
JOURNAL OF NUMERICAL ANALYSIS AND APPROXIMATION THEORY
J. Numer. Anal. Approx. Theory, vol. 54 (2025) no. 2, pp. 211–228, doi.org/10.33993/jnaat542-1604

ictp.acad.ro/jnaat

A WORKING SET ALGORITHM
FOR SUPPORT VECTOR REGRESSION PROBLEMS

SAIDA AZIB∗ and BELKACEM BRAHMI† ∗

Abstract. Support vector regression (SVR) is widely applied to nonlinear re-
gression tasks but remains computationally demanding due to its dual quadratic
formulation and structural constraints. In this paper, we propose a working set
algorithm, termed WSA–SVR, that extends the primal simplex method recently
developed for SVM classification to the regression framework. WSA–SVR itera-
tively generates a sequence of basic feasible solutions converging to the optimal
solution. Its key feature lies in preserving primal feasibility while employing
efficient rank-one updates, thereby avoiding null-space and reduced-Hessian pro-
jections. This guarantees both numerical stability and scalability. Extensive ex-
periments on benchmark datasets demonstrate that WSA–SVR converges more
rapidly than state-of-the-art solvers while maintaining competitive or superior
predictive accuracy.

MSC. 90C20, 90C25, 65K05, 68T05, 90C90.
Keywords. Support vector regression, convex quadratic programming, simplex
method, working basis, kernel methods.

1. INTRODUCTION

Support Vector Regression (SVR) is a powerful machine learning algorithm
widely used for regression tasks, offering a principled framework for estimat-
ing real-valued functions [26, 21]. Beyond its theoretical foundations, SVR
has been successfully applied in a wide range of domains, such as financial
forecasting [24], bioinformatics and medical imaging [22, 28], meteorology [6],
and more recently, environmental and hydrological modeling [15]. This shows
that the method is versatile and reliable, even when dealing with complex,
noisy, or nonlinear data.

The classical SVR problem is formulated by introducing an ϵ-insensitive
region, called the ϵ-tube, symmetrically surrounding the regression function.
Points outside this tube are penalized, while those inside incur no penalty [1, 9,
21]. Training an SVR model consists of solving a convex optimization problem
that balances model complexity with predictive accuracy [15, 28, 12, 23]. This

∗LaMOS Research Unit, University of Bejaia, 06000 Bejaia, Algeria, e-mail:
saida.azib@univ-bejaia.dz.

†Department of Operations Research, University of Bejaia, 06000 Bejaia, Algeria, e-mail:
belkacem.brahmi@univ-bejaia.dz.

https://doi.org/10.33993/jnaat542-1604
https://ictp.acad.ro/jnaat

212 Saida Azib and Belkacem Brahmi 2

objective seeks to minimize model complexity while controlling errors larger
than ϵ, thus ensuring robust generalization even in the presence of noise or
nonlinearities.

However, solving the primal problem directly is often computationally chal-
lenging. The dual formulation, expressed as a convex quadratic program (QP)
with an equality constraint and box constraints on pairs of dual variables, is
better suited to kernel methods but introduces specific algorithmic difficulties
due to the ϵ-insensitive loss and coupling constraints [17, 20, 29].

Several approaches have been developed to tackle this optimization frame-
work. Exact QP solvers ensure convergence but scale poorly to large datasets
[16]. Decomposition methods, especially sequential minimal optimization (SMO)
and its variants as implemented in LIBSVM [5], are widely adopted for large-
scale problems [18, 5]. Active-set strategies, initially studied for SVM classifi-
cation, have motivated extensions to SVR, offering efficient rank-one updates
and improved numerical stability [27, 14]. For large-scale regression prob-
lems, primal-stochastic techniques such as coordinate descent and stochastic
gradient descent, combined with kernel approximations (Nyström, Random
Fourier Features), enable scalability [11, 19]. Furthermore, variants such as
least squares SVR (LS-SVR), smooth ϵ-SVR, linear programming formula-
tions, and online-based algorithms have been developed to extend SVR to
noisy and streaming data [22, 12, 11, 13].

In this context, we propose a novel approach, the Working Set Algorithm
for Support Vector Regression (WSA–SVR). While inspired by the active-set
framework recently introduced for SVM classification [4] and support meth-
ods [10, 3] for convex quadratic programming, our method provides a spe-
cific extension to the regression setting. The method explicitly addresses the
structural constraints of the dual formulation of an ϵ–SVR, and generates a
sequence of feasible basic solutions converging to an optimal solution. Each
iteration of WSA–SVR involves four steps: identifying the most violating vari-
able, computing a descent direction, selecting a step size that decreases the
objective while maintaining feasibility, and changing the working basis. A key
feature of our approach is that it directly handles the dual variables in pairs
as originally formulated, guarantees the non-singularity of the basis matrix
throughout the iterations, and avoids the costly computation of the reduced
Hessian. Consequently, the proposed WSA–SVR remains simple to implement
and easy to understand.

The proposed method is empirically evaluated on several regression datasets
issue from the UCI repository [8], using both linear and RBF kernels. Numeri-
cal experiments are encouraging and indicate that WSA-SVR converges faster
than conventional solvers such as SMO and LIBSVM, while achieving compa-
rable or superior predictive accuracy. A theoretical study of convergence and
complexity is also conducted to validate the robustness of the algorithm.

3 A working set algorithm for support vector regression problems 213

The remainder of this paper is organized as follows. Section 2 reviews the
SVR framework, where the primal formulation and its associated dual prob-
lem are presented. Section 3 presents the suggested WSA–SVR algorithm,
and Section 4 details the iterative update scheme. Convergence guarantees
and complexity computation of WSA–SVR are discussed in Section 5. Ex-
perimental results and comparisons with standard solvers (SMO-MAT and
LIBSVM) are reported in Section 6, and Section 7 concludes the paper.

2. BACKGROUND

Let D = {(xi, yi)}ni=1 be a training set, where xi ∈ Rm are input features and
yi ∈ R are scalar outputs. Here, n and m represent respectively the number of
examples and features. The primary objective of an SVR model [26, 22] is to
approximate a nonlinear function h : Rm → R that best fits the training data
within an ε-insensitive margin while remaining as flat as possible. Its form is
as follows:

h(x) = w′Φ(x) + b,

where w is the weight vector, the scalar b is called bias, and the application
Φ : Rm → H is a feature mapping to a reproducing kernel Hilbert space
H. In practice, the kernel function K(xi, xj) = Φ(xi)′Φ(xj) allows the im-
plicit computation of dot products in H, assuming that K satisfies Mercer’s
condition [22, 21]. The symbol (′) is used to the transposition of vectors or
matrices.

To tolerate small deviations, the SVR uses an ϵ-insensitive loss function.
Slack variables ξ+

i and ξ−
i are introduced to handle violations beyond the

margin ϵ. The primal formulation of an SVR problem is the following convex
optimization problem:

(1)

min
w,b,ξ+,ξ−

1
2∥w∥

2 + C
n∑

i=1
(ξ+

i + ξ−
i)

s.t. yi − w′Φ(xi)− b ≤ ϵ + ξ+
i , i = 1, 2, . . . , n,

w′Φ(xi) + b− yi ≤ ϵ + ξ−
i , i = 1, 2, . . . , n,

ξ+
i , ξ−

i ≥ 0, i = 1, 2, . . . , n.

Here, C > 0 denotes the regularization parameter that governs the trade-
off between model flatness and error tolerance. Let α+ and α− be the n-
dimensional vectors of Lagrange multipliers associated with the pair of general
constraints in the primal problem. By introducing these multipliers, the dual

214 Saida Azib and Belkacem Brahmi 4

formulation can be expressed as:
(2)

min
α+,α−

1
2

n∑
i,j=1

(α+
i − α−

i)(α+
j − α−

j)K(xi, xj) + ϵ
n∑

i=1
(α+

i + α−
i)−

n∑
i=1

yi(α+
i − α−

i)

s.t.
n∑

i=1
(α+

i − α−
i) = 0,

0 ≤ α+
i , α−

i ≤ C, i = 1, 2, . . . , n.

For numerical implementation, we define:

α =
[
α+

α−

]
∈ R2n, H =

[
Q −Q
−Q Q

]
, p =

[
ϵ1− y
ϵ1 + y

]
, a =

[
1

−1

]
,

where 1 is a vector of ones of an appropriate dimension. Accordingly, the dual
problem can be expressed in matrix form as:

(3)

min
α∈R2n

f(α) =1
2α′Hα + p′α

s.t. a′α = 0,

0 ≤ α ≤ C1,

where Qij = K(xi, xj) is the Gram matrix associated with the kernel func-
tion. Being a combination of positive semi-definite kernel matrices, H is itself
symmetric and positive semi-definite, which ensures the convexity of the dual
problem (3).

As in classical SVM classification, the optimal solution α∗ of an SVR model
is typically sparse, meaning that the estimated regression function is deter-
mined by only a small subset of training examples, known as support vectors.
This set is formally defined as

S = {i | 0 < α∗
i ≤ C}.

The final regression function can be expressed as follows:

h(x) =
∑
i∈S

α∗
i K(xi, x) + b∗.

Since the dual problem (3) is convex, the Karush–Kuhn–Tucker (KKT) con-
ditions [16] are both necessary and sufficient for the optimality. In particular,
a feasible point α∗ is optimal if and only if it satisfies the following KKT
conditions:

(4)


Hα∗ + p + b∗a− µ∗ + ν∗ = 0,

a′α∗ = 0, 0 ≤ α∗ ≤ C1,

µiα
∗
i = 0, ν∗

i (α∗
i − C) = 0, i = 1, 2, . . . , 2n

µ∗
i ≥ 0, ν∗

i ≥ 0, i = 1, 2, . . . , 2n,

5 A working set algorithm for support vector regression problems 215

where µ∗ and ν∗ are the Lagrange multipliers associated with the lower and
upper box constraints, respectively. This yields:
• If α∗

i = 0, then µ∗
i ≥ 0, ν∗

i = 0,
• If α∗

i = C, then µ∗
i = 0, ν∗

i ≥ 0,
• If 0 < α∗

i < C, then µ∗
i = ν∗

i = 0.

3. PRINCIPLE OF THE NEW METHOD

Unlike conventional strategies based on decomposition or interior point
methods, we propose a direct Working Set Algorithm for solving the dual
SVR quadratic program (3). The proposed method, termed WSA–SVR, is
inspired by the primal simplex framework recently introduced in [4], and has
been significantly adapted to address the specific structure and constraints
of support vector regression. Our formulation avoids the use of null-space
projections and reduced Hessians.

The WSA–SVR algorithm constructs a sequence of support feasible so-
lutions (SFS) each defined by a working basis JB for which the associated
Hessian submatrix QB is nonsingular. The SFS monotonically reduces the ob-
jective function value, with each update respecting both the box and equality
constraints. The main process includes:
• Identifying the most violating non-basic variable according to its reduced

cost.
• Computing a feasible descent direction d by finding a KKT condition.
• Finding the smallest stepsize, θ, that guarantees descent and maintains

feasibility.
• Updating the working set JB accordingly to keep the basis nonsingular.

Notations and problem structure. Let J = {1, 2, . . . , 2n} denote the full
index set for the decision variables vector α. We decompose J into two disjoint
subsets: the basic index set JB and the non-basic index set JN = J \JB,
with JB ∩ JN = ∅. Accordingly, we partition the vector α and other relevant
vectors and matrices as follows:

α =
[
αB

αN

]
, y =

[
yB

yN

]
, p =

[
pB

pN

]
, a =

[
aB

aN

]
, H =

[
HB HBN

HNB HN

]
.

where:
• αB = (αj , j ∈ JB) and αN = (αj , j ∈ JN) denote, respectively, basic and

non-basic variables;
• yB = (yj , j ∈ JB) and yN = (yj , j ∈ JN) are the basic and non-basic

components of the responses, respectively;
• pB = (pj , j ∈ JB) and pN = (pj , j ∈ JN) denote the corresponding parti-

tions of the linear term p in the quadratic program;
• aB = (aj , j ∈ JB) and aN = (aj , j ∈ JN) denote the corresponding parti-

tions of the constraint vector a;

216 Saida Azib and Belkacem Brahmi 6

• HB = H(JB, JB) is the principal submatrix of H associated with the basic
variables;
• HBN = H(JB, JN) and HNB = H ′

BN ;
• HN = H(JN , JN) is the submatrix for non-basic variables.

We begin by formalizing the structural components that underpin the WSA–
SVR framework.

Definition 1 (Working basis [4]). A nonempty subset of indices JB ⊂ J is
called a working-basis (support) for problem (3), if the associated basic matrix
HB = H(JB, JB) is nonsingular. Its complement is the non-basic set which is
noted JN = J \ JB.

Definition 2 (Support feasible solution (SFS)). A pair {α, JB} is called
a support feasible solution (SFS) if the vector α is feasible for the dual prob-
lem (3), and JB forms a working basis. Furthermore, it is said to be non-
degenerate if all the basic variables lie strictly within the bounds:

0 < αj < C, ∀j ∈ JB

Definition 3 (Reduced costs vector). Given an SFS {α, JB} for the QP
(3), the reduced costs vector ∆ ∈ R2n is defined as

∆ = Hα + p + ba = (∆B, ∆N)′,

where the bias b is chosen such that the basic component satisfies ∆B = 0,
i.e.,

HBαB + HBN αN + pB + baB = 0.

The optimality conditions (4) are reformulated with respect to the support
set JB and can be established in a manner analogous to the arguments in
[10, 3, 4].

Theorem 4 (Optimality conditions). Let {α, JB} be an SFS for the QP
(3). Then, the following relations:

(5)


∆j ≥ 0, if αj = 0,

∆j ≤ 0, if αj = C,

∆j = 0, if 0 < αj < C, ∀j ∈ JN ,

are sufficient for the optimality of the point α and are also necessary if the
SFS {α, JB} is nondegenerate.

Note that the key difference between the optimality conditions stated above
and the standard KKT conditions (4) is that our conditions apply only to the
non-basic variables, whereas the KKT conditions must hold for all variables.
This constitutes a significant simplification of the optimality verification pro-
cess.

7 A working set algorithm for support vector regression problems 217

4. ITERATION SCHEME

The aim of the proposed working set method, named WSA–SVR, is to solve
the dual formulation of an ϵ-SVR problem. WSA–SVR generates a sequence
of support feasible solutions that converges globally to an optimal solution of
the QP (3). As any optimization method, our WSA-SVR algorithm needs a
first feasible solution to start the resolution process. For our case, this solution
can be calculated simply by choosing the initial working-basis as JB = {1}
and the feasible point α = 0. Thus, the corresponding bias and the reduced
costs vector are, respectively, given by the following explicit formulas.

(6)
{

∆B = ∆1 = 0 =⇒ p1 + ba1 = 0 =⇒ b = −p1 = −ϵ + y1;
∆N = pN + baN .

An iteration of WSA-SVR algorithm consists to calculate a new solution ᾱ
from the current iterate α using the update formula:
(7) ᾱ = α + θd, θ > 0,

where d ∈ R2n is the search direction and θ is the stepsize. The associated
bias and its reduced costs vector are updated as follows:

(8)
{

b̄ = b + θr;
∆̄ = Hᾱ + p + b̄a = ∆ + θ(Hd + ra) = ∆ + θt,

where r ∈ R, and the vector t = (tB, tN)′ is defined by:

(9)
{

tB = 0,

tN = HNBdB + HNj0dj0 + raN .

The first step of WSA–SVR algorithm is to test the optimality of the current
SFS {α, JB}. If the optimality relations (5) of Theorem 4 are satisfied, then α
is an optimal solution of the problem and the algorithm terminates. Otherwise,
the algorithm selects the non-basic index that exhibits the largest violation.
(10) j0 = arg max

j∈JNNO

|∆j |,

where JNNO ⊂ JN denote the subset of non-basic indices for which the opti-
mality conditions (5) are not satisfied.

Selecting j0 ∈ JNNO thus fulfills two roles: it detects the most critical
violation of the KKT conditions and specifies the entering variable used to
construct the descent direction.

4.1. Search direction. Let j0 ∈ JNNO be the non-basic index determined by
rule (10). The search direction d = (dB, dN) is then constructed as follows.

(11) dj =
{
− sign(∆j0), if j = j0,

0, otherwise, j ∈ JN .

This defines the non-basic component dN .

218 Saida Azib and Belkacem Brahmi 8

The basic component dB ∈ R|JB | is then computed to satisfy the feasibility
and stationarity conditions. Its explicit expression is given by:
(12) dB = −H−1

B (HBj0dj0 + raB) ,

where the scalar r is computed to enforce the equality constraint a′d = 0. Its
value is:

(13) r =
dj0

(
aj0 − a′

BH−1
B HBj0

)
a′

BH−1
B aB

.

4.2. Stepsize selection. The stepsize θ is chosen to ensure that the updated
solution ᾱ = α + θd remains feasible and the value of the objective function f
decreases at ᾱ. Thus, it is defined as follows:
(14) θ = min {θj0 , θj1 , θf} ,

where each term corresponds respectively to:
- the minimum feasible step allowed by the non-basic variable αj0 ,
- the minimum permissible step before any basic variable violates its bounds,
- the stepsize that minimizes the objective function along the non-basic com-
ponent αj0 .

To ensure feasibility, the novel solution must satisfy the following box con-
straints: {

0 ≤ αj0 + θdj0 ≤ C, j0 ∈ JNNO,

0 ≤ αj + θdj ≤ C, ∀j ∈ JB,

where j0 denotes a non-basic index and JB is the set of basic indices.

Calculate θj0 and θj1. The maximum feasible step for the non-basic index
j0 is computed as:

(15) θj0 =
{

αj0 , if dj0 = −1,

C − αj0 , if dj0 = 1.

For the basic index j1 ∈ JB, the corresponding step is:

(16) θj1 = min
j∈JB

θj , such that: θj =


C−αj

dj
, dj > 0,

−αj

dj
, dj < 0,

+∞, dj = 0, j ∈ JB.

Calculate θf . The step size θf is computed to achieve the maximal reduction
in the objective function f when moving along the direction d. Using the exact
second-order Taylor expansion of f at point α, we obtain:

g(θ) = f(α + θd)
= f(α) + θd′∇f(α) + 1

2θ2d′∇2f(α)d

9 A working set algorithm for support vector regression problems 219

= f(α) + θd′(Hα + p) + 1
2θ2d′Hd.

By substituting the expressions ∇f(α) = ∆− ba and Hd = t− ra, and using
the feasibility condition a′d = 0, the expression simplifies to:

(17) g(θ) = f(α) + θd′∆ + 1
2θ2d′t.

The optimal value θf is obtained by solving:
∂g
∂θ = d′∆ + θd′t = 0.

Assuming ∆B = tB = 0 and using only the non-basic component:
∂g
∂θ = dj0∆j0 + θdj0tj0 = 0,

which gives the final expression:

(18) θf =

−
∆j0
tj0

, if ∆j0tj0 < 0,

+∞, otherwise.

4.3. Update the working-basis. After determining the new feasible solution
ᾱ, the support set J̄B is updated according to the active constraint that has
become binding.
• Case θ = θj0: The non-basic variable αj0 reaches a bound:

ᾱj0 = αj0 + θj0dj0 =
{

0, if dj0 = −1,

C, if dj0 = 1.

No change is made to the basis:

J̄B ← JB, J̄N ← JN .

• Case θ = θj1: A basic variable reaches a bound:

ᾱj1 = αj1 + θj1dj1 =
{

0, if dj1 < 0,

C, if dj1 > 0.

Two subcases arise:
– If |JB| > 1, remove j1 from the basis:

J̄B ← JB \ {j1}, J̄N ← JN ∪ {j1}.

– If |JB| = 1, replace it with j0:

J̄B ← {j0}, J̄N ← JN \ {j0}.

• Case θ = θf : The non-basic index j0 becomes basic:

J̄B ← JB ∪ {j0}, J̄N ← JN \ {j0}.

After this step, the WSA-SVR algorithm proceeds to the next iteration until
convergence to the optimal solution.

220 Saida Azib and Belkacem Brahmi 10

4.4. Proposed WSA-SVR algorithm. The main steps of the proposed WSA–
SVR algorithm are summarized in the following pseudocode.
Algorithm 1: WSA–SVR: Working Set Algorithm for ϵ-SVR problem
Input: Training set {(xi, yi)}ni=1, kernel K(·, ·), parameters C, ϵ, γ
Output: Dual variables α and bias b.
Step 0: Initialization
▷ Start with the first SFS {α, JB}, such that: JB = {1} and α = 0.
▷ Compute the bias b and the reduced costs vector ∆ = (∆B, ∆N)′

using (6).
Step 1: Check the optimality of the SFS {α, JB}
if optimality conditions (5) are satisfied then

Stop: α is an optimal solution to problem (3).
Step 2: Search directions computation
▷ Compute d = (dB, dN)′ using (12) and (11), and r by (13).
▷ Compute reduced-costs t = (tB, tN)′ using (9).
Step 3: Stepsize computation
▷ Set θ = min{θj0 , θj1 , θf}, where stepsizes are calculated by (15)–(18).
▷ Compute:

α← α + θd, ∆← ∆ + θt, b← b + θr.

Step 4: Working basis update
if θ = θj1 , j1 ∈ JB then

if |JB| > 1 then
JB ← JB \ {j1}, JN ← JN ∪ {j1}.

else
JB ← {j0}, JN ← J \ {j0}.

end
end
else if θ = θf then

JB ← JB ∪ {j0}, JN ← JN \ {j0}.
end
▷ Go to Step 1.

5. CONVERGENCE ANALYSIS AND COMPUTATIONAL COMPLEXITY

Below, we present a proof establishing the finite convergence of WSA–SVR
and analyze its computational complexity. The argument follows the same
logic as the analysis given for primal simplex-type schemes (see, in particu-
lar, [4] and [10]).

We begin with the following proposition, which demonstrates that the di-
rection d ∈ R2n is a feasible descent direction for the dual formulation (3).

11 A working set algorithm for support vector regression problems 221

Proposition 5. At an iteration k of WSA–SVR method, let dk = (dk
B, dk

N)′

be the search direction, calculated similarly by relations (11) and (12), respec-
tively, and let θk the step size calculated by formulas (14). Then, the following
statements hold:
a) The 2n-vector dk is a descent feasible direction at αk.
b) For any other solution αk+1 = αk + τdk, we have:

(19) f(αk+1) ≤ f(αk).

Proof. a) For the first part, it is clear that dk is a feasible direction. Indeed,
dk is constructed such that αk and αk+1 remain feasible, i.e., a′αk = 0 and
a′αk+1 = 0 =⇒ a′dk = 0. Moreover, by construction of the optimal step
size θk via Eq. (14), αk+1 satisfies the box constraints in (3). Hence, dk is a
feasible direction.

Using relations (11)–(12) and the definition of the reduced costs vector ∆k

and its direction tk at step k, we obtain

∇f(αk)′dk = (Hαk + p)′dk = (∆k − bka)′dk = (∆k)′dk = (∆k
B)′dk

B + (∆k
N)′dk

N

= dk
j0∆k

j0 = −|∆k
j0 | < 0.

This strict inequality holds since, by the choice of the entering index in the
working basis, we have ∆k

j0 ̸= 0, j0 ∈ Jk
NNO.

b) For the second part, using the Taylor’s expansion at αk, we have

f(αk+1) = f(αk + τdk) = f(αk) + τ∇f(αk)′dk + 1
2τ2(dk)′Hdk.

Since dk is a descent feasible direction and for a small value of τ ∈ [0, θk] with
θk computed by (14), it follows that

f(αk+1) ≤ f(αk).

Moreover, the strict inequality holds when the SFS {αk, Jk
B} is non-degenerate

for the QP (3). □

Now, we establish the finite termination of the proposed WSA–SVR algo-
rithm in the following theorem.

Theorem 6. The proposed WSA–SVR algorithm generates a sequence of
support feasible solutions to problem (3) and terminates in a finite number of
iterations at an optimal solution.

Proof. The dual SVR problem (3) is bounded below, so the sequence of
feasible iterates {xk}k≥0 generated by WSA–SVR remains bounded. Each
update has the form

xk+1 = xk + θkdk,

where dk is a feasible search direction and θk ≥ 0 is the maximal step length
defined previously.

222 Saida Azib and Belkacem Brahmi 12

By Proposition 5, if the current basic feasible solution is non-degenerate,
then θk > 0 and the objective function decreases strictly:

f(xk+1) < f(xk).

In the degenerate case, θk = 0, so the objective value does not decrease, but
the working-basis is updated (see Section 4.3). To avoid cycling, one may
invoke a standard anti-cycling rule such as Bland’s rule (see [10, 16]) or rely
on simplex-type convergence arguments as in [4], which guarantee progress in
the sequence of working sets.

Since the number of possible working-basis is finite, the algorithm cannot
generate an infinite sequence of distinct supports without either decreasing
the objective function or revisiting a previous working-basis. Consequently,
WSA–SVR produces a sequence of iterates that is strictly decreasing in the
objective value, except possibly for finitely many degenerate steps. Termina-
tion therefore occurs in finite iterations, precisely when no entering variable
can be found, i.e., when the KKT conditions of (3) are satisfied and an optimal
solution is reached. □

In this part, we analyze the computational complexity of our WSA–SVR
algorithm. Let n denote the number of samples and q = |Jk

B| the size of
the working-basis at a typical iteration k. The dominant per-iteration cost
arises from computing the search directions dk

B and tk
N , defined in (12) and

(9), respectively.
Computing dk

B requires solving a linear system with the basis matrix Hk
B =

H(Jk
B, Jk

B) ∈ Rq×q. This is typically performed using the Cholesky factor-
ization, which incurs a cost of O(q3) if recomputed from scratch. However,
when employing rank-one updates of the Cholesky factors, this cost can be
reduced to O(q2), as shown in [4]. Step-size computation and primal–dual up-
dates involve comparatively negligible costs of O(q) and O(2n), respectively.
In contrast, evaluating the non-basic reduced costs component tk

N requires
matrix–vector multiplications with a complexity of O((2n− q)q).

Hence, the overall per-iteration complexity is bounded by
O(q2 + (2n− q)q).

This demonstrates that the WSA–SVR algorithm achieves polynomial-time
complexity with respect to the size of the training set, in addition to ensuring
finite convergence.

6. EXPERIMENTAL RESULTS

In this section, the proposed WSA-SVR method is empirically evaluated
and compared against two widely used SVR solvers: LIBSVM and SMO-
MAT. LIBSVM [5] is a standard library for support vector machines, ex-
tensively optimized for both classification and regression tasks, and coded in
the C++ Language that is widely regarded as the reference implementation

13 A working set algorithm for support vector regression problems 223

for SVR. SMO-MAT refers to MATLAB’s built-in SVR solver, implemented
through the fitrsvm function, which relies on a variant of Platt’s SMO al-
gorithm. The fitrsvm interface offers efficient routines for both linear and
nonlinear kernels and is fully integrated within MATLAB’s machine learning
toolbox. The experiments were conducted with both RBF and linear kernels
on five benchmark datasets: Mpg, Housing, Mg, Space ga, and Abalone.

All experiments were run on a personal computer, without GPU accelera-
tion. The implementation of WSA-SVR, along with LIBSVM (via the MAT-
LAB interface) and SMO-MAT, was carried out in MATLAB R2025a.

Prior to training, all datasets were standardized to zero mean and unit
variance. This preprocessing step ensures that each feature contributes equally
to the training process, thereby improving both convergence and numerical
stability of the SVR algorithms.

To ensure fair comparison, a five-fold cross-validation technique was used to
select hyper-parameters for each dataset. For models that used the RBF ker-
nel, a grid search was conducted across C ∈ {2−3, . . . , 215} and γ ∈ {2−15, . . . , 23}.
For the linear kernel, C was selected from the range {2−4, . . . , 210}.

The RBF (Gaussian) kernel is defined as:

(20) K(xi, xj) = exp
(
−γ∥xi − xj∥2

)
,

where γ > 0 is the kernel width parameter. The linear kernel corresponds to
the inner product:
(21) K(xi, xj) = x′

ixj .

The optimal hyper-parameters obtained for all datasets through five-fold cross-
validation are reported in Section 6 for both kernels. These configurations
were subsequently used for training and evaluation across all SVR methods to
guarantee a consistent and unbiased comparison between solvers.

Dataset Inputs Samples RBF Kernel Linear Kernel

C γ C

Mpg 7 392 64 0.125 16
Housing 13 506 64 0.0625 4
Mg 6 1385 1 0.5 4
Space ga 6 3107 128 0.125 16
Abalone 8 4177 16 0.0625 64

Table 1. Description of the datasets, their characteristics, and the corresponding op-
timal hyper-parameters for both kernel types.

The performance of the models was evaluated using several criteria: the
number of iterations until convergence, training time (in seconds), the number
of support vectors (NSV), and two regression accuracy metrics: the mean
squared error (MSE) and the coefficient of determination R2.

224 Saida Azib and Belkacem Brahmi 14

The MSE is defined as:

(22) MSE = 1
n

n∑
i=1

(yi − ŷi)2,

where yi is the true output, ŷi the predicted output, and n the number of
samples.

The coefficient of determination R2 is given by:

(23) R2 = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2 ,

where ȳ is the mean of the observed data.

(24) ȳ = 1
n

n∑
i=1

yi.

Table 2 and Table 3 present numerical results that show the effectiveness and
robustness of the proposed WSA–SVR algorithm across diverse benchmark
datasets and kernel types. WSA–SVR shows good convergence behavior and
attains predictive accuracy equal to, and sometimes greater than, that of state-
of-the-art solvers including SMO-MAT and LIBSVM.

Dataset Method Iterations Time(s) NSV MSE R2

Mpg WSA-SVR 586 0.0966 375 4.4902 0.9261
SMO-MAT 3305 0.0229 377 4.4956 0.9260
LIBSVM 6120 0.0378 375 4.4903 0.9263

Housing WSA-SVR 887 0.2241 480 4.7924 0.9432
SMO-MAT 4287 0.0384 486 4.7909 0.9432
LIBSVM 7328 0.0658 480 4.7924 0.9445

Mg WSA-SVR 841 0.3932 474 0.0118 0.7796
SMO-MAT 1960 0.0445 493 0.0118 0.7795
LIBSVM 2258 0.3581 479 0.0118 0.7806

Space-ga WSA-SVR 1529 3.3463 831 0.0089 0.7877
SMO-MAT 4897 0.2308 871 0.0089 0.7866
LIBSVM 4388 1.7257 842 0.0089 0.7881

Abalone WSA-SVR 3351 3.0348 3914 4.4024 0.5864
SMO-MAT 2391 1.1571 3899 4.4024 0.5863
LIBSVM 3319 3.2790 3917 4.4024 0.5965

Table 2. Performance comparison between WSA-SVR, LIBSVM, and SMO-MAT us-
ing the RBF kernel for ϵ = 0.1.

In terms of convergence, the number of iterations necessary for WSA–SVR
was generally lower than for its competitors to compute the optimal solu-
tion. For example, on the Space-ga dataset with an RBF kernel and ϵ = 0.1,
WSA–SVR converged in 1529 iterations (see Table 2), but SMO-MAT and

15 A working set algorithm for support vector regression problems 225

Dataset Method Iterations Time(s) NSV MSE R2

Mpg WSA-SVR 1238 0.2642 389 11.5610 0.8097
ϵ = 0.01 SMO-MAT 4146 0.3912 392 11.4183 0.8121

LIBSVM 20920 0.0388 389 11.5606 0.8130

Housing WSA-SVR 1136 0.1040 506 24.6955 0.7075
ϵ = 0.01 SMO-MAT 2495 0.1718 506 24.6734 0.7077

LIBSVM 10449 0.0224 506 24.6852 0.7174

Mg WSA-SVR 9907 1.2648 1371 0.0219 0.5732
ϵ = 0.001 SMO-MAT 54324 1.5300 1385 0.0218 0.5740

LIBSVM 235970 0.4469 1374 0.0219 0.5767

Space-ga WSA-SVR 15235 4.2888 3084 0.0164 0.5818
ϵ = 0.001 SMO-MAT 719847 47.2932 3107 0.0558 0.5820

LIBSVM 2604864 9.6216 3094 0.0164 0.5823

Abalone WSA-SVR 34214 13.2915 4155 5.0608 0.5149
ϵ = 0.01 SMO-MAT 276643 17.1626 4177 5.2831 0.4917

LIBSVM 2785316 7.8118 4158 5.0485 0.5320

Table 3. Performance comparison of WSA-SVR, SMO-MAT, and LIBSVM using the
linear kernel.

LIBSVM needed 4897 and 4388 iterations, respectively. Similar trends were
observed with the linear kernel, where WSA–SVR consistently and stably con-
verged. For instance, when using the Mg dataset with the linear kernel and
ϵ = 0.01, WSA–SVR achieved similar prediction accuracy as the other meth-
ods while requiring fewer iterations (see Table 3).

The principal reason why WSA-SVR typically converges in fewer iterations
than SMO-type methods lies in the nature of the subproblems solved at each
step. In the case of an SVR problem, SMO updates two components for each
two pairs of dual variables per iteration, which amounts to solving analytically
a four-dimensional QP, without the need for an external solver. In contrast,
our approach solves at each iteration a QP whose dimension is equal to the
size of the working basis JB.

Concerning execution time, WSA–SVR demonstrates clearly efficiency gains
on most datasets when using the linear kernel, consistently outperforming or
matching SMO-MAT and LIBSVM. This advantage is due to its strong conver-
gence properties combined with the relatively low computational cost of kernel
operations in the linear case. In contrast, for the RBF kernel, WSA–SVR’s
runtime is sometimes higher despite requiring fewer iterations. For example,
on the Space-ga dataset, WSA–SVR’s runtime reached 3.3463 s, compared
to 0.2308 s for SMO-MAT and 1.7257 s for LIBSVM. This can be explained
not only by the higher per–iteration cost when the size of the working-basis is

226 Saida Azib and Belkacem Brahmi 16

large, but also by the way the methods are implemented: WSA–SVR is cur-
rently coded in Matlab (a high-level language), while SMO-MAT and LIBSVM
are implemented in optimized C++ (a low-level language).

Concerning predictive performance, WSA–SVR achieved results comparable
to those of the two SMO algorithms in all experiments. This can be explained
by the fact that the compared algorithms are equally accurate and yield the
same number of support vectors (NSV). For instance, on the Mg dataset with
ϵ = 0.1 and an RBF kernel, WSA–SVR obtained an R2 score of 0.7796 and an
MSE of 0.0113 (see Table 2), which are nearly identical to LIBSVM’s values
of R2 = 0.7807 and MSE = 0.0113. These findings indicate that WSA–SVR
provides a favorable balance between accuracy and computational efficiency
for both RBF and linear kernels.

The compact models that WSA–SVR can generate are another significant
benefit. In many regression applications, the algorithm frequently chose a
comparable or somewhat fewer number of support vectors when compared to
LIBSVM and SMO-MAT, resulting in models that are simpler to understand
and more useful for implementation.

7. CONCLUSION

In this paper, we presented WSA–SVR, a new algorithm for solving the dual
form of the ϵ-SVR problem. Our method extends the primal simplex approach
[4] to SVR by taking into account the specific structure of the problem, es-
pecially the paired variables and constraints. WSA–SVR algorithm proceeds
iteratively by generating a sequence of feasible solutions that converges to an
optimal solution. Unlike existing methods, it does not depend on the reduced
Hessian matrices and can directly handle positive semidefinite kernels. We
also proved that the algorithm converges in a finite number of steps and we
calculated its computational complexity.

Numerical experiments on several benchmark datasets demonstrated both
the effectiveness and robustness of the proposed algorithm. From a predic-
tive perspective, WSA–SVR achieves accuracy comparable to state-of-the-art
solvers, such as SMO-based methods [18, 9] and LIBSVM [5]. From an op-
timization viewpoint, WSA–SVR typically converges in fewer iterations than
SMO-type algorithms. However, as highlighted in Section 5, the per-iteration
computational cost depends strongly on the kernel structure: for dense RBF
kernels, solving linear systems with a large basis matrix HB increases runtime,
whereas for linear kernels, where matrix–vector operations are inexpensive and
the basis size is bounded by the feature dimension, WSA–SVR exhibits supe-
rior performance in both convergence speed and CPU time.

Overall, WSA–SVR achieves an effective trade-off between predictive accu-
racy, convergence guarantees, and computational efficiency, offering a princi-
pled alternative to existing SMO-type algorithms. Future work will focus on
developing optimized implementations (e.g., leveraging sparse linear algebra

17 A working set algorithm for support vector regression problems 227

and low-rank kernel approximations) and extending the approach to large-
scale learning tasks and other kernel-based models.

Acknowledgements. We would like to thank the editor and reviewers
for their valuable and constructive comments, which helped us to improve this
paper.

REFERENCES

[1] C. C. Aggarwal, Machine Learning for Text, Springer International Publishing 2018.
[2] M. Awad and R. Khanna, Efficient Learning Machines: Theories, Concepts, and Ap-

plications for Engineers and System Designers, Apress, Berkeley, CA, (2015). https:
//doi.org/10.1007/978-1-4302-5990-9

[3] B. Brahmi and M. O. Bibi, Dual support method for solving convex quadratic programs,
Optimization, 59 (2010) no. 6, pp. 851–872.

[4] B. Brahmi, An Efficient Primal Simplex Method for Solving Large-Scale Support Vec-
tor Machines, Neurocomputing, 599 (2024), Art. 128109. https://doi.org/10.1016/j.
neucom.2024.128109

[5] C. C. Chang and C. J. Lin, LIBSVM: A Library for support vector machines, ACM
Transactions on Intelligent Systems and Technology, 2 (2011) no. 3, pp. 1–27. https:
//doi.org/10.1145/1961189.1961199

[6] R. F. Chevalier, G. Hoogenboom, R. W. McClendon and J. A. Paz, Support vector
regression with reduced training sets for air temperature prediction: a comparison with
artificial neural networks, Neural Comput. & Applic., 20 (2011), pp. 151–159. https:
//doi.org/10.1007/s00521-010-0363-y

[7] K. L. Du and M. N. S. Swamy, Support vector machines, in: Neural Networks and
Statistical Learning, Springer, London, (2014), pp. 469–524. https://doi.org/10.1007/
978-1-4471-5571-3_16

[8] D. Dua and C. Graff, UCI Machine Learning Repository, University of California,
Irvine, 2017. Available at: http://archive.ics.uci.edu/ml.

[9] G. W. Flake and S. Lawrence, Efficient SVM regression training with SMO, Machine
Learning, 46(1–3) (2002), pp. 271–290. https://doi.org/10.1023/A:1012474916001

[10] R. Gabasov, F. M. Kirillova, V. M. Raketsky and O. Kostyukova, Constructive
Methods of Optimization, Volume 4: Convex Problems, University Press, Minsk, (1987)
(in Russian).

[11] C. H. Ho and C. J. Lin, Large-scale linear support vector regression, Journal of Machine
Learning Research, 13(1) (2012), pp. 3323–3348.

[12] Y. J. Lee, W. F. Hsieh and C. M. Huang, ϵ-SSVR: a smooth support vector machine
for ϵ-insensitive regression, IEEE Transactions on Knowledge and Data Engineering, 17
(2005) no. 5, pp. 678–685. https://doi.org/10.1109/tkde.2005.77

[13] J. Ma, J. Theiler and S. Perkins, Accurate on-line support vector regression,
neural computation, 15 (2003) no. 11, pp. 2683–2703. https://doi.org/10.1162/
089976603322385117

[14] D. R. Musicant and A. Feinberg, Active set support vector regression, IEEE Trans-
actions on Neural Networks, 15 (2004) no. 2, pp. 268–275. https://doi.org/10.1109/
tnn.2004.824259

[15] M. Najafzadeh and S. Niazmardi, A Novel multiple-kernel support vector regression
Algorithm for Estimation of Water Quality Parameters, Natural Resources Research, 30
(2021), pp. 3761–3775. https://doi.org/10.1007/s11053-021-09895-5

https://doi.org/10.1007/978-1-4302-5990-9
https://doi.org/10.1007/978-1-4302-5990-9
https://doi.org/10.1007/978-1-4302-5990-9
https://doi.org/10.1007/978-1-4302-5990-9
https://doi.org/10.1007/978-1-4302-5990-9
https://doi.org/10.1016/j.neucom.2024.128109
https://doi.org/10.1016/j.neucom.2024.128109
https://doi.org/10.1016/j.neucom.2024.128109
https://doi.org/10.1016/j.neucom.2024.128109
https://doi.org/10.1016/j.neucom.2024.128109
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1007/s00521-010-0363-y
https://doi.org/10.1007/s00521-010-0363-y
https://doi.org/10.1007/s00521-010-0363-y
https://doi.org/10.1007/s00521-010-0363-y
https://doi.org/10.1007/s00521-010-0363-y
https://doi.org/10.1007/s00521-010-0363-y
https://doi.org/10.1007/978-1-4471-5571-3_16
https://doi.org/10.1007/978-1-4471-5571-3_16
https://doi.org/10.1007/978-1-4471-5571-3_16
https://doi.org/10.1007/978-1-4471-5571-3_16
https://doi.org/10.1007/978-1-4471-5571-3_16
http://archive.ics.uci.edu/ml
https://doi.org/10.1023/A:1012474916001
https://doi.org/10.1023/A:1012474916001
https://doi.org/10.1023/A:1012474916001
https://doi.org/10.1023/A:1012474916001
https://doi.org/10.1109/tkde.2005.77
https://doi.org/10.1109/tkde.2005.77
https://doi.org/10.1109/tkde.2005.77
https://doi.org/10.1109/tkde.2005.77
https://doi.org/10.1162/089976603322385117
https://doi.org/10.1162/089976603322385117
https://doi.org/10.1162/089976603322385117
https://doi.org/10.1162/089976603322385117
https://doi.org/10.1162/089976603322385117
https://doi.org/10.1109/tnn.2004.824259
https://doi.org/10.1109/tnn.2004.824259
https://doi.org/10.1109/tnn.2004.824259
https://doi.org/10.1109/tnn.2004.824259
https://doi.org/10.1109/tnn.2004.824259
https://doi.org/10.1007/s11053-021-09895-5
https://doi.org/10.1007/s11053-021-09895-5
https://doi.org/10.1007/s11053-021-09895-5
https://doi.org/10.1007/s11053-021-09895-5

228 Saida Azib and Belkacem Brahmi 18

[16] J. Nocedal and S. J. Wright, Numerical Optimization, Springer, New York, NY,
2006. https://doi.org/10.1007/978-0-387-40065-5

[17] X. Peng and D. Xu, Projection support vector regression algorithms for data regres-
sion, Knowledge-Based Systems, 112 (2016), pp. 54–66. https://doi.org/10.1016/j.
knosys.2016.08.030

[18] J. C. Platt, Fast training of support vector machines using sequential minimal opti-
mization, in: B. Schölkopf, C. J. Burges and A. J. Smola (eds.), Advances in Kernel
Methods: Support Vector Learning, MIT Press, Cambridge, MA, (1998), pp. 185–208.
https://doi.org/10.7551/mitpress/1130.003.0016

[19] A. Rahimi and B. Recht, Random features for large-scale krnel machines, In Advances
in Neural Information Processing Systems (NIPS), (2007), pp. 1177–1184.

[20] P. R. Perea and J. C. Ruiz, An algorithm for training a large scale support vector
machine for regression based on linear programming and decomposition methods, Pattern
Recognition Letters, 34 (2013) no. 4, pp. 439–451. https://doi.org/10.1016/j.patrec.
2012.10.026

[21] B. Schölkopf and A. J. Smola, Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond, MIT Press, 2002.

[22] A. J. Smola and B. Schölkopf, A tutorial on support vector regression, Statis-
tics and Computing, 14 (2004) no. 3, pp. 199–222. https://doi.org/10.1023/b:
stco.0000035301.49549.88

[23] G. Steidl, Supervised learning by support vector machines, in: O. Scherzer (ed.), Hand-
book of Mathematical Methods in Imaging, Springer, New York, (2015), pp. 1393–1453.
https://doi.org/10.1007/978-1-4939-0790-8_22

[24] F. E. H. Tay and L. Cao, Application of support vector machines in financial time
series forecasting, Omega, 29 (2001) no. 4, pp. 309–317. https://doi.org/10.1016/
S0305-0483(01)00026-3

[25] Y. Torii and S. Abe, Decomposition techniques for training linear programming support
vector machines, Neurocomputing, 72 (2009) no. 4–6, pp. 973–984. https://doi.org/
10.1016/j.neucom.2008.04.008

[26] V. N. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag, New York,
(1995).

[27] M. Vogt and V. Kecman, Active-set methods for support vector machines, in: L. Wang
(ed.), Support Vector Machines: Theory and Applications, Springer, (2005), pp. 133–158.
https://doi.org/10.1007/10984697_6

[28] F. Zhang and L. J. O’Donnell, Support vector regression, in: A. Mechelli and S.
Vieira (eds.), Machine Learning, Academic Press, (2020), pp. 123–140. http://dx.doi.
org/10.1016/B978-0-12-815739-8.00007-9

[29] Y. Zhao and J. Sun, A fast method to approximately train hard support vector regres-
sion, Neural Networks, 23 (2010) no. 10, pp. 1276–1285. https://doi.org/10.1016/j.
neunet.2010.08.001

Received by the editors: August 08, 2025; accepted: November 22, 2025; published online:

December 15, 2025.

https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1016/j.knosys.2016.08.030
https://doi.org/10.1016/j.knosys.2016.08.030
https://doi.org/10.1016/j.knosys.2016.08.030
https://doi.org/10.1016/j.knosys.2016.08.030
https://doi.org/10.1016/j.knosys.2016.08.030
https://doi.org/10.7551/mitpress/1130.003.0016
https://doi.org/10.7551/mitpress/1130.003.0016
https://doi.org/10.7551/mitpress/1130.003.0016
https://doi.org/10.7551/mitpress/1130.003.0016
https://doi.org/10.7551/mitpress/1130.003.0016
https://doi.org/10.1016/j.patrec.2012.10.026
https://doi.org/10.1016/j.patrec.2012.10.026
https://doi.org/10.1016/j.patrec.2012.10.026
https://doi.org/10.1016/j.patrec.2012.10.026
https://doi.org/10.1016/j.patrec.2012.10.026
https://doi.org/10.1016/j.patrec.2012.10.026
https://doi.org/10.1023/b:stco.0000035301.49549.88
https://doi.org/10.1023/b:stco.0000035301.49549.88
https://doi.org/10.1023/b:stco.0000035301.49549.88
https://doi.org/10.1023/b:stco.0000035301.49549.88
https://doi.org/10.1023/b:stco.0000035301.49549.88
https://doi.org/10.1007/978-1-4939-0790-8_22
https://doi.org/10.1007/978-1-4939-0790-8_22
https://doi.org/10.1007/978-1-4939-0790-8_22
https://doi.org/10.1007/978-1-4939-0790-8_22
https://doi.org/10.1016/S0305-0483(01)00026-3
https://doi.org/10.1016/S0305-0483(01)00026-3
https://doi.org/10.1016/S0305-0483(01)00026-3
https://doi.org/10.1016/S0305-0483(01)00026-3
https://doi.org/10.1016/S0305-0483(01)00026-3
https://doi.org/10.1016/j.neucom.2008.04.008
https://doi.org/10.1016/j.neucom.2008.04.008
https://doi.org/10.1016/j.neucom.2008.04.008
https://doi.org/10.1016/j.neucom.2008.04.008
https://doi.org/10.1016/j.neucom.2008.04.008
https://doi.org/10.1007/10984697_6
https://doi.org/10.1007/10984697_6
https://doi.org/10.1007/10984697_6
https://doi.org/10.1007/10984697_6
http://dx.doi.org/10.1016/B978-0-12-815739-8.00007-9
http://dx.doi.org/10.1016/B978-0-12-815739-8.00007-9
http://dx.doi.org/10.1016/B978-0-12-815739-8.00007-9
http://dx.doi.org/10.1016/B978-0-12-815739-8.00007-9
http://dx.doi.org/10.1016/B978-0-12-815739-8.00007-9
https://doi.org/10.1016/j.neunet.2010.08.001
https://doi.org/10.1016/j.neunet.2010.08.001
https://doi.org/10.1016/j.neunet.2010.08.001
https://doi.org/10.1016/j.neunet.2010.08.001
https://doi.org/10.1016/j.neunet.2010.08.001

	1. Introduction
	2. Background
	3. Principle of the new method
	Notations and problem structure

	4. Iteration Scheme
	4.1. Search direction
	4.2. Stepsize selection
	 Calculate j0 and j1
	Calculate f.
	4.3. Update the working-basis
	4.4. Proposed WSA-SVR algorithm

	5. Convergence Analysis and Computational Complexity
	6. Experimental Results
	7. Conclusion
	References

