
x

(gi+1 + (4α − 1) gi)

From equation (15) and the above expression (18), the finite difference equa-
tion becomes

(19) −βiV
q+1

i−1 + (2 + βi + γi)V q+1
i − γiV

q+1
i+1 = U q

i

At each time step, we solve an algebraic system where the matrix (2I − 4dtAx)
is an irreducible strictly diagonal dominant matrix and then invertible. Such
a system can be efficiently solved using block-wise solvers, such as the Tri-
diagonal matrix algorithm. Moreover, by using the Von-Neumann method,
we can demonstrate that this semi-implicit scheme is unconditionally stable.

A similar equation holds for W in y−dimension for j = 0, 1, ...M .

(20) −βjV q+1
j−1 + (2 + βj + γj)V q+1

j − γjV q+1
j+1 = U q

j

where

βj = dt
αh2

y
(gj−1 + (4α − 1) gj) , and γj = dt

αh2
y

(gj+1 + (4α − 1) gj)
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For the first and last nodes, the Neumann boundary conditions hold:

V0 = V1, VN = VN−1 and W0 = W1, WM = WM−1.

4. NUMERICAL EXPERIMENT

In this section, we examine the impact of the model (5) presented in this
paper on a diverse range of gray scale images. Additionally, we compare the
results obtained with those from the Perona-Malik (for α = 1/2), and Beltrami
flow (for α = 1) models, highlighting the model’s efficacy in enhancing edges
and reducing noise. All numerical experiments were conducted using the AOS
method with hx = hy = 1 and dt = 1.

The images in Fig. 1 demonstrate the effects of diffusion at different values
of the contrast parameter λ. For small values λ, the image is smoothed while
preserving details better than with larger values of λ. In the first line, even
if we see that the PM model has a nice edge enhancement property, we have
to take into account the importance of the contrast coefficient λ, to which
the diffusion coefficient is sensitive. Therefore, the problem of determining
the value of λ is interesting because the appropriate value of λ turns into a
general problem of region separation, object extraction, and edge preservation.
In the second and third lines, it is evident that the images obtained with the
Beltrami flow and the general model for α = 2 are clearer than those obtained
with the PM model. Therefore, larger values of the exponent α have done a
superior job of preserving edges, even for large values of the contrast parameter
λ.

Although a larger number of iterations were required to achieve an equiva-
lent level of smoothing for larger values of α, the improvement in edge preser-
vation can be seen very clearly by looking at the letters in the airplane wing
(Fig. 2).

From the images in Fig. 3, one can easily see that the larger exponent α
again done a superior job of preserving edges, even for a large number of
iterations.

As a conclusion from the experiments presented, it can be said that larger
values of α lead to sharper edges, small values lead to smoothed edges, and
medium values of α lead to compatibility between the two phenomena. The
choice of the value of α remains according to the application and the results
to be obtained.

The second simulation concerned the efficacy of the model studied in reduc-
ing noise. Experiments were conducted on distorted images with a Gaussian
and salt-and-pepper noise. Fig. 4 and Fig. 5 show how noise reduction and
edge preservation can be combined using this model. We can observe that it
is possible to obtain sharp edges even after a large number of iterations for
the large values of α.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 1. Comparison of different filtering models. Rows from top to bottom: PM model
(α = 0.5), Beltrami flow (α = 1), GMCF (5) for α = 2,GMCF (5) for α = 3. Column
from Left to Right: λ = 1, 2, 4, 6. Results after 50 iterations.

5. CONCLUSION

In this study, we re-arrange the governing equation for the modified gen-
eral model of mean curvature flow proposed in [4, 5] into a reaction-diffusion
form, where the reaction and diffusion terms are explicitly represented. This
reaction-diffusion form enables the development of an unconditionally stable
semi-implicit scheme for image filtering. The method is based on the Additive
Operator Split (AOS), originally applied by Weickert [30] for the nonlinear
diffusion flow. The values of the edge indicator function are used from the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. Comparison of different filtering models after 200 iterations. Rows from top
to bottom: PM model (α = 0.5), Beltrami flow (α = 1), GMCF (5) for α = 2,GMCF
(5) for α = 2. Column from Left to Right: λ = 2, 4, 6.

previous step in scale, while the pixel values of the next step approximate the
flow. This approach leads to a semi-implicit linearized difference scheme. The
computational time required for image filtering can be reduced by up to ten
times or even more compared to the explicit scheme, depending on the scale
step value, with no loss of accuracy. Whereas, using explicit finite difference
schemes can be very time-consuming due to the scaling and small time-step
requirements in order to achieve stability.

Experiments have demonstrated that the modified general model of mean
curvature flow is highly effective in reducing noise and excels in edges preser-
vation for large values of exponent α.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3. Comparison of different filtering models. Rows from top to bottom: PM model
(α = 0.5), Beltrami flow (α = 1), GMCF (5) for α = 2. Column from Left to Right:
Iterations 50,100,200. λ = 2.

(a) (b) (c) (d)

Fig. 4. Comparison of different filtering models after 50 iterations with λ = 4. From
Left to Right: Noisy image, PM model (α = 0.5), Beltrami flow (α = 1), GMCF (5)
for α = 2.
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

Fig. 5. Comparison of different filtering models after 1000 iterations. First row: (a)
original image, (b) noisy image corrupted by Gaussian noise, (c) noisy image corrupted
by salt-and-pepper noise. Second and Third rows: Filtred versions of images (b) and
(c). First column: PM model (α = 0.5), Second column: Beltrami flow (α = 1),
Third column: GMCF for α = 1.5, Forth column: GMCF for α = 2.
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