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Abstract. The main goal of this paper is to introduce the Hartley-Bessel L2
α-

multiplier operators and to give for them some new results as Plancherel’s,
Calderon’s reproducing formulas and Heisenberg’s, Donoho-Stark’s uncertainty
principles. Next, using the theory of reproducing kernels we give best approxi-
mation and an integral representation of the extremal functions related to these
operators on weighted Sobolev spaces.
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1. INTRODUCTION

In their seminal papers, Hörmander’s and Mikhlin’s [10, 15] initiated the
study of boundedness of the translation invariant operators on Rd. The
translation invariant operators on Rd characterized using the classical Eu-
clidean Fourier transform F(f) therefore they also known as Fourier multipli-
ers. Given a measurable function

m : Rd −→ C

its Fourier multiplier is the linear map Tm given for all λ ∈ Rd by the relation
(1) F(Tm(f))(λ) = m(λ)F(f)(λ)
The Hörmander-Mikhlin fundamental condition gives a criterion for Lp-boundedness
for all 1 < p < ∞ of Fourier multiplier Tm in terms of derivatives of the symbol
m, more precisely if

(2)
∣∣∂γλm(λ)

∣∣ ≲ |λ|−|γ| for 0 ≤ |γ| ≤
[
d

2

]
+ 1.

Then, Tm can be extended to a bounded linear operator from Lp(Rd) into
itself.
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2 Best approximation of Hartley-Bessel multiplier operators 1

The condition (2) imposes m to be a bounded function, smooth over Rd\{0}
satisfying certain local and asymptotic behavior. Locally, m admits a singu-
larity at 0 with a mild control of derivatives around it up to order

[
d
2

]
+ 1.

This singularity links to deep concepts in harmonic analysis and justifies the
key role of Hörmander-Mikhlin theorem in Fourier multiplier Lp-theory, this
condition defines a large class of Fourier multipliers including Riesz transforms
and Littelwood-Paley partitions of unity which are crucial in Fourier summa-
bility or Pseudo-differential operator.The boundedness of Fourier multipliers
is useful to solve problems in the area of mathematical analysis as Proba-
bility theory see [13], Stochastic processus see [2]. For its importance many
researcher extend the theory of Fourier multiplier to different setting for ex-
ample in the Dunkl-Weinstein setting [20], in the Laguerre-Bessel setting [7],
in the Dunkl’s setting [19]. The general theory of reproducing kernels is stared
with Aronszajn’s in [1] in 1950, next the authors in [12, 17, 18] applied this
theory to study Tikhonov regularization problem and they obtained approxi-
mate solutions for bounded linear operator equations on Hilbert spaces with
the viewpoint of numerical solutions by computers. This theory has gained
considerable interest in various field of mathematical sciences especially in En-
gineering and numerical experiments by using computers [12, 18].
The Hartley transform is an integral transform attributed to Hartley see [5, 6],
this transform shares several essential properties with the classical Fourier
transform, including linearity, invertibility and Parseval’s identity. These
transforms find extensive applications across various field of mathematics,
physics and engineering, such as signal processing, data analysis and num-
ber theory see [5, 6, 11, 21].
The Hartley transform is a linear operator defined for a suitable function ψ(x)
as follows:

(3) H(ψ)(λ) = 1√
2π

∫
R
ψ(x) cas(λx)dx,

where cas(x) is the cas function, defined as:

(4) cas(x) =
∞∑
n=0

(−1)(
n+1

2 )
n! xn,

with
(n

2
)

= n(n−1)
2 being the binomial coefficient. The cas(x) function (1.4)

can be seen as a generalization of the exponential function exp.
A simple computation shows that the cas function is the unique C∞ solution
of the following differential-reflection problem see [5]

{
R∂xu(x) = λu(x),
u(0) = 0.
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2 Best approximation of Hartley-Bessel multiplier operators 3

Here, ∂x represents the first-order derivative, and R is the reflection operator
acting on functions f(x) as:

(5) (Rf)(x) = f(−x).

Furthermore, the function cas(x) is multiplicative on R in the sens

(6) cas(x) cas(y) = 1
2(cas(x+ y) − cas(−x− y) + cas(x− y) + cas(y − x)).

Inspired by the relation (1.6), the author in [3] generalized the relation (1.6) for
the Hartley-Bessel function and introduce a generalized convolution product.
This paper focuses on the generalized Hartley transform introduced in [3, 4]
called the Hartley-Bessel transform, more precisely we consider the following
dfferential-reflection operator ∆α defined by

(7) ∆α = R

(
∂x + α

x

)
+ α

x
, α ≥ 0.

Where R is the reflection operator given by the relation (1.4).
The operator ∆α is closely connected with the Dunkl’s theory [9], furthermore
the eigenfunctions of this operator are related to Bessel functions and they
satisfies a product formula which permits to develop a new harmonic analysis
associated with this operator see [3] for more information.
The Hartly-Bessel transform Hα generalizing the classical Hartley transform
(1.3) and it is defined on L1

α(R) by

Hα(f)(λ) =
∫
R
Bα(λx)f(x)dµα(x), for λ ∈ R.

Where µα is the measure on R and Bα(λ·) is the Hartley-Bessel kernel given
later. Let σ be a function in L2

α(R) and β > 0 be a positive real number, the
Hartley-Bessel L2

α-multiplier operators are defined for smooth function on R
as

(8) Mσ,β(f)(x) := H−1
α (σβHα) (x)

These operators are a generalization of the classical multiplier operators given
by the relation (1.1). The remainder of this paper is arranged as follows, in sec-
tion 2 we recall the main results concerning the harmonic analysis associated
with the Hartley-Bessel transform, in section 3, we introduce the Hartley-
Bessel L2

α-multiplier operators Mσ,β and we give for them a Plancherel’s,
point- wise reproducing formulas and Heisenberg’s, Donoho-Stark’s uncer-
tainty principles. The last section of this paper is devoted to give an applica-
tion of the general theory of reproducing kernels to Fourier multiplier theory
and to give best estimates and an integral representation of the extremal
functions related to the Hartley-Bessel L2

α-multiplier operators on weighted
Sobolev spaces.
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4 Best approximation of Hartley-Bessel multiplier operators 3

2. HARMONIC ANALYSIS ASSOCIATED WITH THE HARTLEY-BESSEL

TRANSFORM

In this section we recall some results in harmonic analysis related to the
Hartley-Bessel transform, for more details we refer the reader to [3].
• For α ≥ 0, µα is the weighted Lebesgue measure defined on R by

dµα(x) := |x|2α

2α+ 1
2 Γ(α+ 1

2)
dx.,

where Γ is the Gamma function.
• Lpα(R), 1 ≤ p ≤ ∞, the space of measurable functions on R, satisfying

∥f∥p,µα =:
{

(
∫
R |f(x)|pdµα(x))1/p < ∞, 1 ≤ p < ∞,

ess supx∈R |f(x)| < ∞, p = ∞.

In particular, for p = 2, L2
α(R) is a Hilbert space with inner product given by

⟨f, g⟩α =
∫
R
f(x)g(x)dµα(x)

2.1. The Eigenfunctions of the differential-reflection operator ∆α. For
λ ∈ C we consider the following Cauchy problem

(S) :
{ ∆α(u)(x) = λu(x),
u(0) = 1.

From [3, 4], the Cauchy problem (S) admits a unique solution Bα(λ.) given by

(9) Bα(λx) = jα− 1
2
(λx) + λx

2α+ 1jα+ 1
2
(λx),

where jα denotes the normalized Bessel function of order α see [16].
The function Bα(λ.) is infinitely differentiable on R and we have the following
important result

(10) ∀λ, x ∈ R, |Bα(λx)| ≤
√

2.

Furthermore from [3], the Hartley-Bessel kernel (2.1) is multiplicative on R
in the sens

(11) ∀λ ∈ R, x, y ∈ R∗ Bα(λx)Bα(λy) =
∫
R
Bα(λz)Kα(x, y, z)dµα(z)

where Kα is the Bessel kernel given explicitly in [3].
The product formula (2.3) generalize the relation (1.6) and permits to define
a translation operator, convolution product and to develop a new harmonic
analysis associated to the Differential-reflection operator ∆α.
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4 Best approximation of Hartley-Bessel multiplier operators 5

2.2. The Hartley-Bessel transform. ([3]) The Hartley-Bessel transform Hα

defined on L1
α(R) by

Hα(f)(λ) =
∫
R
Bα(λx)f(x)dµα(x), for λ ∈ R

Some basic properties of this transform are as follows, for the proofs, we refer
the reader to [3, 4, 5].
(1) For every f ∈ L1

α(R) we have
(12) ∥Hα(f)∥∞,µα

≤
√

2∥f∥1,µα .

(2)(Inversion formula) For f ∈
(
L1
α ∩ L2

α

)
(R) such that Fα(f) ∈ L1

α(R) we
have

(13) f(x) =
∫
R
Bα(λx)Hα(f)(λ)dµα(λ), a.e x ∈ R.

(3) (Parseval formula) For all f, g ∈ L2
α(R) we have

(14) ⟨f, g⟩α = ⟨Hα(f), Hα(g)⟩α ,
In particular we have
(15) ∥f∥2,µα = ∥Hα(f)∥2,µα .

(4) (Plancherel theorem) The Hartley-Bessel transform Hα can be extended
to an isometric isomorphism from L2

α(R) into L2
α(R).

2.3. The translation operator associated with the Hartley-Bessel trans-
form. The product formula (2.3) permits to define the translation operator
as follows Let x, y ∈ R and f is a measurable function on R the translation
operator is defined by

τxαf(y) =
∫
R
f(z)Kα(x, y, z)dµα(z),

The following proposition summarizes some properties of the Hartley-Bessel
translation operator see [3]. For all x, y ∈ R,we have:
(1)
(16) τxαf(y) = τyαf(x).
(2)

(17)
∫
K
τxαf(y)dµα(y) =

∫
R
f(y)dµα(y).

(3) for f ∈ Lpα(R) with p ∈ [1; +∞] τxαf ∈ Lpα(R) and we have
(18) ∥τxαf∥p,µα ≤ 4∥f∥p,µα ,

(4) For f ∈ L1
α(R), τxαf ∈ L1

α(R) and we have
(19) Hα (τxαf) (λ) = Bα(λx)Fα(f)(λ), ∀λ ∈ R.
The relation (2.11) shows that the translation operator τxα is a particular case
of the Hartley-Bessel multiplier operator (1.8).
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6 Best approximation of Hartley-Bessel multiplier operators 5

By using the translation, we define the generalized convolution product of f, g
by

(f ∗α g) (x) =
∫
K
τxα(f)(y)g(y)dµα(y).

This convolution is commutative, associative and its satisfies the following
properties see [3].
(1)(Young’s inequality) for all p, q, r ∈ [1; +∞] such that: 1

p + 1
q = 1 + 1

r and
for all f ∈ Lpα(R), g ∈ Lqα(R) the function f ∗α g belongs to the space Lrα(R)
and we have
(20) ∥f ∗α g∥r,µα ≤ 4∥f∥p,µα∥g∥q,µα
(2) For f, g ∈ L2

α(R) the function f ∗α g belongs to L2
α(R) if and only if the

function Hα(f)Hα(g) belongs to L2
α(R) and in this case we have

(21) Hα (f ∗α g) = Hα(f)Hα(g).
(3) For all f, g ∈ L2

α(R) then we have

(22)
∫
R

|f ∗α g(x, t)|2 dµα(x) =
∫
R

|Hα(f)(λ)|2 |Hα(g)(λ)|2 dµα(λ),

where both integrals are simultaneously finite or infinite.

3. THE HARTLEY-BESSEL L2
α-MULTIPLIER OPERATORS

The main purpose of this section is to introduce the Hartley-Bessel L2
α-

multiplier operators on R and to establish for them some uncertainty principles
and Calderon’s reproducing formulas.

3.1. Calderon’s reproducing formulas for the Hartley-Bessel L2
α-multiplier

operators. Let σ ∈ L2
α(R) and β > 0, the Hartley-Bessel L2

α-multiplier oper-
ators are defined for smooth functions on R as
(23) Mσ,β(f)(x) := H−1

α (σβHα(f)) (x),
where the function σβ is given for all λ ∈ R by

σβ(λ) := σ(βλ),
By a simple change of variable we find that for all β > 0, σβ ∈ L2

α(R) and

(24) ∥σβ∥2,µα = 1
β

2α+1
2

∥σ∥2,µα .

According to the relation (2.13) we find that

(25) Mσ,β(f)(x) =
(
H−1
α (σβ) ∗α f

)
(x),

where

(26) H−1
α (σβ) (x) = 1

β2α+1H
−1
α (σ)

(
x

β

)
.
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6 Best approximation of Hartley-Bessel multiplier operators 7

We give some properties of the Hartley-Bessel L2
α-multiplier operators. (i) For

every σ ∈ L2
α(R), and f ∈ L1

α(R), the function Mσ,β(f) belongs to L2
α(R),

and we have

∥Mσ,β(f)∥2,µα ≤ 4
β

2α+1
2

∥σ∥2,µα∥f∥1,µα .

(ii) For every σ ∈ L∞
α (R), and for every f ∈ L2

α(R), the function Mσ,β(f)
belongs to L2

α(R), and we have

(27) ∥Mσ,β(f)∥2,µα ≤ ∥σ∥∞,µα∥f∥2,µα

(iii) For every σ ∈ L2
α(R), and for every f ∈ L2

α(R), then Mσ,β(f) ∈ L∞
α (R),

and we have

(28) Mσ,β(f)(x) =
∫
R
σ(βλ)Bα(λx)Hα(f)(λ)dµα(λ), a.e x ∈ R

and

∥Mσ,β(f)∥∞,µα
≤ 4
β

2α+1
2

∥σ∥2,µα∥f∥2,µα .

Proof. (i) By using the relations (2.12),(3.3) we find that

∥Mσ,β(f)∥2
2,µα =

∥∥∥H−1
α (σβ) ∗α f

∥∥∥2

2,µα
≤ 16∥f∥2

1,µα

∥∥∥H−1
α (σβ)

∥∥∥2

1,µα

Plancherel’s formula (2.7) and the relation (3.2) gives the desired result.
(ii) Is a consequence of Plancherel’s formula (2.7).
(iii) By the relations (2.7),(2.12),(3.2) and (3.3) we find the result, on the other
hand the relation (3.6) follows from inversion formula (2.5). □

In the following result, we give Plancherel’s and pointwise reproducing in-
version formula for the Hartley-Bessel L2

α-multiplier operators.

Theorem 1. Let σ ∈ L2
α(R) satisfying the admissibility condition:

(29)
∫ ∞

0
|σβ(λ)|2 dβ

β
= 1, λ ∈ R.

(i) (Plancherel formula) For all f in L2
α(R), we have

(30)
∫
R

|f(x)|2dµα(x) =
∫ ∞

0
∥Mσ,β(f)∥2

2,µα
dβ

β
.

(ii) (First calderón’s formula) Let f ∈ L1
α(R) such that Hα(f) ∈ L1

α(R) then
we have

f(x) =
∫ ∞

0

(
Mσ,β(f) ∗α H−1

α (σβ)
)

(x)dβ
β
, a.e. x ∈ R.
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8 Best approximation of Hartley-Bessel multiplier operators 7

Proof. (i) By using Fubini’s theorem and the relations (2.15) and (3.3) we
get ∫ ∞

0
∥Mσ,β(f)∥2

2,µα
dβ

β
=

∫ ∞

0

[∫
R

∣∣∣H−1
α (σβ) ∗α f(x)

∣∣∣2 dµα(x)
]
dβ

β

=
∫ ∞

0

[∫
R

|Hα(f)(λ)|2 dµα(λ)
]

|σβ(λ)|2 dβ
β

the admissibility condition (3.7) and Plancherel’s formula (2.7) gives the de-
sired result.
(ii) Let f ∈ L1

α(R) such that Hα(f) ∈ L1
α(R), by using Fubini’s theorem and

the relations (2.6),(2.11) we find that∫ ∞

0
(Mσ,β(f) ∗αH−1

α (σβ)
)

(x)dβ
β

=
∫ ∞

0

[∫
R

Mσ,β(f)(y)τxα
(
H−1
α (σβ)

)
(y)dµα(y)

]
dβ

β

=
∫ ∞

0

[∫
R
Hα(f)(λ)Bα(λx)(x, t)dµα(λ)

]
|σβ(λ)|2 dβ

β

the admissibility condition (3.7),inversion formula (2.7) gives the desired re-
sult. □

To establish the second Calderon’s reproducing formula for the Hartley-
Bessel L2

α-multiplier operators, we need the following technical result. Let
σ ∈ L2

α(R) ∩L∞
α (R) satisfy the admissibility condition (3.7) then the function

defined by

Φγ,δ(λ) =
∫ δ

γ
|σβ(λ)|2 dβ

β

belongs to L2
α(R) ∩ L∞

α (R) for all 0 < γ < δ < ∞.

Proof. Using Hölder’s inequality for the measure dβ
β and the relation (3.2)

we find that

∥Φγ,δ∥2
2,µα ≤ log(δ/γ)∥σ∥2

∞,µα∥σ∥2
2,γα

∫ δ

γ

dβ

β
2α+3

2
< ∞.

So Φγ,δ belongs to L2
α(R), furthermore by using the relation (3.7) we get

∥Φγ,δ∥∞,µα
≤ 1 therefore Φγ,δ belongs to L2

α(R) ∩ L∞
α (R). □

Theorem 2. (Second Calderón’s formula). Let f ∈ L2
α(R) and σ ∈ L2

α(R)∩
L∞
α (R) satisfy the admissibility condition (3.7) and 0 < γ < δ < ∞. Then the

function

fγ,δ(x) =
∫ δ

γ

(
Mσ,β(f) ∗α H−1

α (σβ)
)

(x)dβ
β
, x ∈ R

belongs to L2
α(R) and satisfies

(31) lim
(γ,δ)→(0,∞)

∥fγ,δ − f∥2,µα = 0
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8 Best approximation of Hartley-Bessel multiplier operators 9

Proof. By a simple computation we find that

fγ,δ(x) =
∫
R

Φγ,δ(λ)Bα(λx)Hα(f)(λ)dµα(λ) = H−1
α (Φγ,δHα(f)) (x),

by using proposition 3.2 we find that Φγ,δ ∈ L∞
α (R) then we have fγ,δ ∈ L2

α(R)
and

Hα (fγ,δ) (λ) = Φγ,δ(λ,m)Hα(f)(λ)
on the other hand by using Plancherel’s formula (2.7) we find that

lim
(γ,δ)→(0,∞)

∥fγ,δ − f∥2
2,µα = lim

(γ,δ)→(0,∞)

∫
R

|Hα(f)(λ)|2 (1 − Φγ,δ(λ))2 dµα(λ)

by using the admissibility condition (3.7), the relation (3.9) follows from the
dominated convergence theorem. □

3.2. Uncertainty principles for the Hartley-Bessel L2
α-multiplier op-

erators. The main purpose of this subsection is to establish Heisenberg’s and
Donoho-Stark’s uncertainty principles for the Hartley-Bessel L2

α-multiplier op-
erators Mσ,β.

3.2.1. Heisenberg’s uncertainty principle for Mσ,β. In [14] the authors proved
the following Heisenberg’s inequality for Hα, there exist a positive constant c
such that for all f ∈ L2

α(R) we have

(32) ∥f∥2
2,µα ≤ c

∥∥∥|x|2f
∥∥∥

2,µα

∥∥∥|λ|2Hα(f)
∥∥∥

2,µα
.

We will generalize this inequality for Mσ,β.

Theorem 3. There exist a positive constant c such that for all f ∈ L2
α(R)

we have

∥f∥2
2,µα ≤ c

∥∥∥|λ|2Hα(f)
∥∥∥

2,µα

[∫ ∞

0

∥∥∥|x|2Mσ,β(f)
∥∥∥2

2,µα

dβ

β

] 1
2

Proof. By using the relation (3.10) we find that∫
R

|Mσ,β(f)(x)|2dµα(x) ≤ c
∥∥∥|x|2Mσ,β(f)

∥∥∥
2,µα

∥∥∥|λ|2σβHα(f)
∥∥∥

2,µα
,

integrating over ]0,+∞[ with respect to measure dβ
β and by using Plancherel’s

formula (3.8) and Schwartz’s inequality we get

∥f∥2
2,µα ≤ c

[∫ ∞

0

∥∥∥|x|2Mσ,β(f)
∥∥∥2

2,µα

dβ

β

] 1
2

[∫ ∞

0

[∫
R

∣∣∣|λ|4σβ(λ)
∣∣∣2 |Hα(f)(λ)|2|(λ)|dµα(λ)

]
dβ

β

] 1
2

Fubini’s theorem and the admissibility condition (3.7) gives the desired result.
□
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10 Best approximation of Hartley-Bessel multiplier operators 9

3.2.2. Donoho-Stark’s uncertainty principle for Mσ,β. Building on the ideas of
Donoho and Stark In [8], the main purpose of this subsection is to give an
uncertainty inequality of concentration type in L2

θ(R) where L2
θ(R) the space

of measurables functions on ]0,+∞[×R such that

∥f∥2,θα =
[∫ ∞

0
∥f(β, .)∥2

2,µα
dβ

β

] 1
2

We denote by θα the measure defined on ]0,+∞[×R by

dθα(β, x) = dµα(x) ⊗ dβ

β
,

[8]
(i) Let E be a measurable subset of R, we say that the function f ∈ L2

α(R)
is ϵ-concentrated on E if
(33) ∥f − ⊮Ef∥2,µα ≤ ϵ∥f∥2,µα ,

where ⊮E is the indicator function of the set E.
(ii) Let F be a measurable subset of ]0,+∞[×R, we say that the function
Mσ,β(f) is ρ-concentrated on F if
(34) ∥Mσ,β(f) − ⊮FMσ,β(f)∥2,θα ≤ ρ∥Mσ,β(f)∥2,θα .

We have the following result
Theorem 4. Let f ∈ L2

α(R) and σ ∈ L2
α(R)∩L1

α(R) satisfying the admissi-
bility condition (3.7), if f is ϵ-concentrated on E and Tσ,β(f) is ρ-concentrated
on F then we have

∥σ∥1,µα(µα(E))
1
2

[∫
F

dθα(β, x)
β2α+1

] 1
2

≥ 1 − (ϵ+ ρ).

Proof. Let f ∈ L2
α(R) and σ ∈ L2

α(R) ∩ L∞
α (R) satisfying (3.7) and assume

that µα(E) < ∞ and
[∫
F
dθα(β,x)
β2α+1

] 1
2 < ∞.

According to the relations (3.11),(3.12) and Plancherel’s relation (3.8) we find
that

∥Mσ,β(f)∥2,θα ≤ ∥Mσ,β(f) − ⊮FMσ,β(⊮Ef)∥2,θα + ∥⊮FMσ,β(⊮Ef)∥2,θα

(35) ≤ (ϵ+ ρ)∥f∥2,µα + ∥⊮FMσ,β(⊮Ef)∥2,θα ,

on the other hand by the relations (2.5), (3.6) and Hölder’s inequality we find
that

(36) ∥⊮FMσ,β(⊮Ef)∥2,θα ≤ ∥f∥2,µα∥σ∥1,µα(µ(E))
1
2

[∫
F

dθα(β, x)
β2α+1

] 1
2
,

by using the relations (3.13),(3.14) we deduce that

∥Mσ,β(f)∥2,θα ≤ ∥f∥2,µα

(ϵ+ ρ) + ∥σ∥1,γα(µα(E))
1
2

[∫
F

dθα(β, x
β2α+1

] 1
2
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10 Best approximation of Hartley-Bessel multiplier operators 11

Plancherel’s formula (3.8) for Mσ,β gives the desired result. □

4. EXTREMAL FUNCTIONS ASSOCIATED WITH THE HARTLEY-BESSEL

L2
α-MULTIPLIER OPERATORS

In the following, we study the extremal functions associated with the Hartley-
Bessel L2

α-multiplier operators. . Let ψ be a positive function on R satisfying
the following conditions

(37) 1
ψ

∈ L1
α(R)

and
(38) ψ(λ) ≥ 1, (λ) ∈ R.
We define the Sobolev-type space Hψ(R) by

Hψ(R) =
{
f ∈ L2

α(R) :
√
ψHα(f) ∈ L2

α(R)
}

provided with inner product

⟨f, g⟩ψ =
∫
R
ψ(λ,m)Hα(f)(λ)Hα(g)(λ)dµα(λ),

and the norm
∥f∥ψ =

√
⟨f, f⟩ψ.

Let σ be a function in L∞
α (R). Then the Hartley-Bessel L2

α multiplier operators
Mσ,β are bounded and linear from Hψ(R) into L2

α(R) and we have for all
f ∈ Hψ(R)
(39) ∥Mσ,β(f)∥2,µα ≤ ∥σ∥∞,γα∥f∥ψ.

Proof. By using the relations (2.7),(3.5),(4.2) we get the result □

Let η > 0 and let σ be a function in L∞
α (R). We denote by ⟨f, g⟩ψ,η the

inner product defined on the space Hψ(R) by

⟨f, g⟩ψ,η =
∫
R

(
ηψ(λ) + |σβ(λ)|2

)
Hα(f)(λ)Hα(g)(λ)dµα(λ),

and the norm
∥f∥ψ,η =

√
⟨f, f⟩ψ,η

Theorem 5. Let σ ∈ L∞
α (R) the Sobolev-type space (Hψ(R)) , ⟨·, ·⟩ψ,η) is a

reproducing kernel Hilbert space with kernel

Kψ,η(x, y) =
∫
R

Bα(λx)Bα(λy)
ηψ(λ) + |σβ(λ)|2

dµα(λ),

that is
(i) For all y ∈ R, the function x 7→ Kψ,η (x, y) belongs to Hψ(R).
(ii) For all f ∈ Hψ(R) and y ∈ R, we have the reproducing property

f(y) = ⟨f,Kψ,η(·, (y))⟩ψ,η .
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12 Best approximation of Hartley-Bessel multiplier operators 11

Proof. (i) Let y ∈ R, from the relations (2.2),(4.1) we have the function

gy : λ −→ Bα(λy)
ηψ(λ) + |σβ(λ)|2

belongs to L1
α(R) ∩ L2

α((R). Hence the function Kψ,η is well defined and by
the inversion formula (2.5), we get

Kψ,η(x, y) = H−1
α (gy)(x)

by using Plancherel’s theorem for Hα we find that Kψ,η(·, y) belongs to L2
α(R)

and we have

(40) Hα(Kψ,η(·, y))(λ) = Bα(λy)
ηψ(λ) + |σβ(λ)|2

by using the relations (2.2),(4.1) and (4.4) we find that

∥
√
ψHα(Kψ,η(·, y))∥2,µα ≤ 1

η2

∥∥∥∥ 1
ψ

∥∥∥∥
1,µα

< ∞,

this prove that for every y ∈ R the function x 7→ Kψ,η (x, y) belongs to Hψ(R).
(ii) By using the relation (4.4) we find that for all f ∈ Hψ(R) ,

⟨f,Kψ,η (·, y)⟩ψ,η =
∫
R

(
ηψ(λ) + |σβ(λ)|2

)
Hα(f)(λ)Hα(Kψ,η (·, y) (λ)dµα(λ)

=
∫
R
Bα(λy)Hα(f)(λ)dµα(λ),

inversion formula (2.5) gives the desired result. □

By taking σ a null function and η = 1 we find the following result The
Sobolev-type space (Hψ(R)) , ⟨·, ·⟩ψ) is a reproducing kernel Hilbert space with
kernel

Kψ(x, y) =
∫
R

Bα(λx)Bα(λy)
ηψ(λ) dµα(λ).

The main result of this section can be stated as follows

Theorem 6. Let σ ∈ L∞
α (R) and β > 0, for any h ∈ L2

α (R) and for any
η > 0, there exist a unique function f∗

η,β,h where the infimum

(41) inf
f∈Hψ(R)

{
η∥f∥2

ψ + ∥h− Mσ,β(f)∥2
2,µα

}
is attained. Moreover the extremal function f∗

η,β,h is given by

f∗
η,β,h(y) =

∫
R
h(x)Θη,β(x, y)dµα(x),

where Θη,β is given by

Θη,β(x, y) =
∫
R

σβ(λ)Bα(λx)Bα(λy)
ηψ(λ) + |σβ(λ)|2 dµα(λ)
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12 Best approximation of Hartley-Bessel multiplier operators 13

Proof. The existence and the unicity of the extremal function f∗
η,β,h satis-

fying (4.5) is given in [17, 18], furthermore f∗
η,β,h is given by

f∗
η,β,h(y) = ⟨h,Mσ,β(Kψ,η (·, y))⟩µα ,

by using inversion formula (2.5) and the relation (4.4) we get

Mσ,β(Kψ,η (·, y) (x) =
∫
R

σβ(λ)Bα(λx)Bα(λy)
ηψ(λ) + |σβ(λ)|2 dµα(λ)

= Θη,β(x, y)
and the proof is complete. □

Theorem 7. σ ∈ L∞
α (R) and h ∈ L2

α (R) then the function f∗
η,β,h satisfies

the following properties

(42) Hα(f∗
η,β,h)(λ) = σβ(λ)

ηψ(λ) + |σβ(λ)|2H(λ)

and
∥f∗
η,β,h∥ψ ≤ 1√

2η∥h∥2,µα .

Proof. Let y ∈ R then the function

ky : (λ) −→ σβ(λ)Bα(λy)
ηψ(λ) + |σβ(λ)|2

belongs to L2
α(R) ∩ L1

α(R) and by using inversion formula (2.5) we get

Θη,β(x, y) = H−1
α (ky)(x)

using Plancherel’s theorem and Parseval’s relation (2.6) we find that Θη,β(·, y) ∈
L2
α(R) and

f∗
η,β,h(y) =

∫
R
Hα(f)(λ)ky(λ)dµα(λ) =

∫
R

σβ(λ)
ηψ(λ) + |σβ(λ)|2Hα(h)(λ)Bα(λy)dµα(λ)

on the other hand the function

F : λ −→ σβ(λ)Hα(h)(λ)
ηψ(λ) + |σβ(λ)|2

belongs to L1
α(R) ∩L∞

α (R), by using inversion formula (2.5), Plancherel’s the-
orem we find that f∗

η,β,h belongs to L2
α(R) and

Hα(f∗
η,β,h)(λ) = F (λ)

on the other hand we have

|Hα(f∗
η,β,h)(λ)|2 = |σβ(λ)|2(

ηψ(λ) + |σβ(λ)|2
)2 |Hα(h)(λ)|2 ≤ 1

2ηψ(λ) |Hα(h)(λ)|2
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14 Best approximation of Hartley-Bessel multiplier operators 13

by Plancherel’s formula (2.7) we find that

∥f∗
η,β,h∥ψ ≤ 1√

2η∥h∥2,µα .

□

Theorem 8. (Third Calderón’s formula) Let σ ∈ L∞
α (R) and f ∈ Hψ(R)

then the extremal function given by

f∗
η,β,h(y) =

∫
R

Mσ,β(f)(x)Θη,β(x, y)dµα(x),

satisfies

(43) lim
η→0+

∥∥∥f∗
η,β − f

∥∥∥
2,µα

= 0

moreover we have f∗
η,β −→ f uniformly when η −→ 0+.

Proof. f ∈ Hψ(R), we put h = Mσ,β(f) and f∗
η,β,h = f∗

η,β in the relation
(4.6) we find that

(44) Hα(f∗
η,β,h − f)(λ) = −ηψ(λ)Hα(f)(λ)

ηψ(λ) + |σβ(λ)|2

therefore ∥∥∥f∗
η,β − f

∥∥∥2

ψ
=

∫
R

η2 (ψ(λ))3

ηψ(λ) + |σβ(λ)|2 |Hα(f)(λ)|2 dµα(λ)

On the other hand we have

(45) η2 (ψ(λ))3

ηψ(λ) + |σβ(λ)|2 |Hα(f)(λ)|2 ≤ ψ(λ) |Hα(f)(λ)|2

the result (4.7) follows from (4.9) and the dominated convergence theorem.
Now, for all f ∈ Hψ(R) we have Hα(f) ∈ L2

α(R) ∩ L1
α(R) and by using the

relations (2.5), (4.8) we find that

f∗
η,β(y,s) − f(y) =

∫
R

−ηψ(λ)Hα(f)(λ)
ηψ(λ) + |σβ(λ)|2

Bα(λy)dµα(λ)

and

(46)
∣∣∣∣∣−ηψ(λ)Hα(f)(λ)
ηψ(λ) + |σβ(λ)|2

Bα(λy)
∣∣∣∣∣ ≤ |Hα(f)(λ,m)|

By using the relation (4.10) and the dominated convergence theorem we deduce
that

lim
η→0+

∣∣∣f∗
η,β(y) − f(y)

∣∣∣ = 0

which complete the proof of the theorem. □
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