

A STANCU TYPE EXTENSION
 OF THE CAMPITI-METAFUNE OPERATOR

TEODORA CĂTINAS*

Abstract. We consider an extension of the Campiti-Metafune operator using a Stancu type technique. We study some properties of the new obtained operator.

MSC. 41A10, 41A35, 41A36, 47A58.

Keywords. Campiti-Metafune operator, Stancu operator, Bernstein operator, moments of the operator.

1. INTRODUCTION

In 1982, D.D. Stancu [6], introduced a new Bernstein type operator given by

$$(1) \quad L_{n,r}(f; x) = \sum_{k=0}^{n-r} b_{n-r,k}(x) \left[(1-x)f\left(\frac{k}{n}\right) + xf\left(\frac{k+r}{n}\right) \right],$$

where $b_{n,k}$ denote the basis Bernstein polynomials of degree n ,

$$b_{n,k} = \binom{n}{k} x^k (1-x)^{n-k}, \quad k = 0, 1, \dots, n,$$

for $f \in C[0, 1]$, $n, r \in \mathbb{N}$ such that $n > 2r$.

In 1996, M. Campiti and G. Metafune [3], introduced and studied a new Bernstein type operator that now bears their names. For introducing the operator, we need two sequences $\lambda = (\lambda_n)_{n \geq 1}$ and $\rho = (\rho_n)_{n \geq 1}$, and the numbers $\alpha_{n,k}$ defined by

$$(2) \quad \alpha_{n,0} = \lambda_n, \quad \alpha_{n,n} = \rho_n, \quad \alpha_{n+1,k} = \alpha_{n,k} + \alpha_{n,k-1}, \quad \text{for } k = \overline{1, n}, \quad n \in \mathbb{N}.$$

The Campiti-Metafune operator $A_n : C([0, 1]) \rightarrow C([0, 1])$, is given by [3]

$$(3) \quad (A_n f)(x) = \sum_{k=0}^n \alpha_{n,k} x^k (1-x)^{n-k} f\left(\frac{k}{n}\right).$$

*Babeş-Bolyai University, Faculty of Mathematics and Computer Science,
 Str. M. Kogălniceanu Nr. 1, RO-400084 Cluj-Napoca, Romania, e-mail:
teodora.catinas@ubbcluj.ro.

REMARK 1. If λ and ρ are constant sequences of term 1, then $\alpha_{n,k} = \binom{n}{k}$, for $k = \overline{0, n}$ and A_n becomes Bernstein operator B_n , given by

$$(B_n f)(x) = \sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k} f\left(\frac{k}{n}\right).$$

For the sequences (λ, ρ) we consider the following choices, as in [1]:

(i) Case $\lambda = \delta_m$, $m \in \mathbb{N}$, $\rho = 0$, where $\delta_m = (\delta_{n,m})_{n \geq 1}$, $\delta_{n,m} = \begin{cases} 1, & n = m \\ 0, & n \neq m \end{cases}$.

We denote $A_n^{(\delta_m, 0)}$ by $L_{m,n}$ and it is called *the elementary left operator of order m* associated to A_n .

The coefficients of the operators $L_{m,n}$ are denoted by $l_{m,n,k}$ and they are defined by

$$l_{m,n,k} = \begin{cases} 0, & (n < m) \text{ or } (n > m, k = 0) \\ 1, & n = m, k = 0 \\ \binom{n-m-1}{k-1}, & n > m, 1 \leq k \leq n-m. \end{cases} \quad (n = m, k \geq 1) \quad (n > m, k \geq n-m+1).$$

(ii) Case $\lambda = 0$, $\rho = \delta_m$, $m \in \mathbb{N}$. We denote $A_n^{(0, \delta_m)}$ by $R_{m,n}$ and it is called *elementary right operator of order m* associated to A_n .

The coefficients of the operators $R_{m,n}$ are denoted by $r_{m,n,k}$ and they are defined by

$$r_{m,n,k} = \begin{cases} 0, & (n < m) \text{ or } (n > m, k \leq m-1) \\ 1, & n = m, k = n \\ \binom{n-m-1}{k-m}, & n > m, m \leq k \leq n-1. \end{cases} \quad (n = m, k \leq n-1) \quad (n > m, k = n).$$

Consequently, for any $(m, n) \in \mathbb{N} \times \mathbb{N}$ we get

$$(4) \quad (L_{m,n} f)(x) = \sum_{k=1}^{n-m} a_{m,n,k}(x) f\left(\frac{k}{n}\right),$$

with

$$(5) \quad a_{m,n,k}(x) = \binom{n-m-1}{k-1} x^k (1-x)^{n-k},$$

for $m < n$ and

$$(L_{n,n} f)(x) = (1-x)^n f(0).$$

We have

$$(6) \quad (R_{m,n} f)(x) = \sum_{k=m}^{n-1} b_{m,n,k}(x) f\left(\frac{k}{n}\right),$$

with

$$(7) \quad b_{m,n,k}(x) = \binom{n-m-1}{k-m} x^k (1-x)^{n-k},$$

for $m < n$ and

$$(R_{n,n}f)(x) = x^n f(1).$$

Using these elementary operators, the operator A_n is decomposed as

$$(8) \quad A_n = \sum_{m=1}^n \lambda_m L_{m,n} + \sum_{m=1}^n \rho_m R_{m,n}.$$

REMARK 2. For the particular case of $\lambda = \rho = 1$, we get

$$B_n = \sum_{m=1}^n (L_{m,n} + R_{m,n}).$$

2. A STANCU TYPE EXTENSION OF THE CAMPITI-METAFUNE OPERATOR

Now we introduce the *Stancu type extension of the Campiti-Metafune operator*, based on an idea from [2], also used, for example, in [4], [5]. Using the Stancu type operator (1) and the operator (8), we get

$$(9) \quad (A_n^S f)(x) := \sum_{m=1}^n \lambda_m (L_{m,n,r}^S f)(x) + \sum_{m=1}^n \rho_m (R_{m,n,r}^S f)(x)$$

with

$$(L_{m,n,r}^S f)(x) = \sum_{k=1}^{n-m-r} a_{m,n-r,k}(x) [(1-x)f(\frac{k}{n}) + xf(\frac{k+r}{n})]$$

and

$$(R_{m,n,r}^S f)(x) = \sum_{k=m}^{n-r-1} b_{m,n-r,k}(x) [(1-x)f(\frac{k}{n}) + xf(\frac{k+r}{n})],$$

where $a_{m,n-r,k}(x)$ and $b_{m,n-r,k}(x)$ are given by (5) and (7), for $f \in C[0, 1]$ and $n, r \in \mathbb{N}$ such that $n > 2r$.

REMARK 3. For $r = 0$, A_n^S is obtained as the Campiti-Metafune operator A_n .

We are going to calculate the moments of the new operators and to study some approximation properties.

3. PROPERTIES OF THE CAMPITI-METAFUNE OPERATOR

We give first some results regarding the Campiti-Metafune operator that will be used in the sequel in order to prove some properties of the new constructed operator.

LEMMA 4 ([1]). The operators defined by (4) and (6) verify the following relations:

$$\begin{aligned}
1^\circ \quad (L_{m,n}e_0)(x) &= \begin{cases} x(1-x)^m, & n > m; \\ (1-x)^n, & n = m; \end{cases} \\
(R_{m,n}e_0)(x) &= \begin{cases} (1-x)x^m, & n > m; \\ x^n, & n = m; \end{cases} \\
2^\circ \quad (L_{m,n}e_1)(x) &= \begin{cases} \frac{x(1-x)^m(1+(n-m-1)x)}{n}, & n > m; \\ 0, & n = m; \end{cases} \\
(R_{m,n}e_1)(x) &= \begin{cases} \frac{(1-x)x^m(m+(n-m-1)x)}{n}, & n > m; \\ x^n, & n = m; \end{cases} \\
3^\circ \quad (L_{m,n}e_2)(x) &= \begin{cases} x(1-x)^m \frac{1+3(n-m-1)x+(n-m-1)(n-m-2)x^2}{n^2}, & n > m; \\ 0, & n = m; \end{cases} \\
(R_{m,n}e_2)(x) &= \begin{cases} (1-x)x^m \frac{m^2+(1+2m)(n-m-1)x+(n-m-1)(n-m-2)x^2}{n^2}, & n > m; \\ x^n, & n = m. \end{cases}
\end{aligned}$$

Now we study some properties for the new operator, A_n^S introduced in (9).

THEOREM 5. *For every $x \in [0, 1]$, $n, r \in \mathbb{N}$ such that $n > 2r$, we have the following results:*

i)

$$\begin{aligned}
(A_n^S e_0)(x) &= \sum_{m=1}^n \lambda_m (L_{m,n,r}^S e_0)(x) + \sum_{m=1}^n \rho_m (R_{m,n,r}^S e_0)(x) \\
&= \sum_{m=1}^{n-r-1} (\lambda_m x(1-x)^m + \rho_m x^m(1-x)) + \lambda_{n-r}(1-x)^{n-r} + \rho_{n-r} x^{n-r}
\end{aligned}$$

ii)

$$(A_n^S e_1)(x) := \sum_{m=1}^n \lambda_m (L_{m,n,r}^S e_1)(x) + \sum_{m=1}^n \rho_m (R_{m,n,r}^S e_1)(x)$$

iii)

$$(A_n^S e_2)(x) := \sum_{m=1}^n \lambda_m (L_{m,n,r}^S e_2)(x) + \sum_{m=1}^n \rho_m (R_{m,n,r}^S e_2)(x)$$

with

$$\begin{aligned}
(L_{m,n,r}^S e_0)(x) &= \begin{cases} x(1-x)^m, & n > m + r; \\ (1-x)^{n-r}, & n = m + r; \end{cases} \\
(R_{m,n,r}^S e_0)(x) &= \begin{cases} (1-x)x^m, & n > m + r; \\ x^{n-r}, & n = m + r; \end{cases}
\end{aligned}$$

and

$$(L_{m,n,r}^S e_1)(x) = \begin{cases} \frac{x(1-x)^m(1+(n-r-m-1)x)}{n-r} + \frac{r}{n}x^2(1-x)^m, & n > m+r; \\ \frac{r}{n}x(1-x)^{n-r}, & n = m+r; \end{cases}$$

$$(R_{m,n,r}^S e_1)(x) = \begin{cases} \frac{(1-x)x^m(m+(n-r-m-1)x)}{n-r} + \frac{r}{n}x(1-x)x^m, & n > m+r; \\ x^{n-r} + \frac{r}{n}x^{n-r+1}, & n = m+r; \end{cases}$$

and

$$(L_{m,n,r}^S e_2)(x) =$$

$$= \begin{cases} x(1-x)^m \frac{\{1+3(n-r-m-1)x+(n-r-m-1)(n-r-m-2)x^2\}}{(n-r)^2} & n > m+r; \\ + \frac{2r}{n}x^2 \frac{(1-x)^m(1+(n-r-m-1)x)}{n-r} + \frac{r^2}{n^2}x^3(1-x)^m, & n = m+r; \end{cases}$$

$$(R_{m,n,r}^S e_2)(x) =$$

$$= \begin{cases} (1-x)x^m \frac{m^2+(1+2m)(n-r-m-1)x+(n-r-m-1)(n-r-m-2)x^2}{(n-r)^2} & n > m+r; \\ + \frac{2r}{n}x \frac{(1-x)x^m(m+(n-r-m-1)x)}{n-r} + \frac{r^2x^2}{n^2}(1-x)x^m, & n = m+r; \end{cases}$$

Proof.

$$(10) \quad (A_n^S e_0)(x) := \sum_{m=1}^n \lambda_m (L_{m,n,r}^S e_0)(x) + \sum_{m=1}^n \rho_m (R_{m,n,r}^S e_0)(x)$$

with

$$(L_{m,n,r}^S e_0)(x) = \sum_{k=1}^{n-m-r} a_{m-r,n,k}(x) = (L_{m,n-r} e_0)(x)$$

$$= \begin{cases} x(1-x)^m, & n > m+r; \\ (1-x)^{n-r}, & n = m+r; \end{cases}$$

and

$$(R_{m,n,r}^S e_0)(x) = \sum_{k=m}^{n-r-1} b_{m-r,n,k}(x) = (R_{m,n-r} e_0)(x)$$

$$= \begin{cases} (1-x)x^m, & n > m+r; \\ x^{n-r}, & n = m+r; \end{cases}.$$

So, we have

$$(A_n^S e_0)(x) := \sum_{m=1}^n \lambda_m (L_{m,n-r} e_0)(x) + \sum_{m=1}^n \rho_m (R_{m,n-r} e_0)(x) = (A_{n-r} e_0)(x)$$

By (10) we get

$$(A_n^S e_0)(x) = \sum_{m=1}^{n-r-1} (\lambda_m x(1-x)^m + \rho_m x^m(1-x)) + \lambda_{n-r}(1-x)^{n-r} + \rho_{n-r} x^{n-r}$$

ii) We have

$$(A_n^S e_1)(x) := \sum_{m=1}^n \lambda_m (L_{m,n,r}^S e_1)(x) + \sum_{m=1}^n \rho_m (R_{m,n,r}^S e_1)(x)$$

with

$$\begin{aligned} (L_{m,n,r}^S e_1)(x) &= \sum_{k=1}^{n-m-r} a_{m,n-r,k}(x) [(1-x)\frac{k}{n} + x\frac{k+r}{n}] \\ &= (L_{m,n-r} e_1)(x) + \frac{r}{n} x (L_{m,n-r} e_0)(x) \end{aligned}$$

and

$$\begin{aligned} (R_{m,n,r}^S e_1)(x) &= \sum_{k=m}^{n-r-1} b_{m,n-r,k}(x) [(1-x)\frac{k}{n} + x\frac{k+r}{n}] \\ &= (R_{m,n-r} e_1)(x) + \frac{r}{n} x (R_{m,n-r} e_0)(x) \end{aligned}$$

and by Lemma 4, we get

$$\begin{aligned} (L_{m,n,r}^S e_1)(x) &= (L_{m,n-r} e_1) + \frac{r}{n} x (L_{m,n-r} e_0)(x) \\ &= \begin{cases} \frac{x(1-x)^m(1+(n-r-m-1)x)}{n-r} + \frac{r}{n} x^2 (1-x)^m, & n > m+r; \\ \frac{r}{n} x (1-x)^{n-r}, & n = m+r; \end{cases} \end{aligned}$$

and

$$\begin{aligned} (R_{m,n,r}^S e_1)(x) &= (R_{m,n-r} e_1)(x) + \frac{r}{n} x (R_{m,n-r} e_0)(x) \\ &= \begin{cases} \frac{(1-x)x^m(m+(n-r-m-1)x)}{n-r} + \frac{r}{n} x (1-x)x^m, & n > m+r; \\ x^{n-r} + \frac{r}{n} x^{n-r+1}, & n = m+r; \end{cases} \end{aligned}$$

iii) We have

$$(A_n^S e_2)(x) := \sum_{m=1}^n \lambda_m (L_{m,n,r}^S e_2)(x) + \sum_{m=1}^n \rho_m (R_{m,n,r}^S e_2)(x)$$

with

$$(L_{m,n,r}^S e_2)(x) = \sum_{k=1}^{n-m-r} a_{m,n-r,k}(x) \left[(1-x)\frac{k^2}{n^2} + x\frac{(k+r)^2}{n^2} \right]$$

$$= (L_{m,n-r}e_2)(x) + \frac{2r}{n}x(L_{m,n-r}e_1)(x) + \frac{r^2x^2}{n^2}(L_{m,n-r}e_0)(x)$$

and

$$\begin{aligned} (R_{m,n,r}^S e_2)(x)(x) &= \sum_{k=1}^{n-m-r} a_{m,n-r,k}(x) \left[(1-x) \frac{k^2}{n^2} + x \frac{(k+r)^2}{n^2} \right] \\ &= (R_{m,n-r}e_2)(x) + \frac{2r}{n}x(R_{m,n-r}e_1)(x) + \frac{r^2x^2}{n^2}(R_{m,n-r}e_0)(x). \end{aligned}$$

By [Lemma 4](#), we get

$$\begin{aligned} (L_{m,n,r}^S e_2)(x)(x) &= \\ &= (L_{m,n-r}e_2)(x) + \frac{2r}{n}x(L_{m,n-r}e_1)(x) + \frac{r^2x^2}{n^2}(L_{m,n-r}e_0)(x) \\ &= \begin{cases} x(1-x)^{m+3(n-r-m-1)x+(n-r-m-1)(n-r-m-2)x^2} & n > m+r; \\ + \frac{2r}{n}x \frac{x(1-x)^m(1+(n-r-m-1)x)}{n-r} + \frac{r^2}{n^2}x^3(1-x)^m, & \\ \frac{r^2}{n^2}x^2(1-x)^{n-r}, & n = m+r; \end{cases} \end{aligned}$$

and

$$\begin{aligned} (R_{m,n,r}^S e_2)(x)(x) &= \\ &= (R_{m,n-r}e_2)(x) + \frac{2r}{n}x(R_{m,n-r}e_1)(x) + \frac{r^2x^2}{n^2}(R_{m,n-r}e_0)(x) \\ &= \begin{cases} (1-x)x^{m+2+(1+2m)(n-r-m-1)x+(n-r-m-1)(n-r-m-2)x^2} & n > m+r; \\ + \frac{2r}{n}x \frac{(1-x)x^m(m+(n-r-m-1)x)}{n-r} + \frac{r^2x^2}{n^2}(1-x)x^m, & \\ x^{n-r} + \frac{2r}{n}x^{n-r+1} + \frac{r^2x^2}{n^2}x^{n-r}, & n = m+r; \end{cases} \end{aligned}$$

□

THEOREM 6. *For every $f \in C[0, 1]$, we have*

$$\|L_{m,n,r}^S\| \leq \|f\| \quad \text{and} \quad \|R_{m,n,r}^S\| \leq \|f\|.$$

Proof. Considering the expression of $L_{m,n,r}^S f$ and $R_{m,n,r}^S f$, and [Lemma 4](#), we get

$$\begin{aligned} |(L_{m,n,r}^S f)(x)| &= \left| \sum_{k=1}^{n-m-r} a_{m,n-r,k}(x) \left[(1-x)f\left(\frac{k}{n}\right) + x f\left(\frac{k+r}{n}\right) \right] \right| \\ &\leq \sum_{k=1}^{n-m-r} a_{m,n-r,k}(x) \left| \left[(1-x)f\left(\frac{k}{n}\right) + x f\left(\frac{k+r}{n}\right) \right] \right| \\ &\leq \sum_{k=1}^{n-m-r} a_{m,n-r,k}(x) \left[(1-x) \left| f\left(\frac{k}{n}\right) \right| + x \left| f\left(\frac{k+r}{n}\right) \right| \right] \end{aligned}$$

$$\begin{aligned}
&\leq \|f\| \sum_{k=1}^{n-m-r} a_{m,n-r,k}(x) \\
&\leq \|f\| (L_{m,n,r}^S e_0)(x) \\
&\leq \|f\|,
\end{aligned}$$

$$\begin{aligned}
|(R_{m,n,r}^S f)(x)| &= \left| \sum_{k=m}^{n-r-1} b_{m,n-r,k}(x) \left[(1-x)f\left(\frac{k}{n}\right) + xf\left(\frac{k+r}{n}\right) \right] \right| \\
&\leq \sum_{k=1}^{n-m-r} b_{m,n-r,k}(x) \left| \left[(1-x)f\left(\frac{k}{n}\right) + xf\left(\frac{k+r}{n}\right) \right] \right| \\
&\leq \sum_{k=1}^{n-m-r} b_{m,n-r,k}(x) \left[(1-x) \left| f\left(\frac{k}{n}\right) \right| + x \left| f\left(\frac{k+r}{n}\right) \right| \right] \\
&\leq \|f\| (R_{m,n,r}^S e_0)(x) \\
&\leq \|f\|.
\end{aligned}$$

□

REFERENCES

- [1] O. AGRATINI, *Approximation by linear operators*, Cluj University Press, 2000.
- [2] T. BOSTANCI, G. BASCANBAZ-TUNCA, *A Stancu type extension of Cheney and Sharma operator*, J. Numer. Anal. Approx. Theory, **47** (2018), pp. 124–134. <https://doi.org/10.33993/jnaat472-1133> ↗
- [3] M. CAMPITI, G. METAFUNE, *Approximation of recursively defined Bernstein-type operators*, J. Approx. Theory, **87** (1996), pp. 243–269.
- [4] T. CĂTINAŞ, I. BUDA, *An extension of the Cheney–Sharma operator of the first kind*, J. Numer. Anal. Approx. Theory, **52** (2023) no. 2, pp. 172–181. <https://doi.org/10.33993/jnaat522-1373> ↗
- [5] E. GRIGORICIUC, *A Stancu type extension of the Cheney–Sharma Chlodovsky operators*, J. Numer. Anal. Approx. Theory, **53** (2024) no. 1, pp. 103–117. <https://doi.org/10.33993/jnaat531-1406> ↗
- [6] D.D. STANCU, *Quadrature formulas constructed by using certain linear positive operators*, Numerical Integration (Proc. Conf., Oberwolfach, 1981), ISNM **57** (1982), Birkhäuser Verlag, Basel, pp. 241–251.

Received by the editors: November 01, 2025; accepted: November 21, 2025; published online: December 15, 2025.