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A NEW ANALYTICAL ENVELOPE FOR MULTIVARIATE GLOBAL
OPTIMIZATION

DJAMEL AAID∗

Abstract. We propose a new global optimization method that combines an
α–dense univariate reduction with explicitly constructed analytical envelopes:
a piecewise concave underestimator (PCU) and a piecewise convex overestima-
tor (PCO). By leveraging interval-based curvature bounds, the method provides
rigorous global optimality certificates. An adaptive branch-and-bound strat-
egy ensures rapid convergence by refining intervals based on theoretical enve-
lope widths. Numerical experiments on challenging nonconvex and multimodal
benchmarks demonstrate strong performance and efficiency.
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1. INTRODUCTION

Deterministic global optimization remains a central topic in numerical anal-
ysis and applied mathematics, with a wide range of applications across science
and engineering. Foundational monographs such as Floudas [6] and Locatelli–
Schoen [10] provide comprehensive overviews of key approaches, including spa-
tial branch-and-bound, interval methods, Lipschitz-based schemes, and convex
or concave relaxations. Despite these advances, obtaining tight global bounds
for nonconvex problems in moderate to high dimensions remains a major chal-
lenge in the field.

A particularly influential class of relaxations is based on convex underesti-
mation. The αBB method developed by Adjiman, Androulakis, and Floudas [3,
4] constructs a convex quadratic lower bound by augmenting the Hessian with
diagonal shifts. This paradigm has since been extended through more refined
DC relaxations, including recent developments by Strahl, Raghunathan, and
Sahinidis [15]. Other underestimation techniques include the DCU method
for univariate optimization introduced by Chang, Park, and Lee [5], as well as
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1 A new analytical envelope 1

the convex quadratic relaxations of Le Thi and Ouanes [9]. A broader survey
of convex underestimation methods is available in Skjäl [14].

Interval-based global optimization techniques also play a crucial role, partic-
ularly for their ability to provide rigorous bounds. Notable examples include
the classical one-dimensional algorithm by Sergeyev [12], geometric Lipschitz-
based methods by Kvasov and Sergeyev [8], and the homogeneity framework
proposed by Sergeyev, Kvasov, and Mukhametzhanov [13]. More recent strate-
gies include the Lipschitz global optimization methods of Malherbe and Vay-
atis [11] and the constrained Lipschitz-gradient approach of Vinod, Israel, and
Topcu [16]. For a comprehensive overview, see the tutorial by Horst [17].

Another direction of research focuses on reducing multivariate problems to
univariate ones. Meta-algorithmic frameworks following this idea were recently
studied by Gökçesu and Gökçesu [7]. Earlier work by Aaid and collaborators
developed constructive transformations for dimensionality reduction, enabling
global optimization in the univariate setting [1, 2]. These transformations
generate an α–dense curve through the domain, aiming to ensure that the
global minimizer of the original multivariate function is well approximated by
that of the corresponding one-dimensional surrogate.

Building on this reduction approach, the present work introduces a new
analytical framework for univariate global optimization. Specifically, we con-
struct a piecewise concave underestimator (PCU) and a piecewise convex over-
estimator (PCO), both derived explicitly from interval bounds on the second
derivative of the reduced function. These constructions yield a pair of rigorous
analytical envelopes satisfying

PCU(t) ≤ F (t) ≤ PCO(t) for all t,

with computable curvature parameters. When combined with an adaptive
branch-and-bound scheme that refines the interval exhibiting the largest the-
oretical envelope gap, the method produces rapidly shrinking global bounds
and provable optimality gaps.

The main contributions of this article are as follows:

• We derive explicit PCU and PCO envelopes from interval curvature
bounds, providing rigorous concave and convex relaxations.
• We integrate these envelopes with the α–dense dimension-reduction

transformation of Aaid [1, 2], resulting in a fully certified univariate
representation of multivariate problems.
• We introduce an adaptive refinement strategy that targets the interval

with the largest theoretical envelope width, accelerating convergence.
• Our numerical experiments show that the method performs well on

various challenging benchmark problems, including those with moder-
ate to high dimensions, especially when the reduction and subdivision
settings are chosen carefully.
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2 Djamel Aaid 2

It is important to note that the efficiency of the proposed framework depends
on how the reduction parameters are chosen especially the density parameter
α and the frequency sequence. Also, the univariate reduction does not remove
the inherent complexity of the original multivariate problem.

The remainder of the paper is organized as follows. Section 2 presents the
dimension reduction framework. Section 3 introduces analytical envelopes.
Section 4 describes the adaptive branch-and-bound algorithm. Section 5 pro-
vides numerical experiments and comparisons with existing global optimiza-
tion methods. Section 6 concludes with directions for future research.

2. PRELIMINARIES

We consider the global optimization problem

min
x∈X

f(x), X :=
n∏

i=1
[ai, bi] ⊂ Rn,

where the objective function f : X → R is assumed to be twice continuously
differentiable.

2.1. Reductive Transformation via α–Dense Curves. Following the frame-
work introduced in [1, 2], we consider a one-dimensional parametric curve
x : [0, θmax]→ X defined by

x(θ) = (x1(θ), . . . , xn(θ)), xi(θ) = 1
2

[
(bi − ai) cos(ωiθ + φi) + (bi + ai)

]
,

where (ωi)n
i=1 and (φi)n

i=1 are frequency and phase parameters chosen to con-
trol the geometry of the curve. Since cos(ωiθ + φi) ∈ [−1, 1], it follows that
x(θ) ∈ X for all θ ∈ [0, θmax].

We denote by
Γ := x([0, θmax]) ⊂ X

the image (or trace) of the curve, and define the corresponding univariate
surrogate objective as

(1) F (θ) := f(x(θ)), θ ∈ [0, θmax].

Clearly, if θ⋆ is a (global) minimizer of F , then x(θ⋆) is a candidate global
minimizer of f over X.

2.2. α–Dense Curves and Reduction Error.

Definition 1. A set S ⊂ X is said to be α–dense in X if for every z ∈ X,
there exists y ∈ S such that

∥z − y∥ ≤ α.

In particular, we say that the curve Γ is α–dense in X if it satisfies this
property.
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3 A new analytical envelope 3

The key idea behind this construction is that, for appropriate choices of ωi,
φi, and θmax, the curve Γ can be made α–dense in X. As a result, minimizing
the reduced function F over the interval [0, θmax] gives a good approxima-
tion of the original optimization problem over X, with the accuracy directly
influenced by the selected density parameter α.

Theorem 2 (Reduction Error Bound). Assume that Γ is α–dense in X, and
that f is Lipschitz continuous on X with Lipschitz constant Lf > 0. Define

mX := min
x∈X

f(x), mΓ := min
θ∈[0,θmax]

F (θ).

Then the reduction error satisfies the bound
(2) |mX −mΓ| ≤ Lf α.

The accuracy of the reduced formulation is directly influenced by the density
parameter α. Smaller values of α improve the approximation of the original
problem but may increase the complexity of the reduced one, due to a larger
required range for θ and increased oscillations of the curve Γ. In particular,
ensuring α-density may demand a large θmax, depending on the dimension and
frequency sequence.

Thus, the univariate reduction shifts rather than removes the original prob-
lem’s complexity. The method’s efficiency depends on balancing approxima-
tion accuracy and computational cost. We now focus on deriving tight bounds
for F on [0, θmax] and integrating them into a branch-and-bound framework.
Choice of the density parameter α. The parameter α controls the approxima-
tion quality of the reduction. By Theorem 1, the error is bounded by Lf α.
If Lf is unknown, it can be estimated via interval gradients or α can be ad-
justed empirically.

Smaller α improves accuracy but increases computational cost due to larger θmax
and curvature. A balance must be struck between precision and efficiency.

3. MATERIALS AND METHODS

3.1. Local Construction of a PCU Bound on an Interval. Let F :
[α, β]→ R be twice continuously differentiable. Consider a partition

α = t0 < t1 < · · · < tM = β,

and fix an interval
Ii := [ti, ti+1], hi := ti+1 − ti > 0.

Define the linear shape functions on Ii:

ℓi,0(t) := ti+1 − t

hi
, ℓi,1(t) := t− ti

hi
, t ∈ Ii,

and the linear interpolant
LiF (t) := ℓi,0(t) F (ti) + ℓi,1(t) F (ti+1), t ∈ Ii.
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4 Djamel Aaid 4

Assume that we know a lower curvature bound on Ii, namely
F ′′(t) ≥ mi, ∀t ∈ Ii,

for some real constant mi ≤ 0 (possibly negative). We define the local PCU
(Piecewise Concave Underestimator) on Ii by

(3) PCUi(t) := LiF (t) + mi

2 (t− ti)(ti+1 − t), t ∈ Ii.

Theorem 3 (Local Concave PCU Bound). Assume F ∈ C2([α, β]) and
F ′′(t) ≥ mi, ∀t ∈ Ii,

with mi ≤ 0. Then, for every t ∈ Ii,
(1) PCUi(t) ≤ F (t) (valid lower bound),
(2) PCUi is concave on Ii, i.e.

PCU′′
i (t) ≤ 0, ∀t ∈ Ii.

Proof. (1) Valid lower bound. Let
Ei(t) := F (t)− LiF (t).

By the standard interpolation error formula, for each t ∈ Ii there exists ξ(t) ∈
Ii such that

Ei(t) = F ′′(ξ(t))
2 (t− ti)(ti+1 − t).

Since (t− ti)(ti+1 − t) ≥ 0 on Ii and F ′′(ξ(t)) ≥ mi, we obtain

Ei(t) = F ′′(ξ(t))
2 (t− ti)(ti+1 − t) ≥ mi

2 (t− ti)(ti+1 − t).

Thus
F (t)− LiF (t) ≥ mi

2 (t− ti)(ti+1 − t),
which can be rewritten as

LiF (t) + mi

2 (t− ti)(ti+1 − t) ≤ F (t).

By definition (3), the left-hand side is PCUi(t), hence
PCUi(t) ≤ F (t), ∀t ∈ Ii.

(2) Concavity. Since LiF is affine on Ii, (LiF )′′(t) = 0. We have
(t− ti)(ti+1 − t) = −(t2) + (ti + ti+1)t− titi+1,

so
d2

dt2 (t− ti)(ti+1 − t) = −2.

Therefore
d2

dt2

[
mi

2 (t− ti)(ti+1 − t)
]

= mi

2 · (−2) = mi.

Hence
PCU′′

i (t) = (LiF )′′(t) + mi = 0 + mi = mi ≤ 0,
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5 A new analytical envelope 5

which proves that PCUi is concave on Ii. □

3.2. Global Piecewise Concave Underestimator. Let
α = t0 < t1 < · · · < tM = β

be a partition of [α, β]. On each interval Ii = [ti, ti+1], the local PCUi is
defined as in Theorem 3:

PCUi(t) = LiF (t) + mi

2 (t− ti)(ti+1 − t), t ∈ Ii,

where mi ≤ 0 satisfies
F ′′(t) ≥ mi, ∀t ∈ Ii.

We define the global PCU on [α, β] by
PCU(t) := PCUi(t), t ∈ [ti, ti+1], i = 0, . . . , M − 1.

Theorem 4 (Global PCU Properties). Under the above assumptions, the
global function PCU satisfies:

(1) (Global lower bound)
PCU(t) ≤ F (t), ∀t ∈ [α, β].

(2) (Interpolation at the nodes)
PCU(ti) = F (ti), i = 0, . . . , M.

(3) (Continuity and piecewise concavity) PCU is continuous on [α, β]
and PCU|Ii

is concave on each interval Ii = [ti, ti+1].

Proof. (1) For t ∈ Ii, Theorem 3 yields
PCUi(t) ≤ F (t).

By the definition of the global PCU, PCU(t) = PCUi(t) for t ∈ Ii, hence
PCU(t) ≤ F (t), ∀t ∈ [α, β].

(2) At the endpoints of Ii we have

PCUi(ti) = LiF (ti) + mi

2 (ti − ti)(ti+1 − ti) = F (ti),

and
PCUi(ti+1) = LiF (ti+1) + mi

2 (ti+1 − ti)(ti+1 − ti+1) = F (ti+1),

because the quadratic term vanishes at t = ti and t = ti+1 and LiF interpolates
F at the nodes. In particular, for 1 ≤ k ≤M − 1,

PCUk−1(tk) = F (tk) = PCUk(tk),
so the left and right pieces coincide at every interior node.

(3) From (2), the left and right limits of PCU at each node ti coincide and
are equal to F (ti), so PCU is continuous on [α, β]. On each subinterval Ii, we
have PCU(t) = PCUi(t) and Theorem 3 gives

PCU′′
i (t) = mi ≤ 0,
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6 Djamel Aaid 6

hence PCU is concave on each Ii. □

3.3. Local Construction of a PCO Bound on an Interval. We keep the
same setting as in the local PCU construction. Let F : [α, β] → R be twice
continuously differentiable, and consider an interval

Ii := [ti, ti+1], hi := ti+1 − ti > 0.

The linear interpolant of F on Ii is
LiF (t) := ℓi,0(t) F (ti) + ℓi,1(t) F (ti+1), t ∈ Ii,

where
ℓi,0(t) := ti+1 − t

hi
, ℓi,1(t) := t− ti

hi
.

Assume that there exists Ki > 0 such that
|F ′′(t)| ≤ Ki, ∀t ∈ Ii.

We define the local PCO (Piecewise Convex Overestimator) on Ii by
PCOi(t) := LiF (t) + δi, t ∈ Ii,

where
δi := Ki

8 h2
i .

Theorem 5 (Local PCO Bound). Assume F ∈ C2([α, β]) and |F ′′(t)| ≤ Ki

on Ii. Then, for every t ∈ Ii,
(1) PCOi(t) ≥ F (t) (valid upper bound),
(2) PCOi is convex on Ii.

Proof. Let
Ei(t) := F (t)− LiF (t).

As in the proof of Theorem 3, there exists ξ(t) ∈ Ii such that

Ei(t) = F ′′(ξ(t))
2 (t− ti)(ti+1 − t).

Hence

|Ei(t)| ≤
|F ′′(ξ(t))|

2 (t− ti)(ti+1 − t) ≤ Ki

2 (t− ti)(ti+1 − t).

The quadratic term (t − ti)(ti+1 − t) attains its maximum at the midpoint
t = (ti + ti+1)/2, with value

max
t∈Ii

(t− ti)(ti+1 − t) = h2
i

4 .

Therefore
|Ei(t)| ≤

Ki

2 ·
h2

i

4 = Ki

8 h2
i = δi, ∀t ∈ Ii.

In particular,
F (t) ≤ LiF (t) + δi = PCOi(t), ∀t ∈ Ii,
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7 A new analytical envelope 7

which proves that PCOi is a valid upper bound on Ii.
For convexity, note that LiF is affine on Ii and δi is a constant shift. Thus

PCOi is affine on Ii, hence convex. □

3.4. Global Piecewise Convex Overestimator. Let
α = t0 < t1 < · · · < tM = β

be a partition of [α, β]. On each interval Ii = [ti, ti+1], the local PCOi is
defined as in Theorem 5:

PCOi(t) = LiF (t) + δi, δi = Ki

8 h2
i , hi = ti+1 − ti.

We define the global PCO on [α, β] by
PCO(t) := PCOi(t), t ∈ [ti, ti+1], i = 0, . . . , M − 1.

Theorem 6 (Global PCO Properties). Assume F ∈ C2([α, β]) and, for
each i, there exists Ki > 0 such that

|F ′′(t)| ≤ Ki, ∀t ∈ [ti, ti+1].
Then the global function PCO satisfies:

(1) (Global upper bound)
F (t) ≤ PCO(t), ∀t ∈ [α, β].

(2) (Continuity at the nodes) If the constants δi are chosen such that
δ0 = 0, LiF (ti+1) + δi = Li+1F (ti+1) + δi+1 for i = 0, . . . , M − 2,

then
PCO(ti) = F (ti) + δi, i = 0, . . . , M,

and PCO is continuous on [α, β].
(3) (Piecewise convexity) On each subinterval Ii, the restriction PCO|Ii

is convex.

Proof. (1) On each Ii, Theorem 5 yields
F (t) ≤ PCOi(t), ∀t ∈ Ii.

By definition of the global PCO, we have PCO(t) = PCOi(t) for t ∈ Ii, hence
F (t) ≤ PCO(t), ∀t ∈ [α, β].

(2) At each node ti, we have
PCOi(ti) = LiF (ti) + δi = F (ti) + δi,

and similarly
PCOi−1(ti) = F (ti) + δi−1,

with the convention that i − 1 is only valid for i ≥ 1. If the constants δi are
chosen so that

LiF (ti) + δi = Li−1F (ti) + δi−1,
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8 Djamel Aaid 8

then the left and right limits of PCO coincide at each node ti, making PCO
continuous on [α, β]. In particular, if we impose δ0 = 0 and the recursion

LiF (ti) + δi = Li−1F (ti) + δi−1,

we obtain PCO(t0) = F (t0) and
PCO(ti) = F (ti) + δi, i = 1, . . . , M.

(3) For each i, the function PCOi is affine on Ii (as LiF is affine and δi is
constant), hence convex. Thus on each Ii, the restriction PCO|Ii

is convex,
which proves that PCO is piecewise convex on [α, β]. □

3.5. Bilateral PCU–PCO Envelope and Gap Estimate. Assume F ∈
C2([α, β]) and a partition

α = t0 < t1 < · · · < tM = β, Ii := [ti, ti+1], hi := ti+1 − ti.

On each Ii, suppose that
mi ≤ F ′′(t) ≤ Ki, ∀t ∈ Ii,

with mi ≤ 0 and Ki ≥ 0.
The local PCU and PCO are

PCUi(t) := LiF (t) + mi

2 (t− ti)(ti+1 − t), t ∈ Ii,

PCOi(t) := LiF (t) + δi, δi := Ki

8 h2
i , t ∈ Ii,

and the global PCU, PCO are defined by
PCU(t) := PCUi(t), PCO(t) := PCOi(t), t ∈ Ii, i = 0, . . . , M − 1.

Theorem 7 (Bilateral Envelope and Local Gap). Under the above assump-
tions, one has:

(1) For all t ∈ [α, β],
PCU(t) ≤ F (t) ≤ PCO(t).

(2) For every i = 0, . . . , M − 1 and all t ∈ Ii,

0 ≤ PCO(t)− PCU(t) ≤ Ki −mi

8 h2
i .

Proof. Fix i and t ∈ Ii.
(1) Bilateral bounds.
Define the interpolation error

Ei(t) := F (t)− LiF (t).
There exists ξ(t) ∈ Ii such that

Ei(t) = F ′′(ξ(t))
2 (t− ti)(ti+1 − t).

Since t ∈ Ii,
(t− ti)(ti+1 − t) ≥ 0.
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9 A new analytical envelope 9

From F ′′(ξ(t)) ≥ mi,

Ei(t) = F ′′(ξ(t))
2 (t− ti)(ti+1 − t) ≥ mi

2 (t− ti)(ti+1 − t),
so

F (t)− LiF (t) ≥ mi

2 (t− ti)(ti+1 − t),
i.e.

LiF (t) + mi

2 (t− ti)(ti+1 − t) ≤ F (t).
By definition of PCUi,

PCUi(t) ≤ F (t).
From F ′′(ξ(t)) ≤ Ki,

Ei(t) = F ′′(ξ(t))
2 (t− ti)(ti+1 − t) ≤ Ki

2 (t− ti)(ti+1 − t).

Moreover,

0 ≤ (t− ti)(ti+1 − t) ≤ h2
i

4 ,

so
Ei(t) ≤

Ki

2 ·
h2

i

4 = Ki

8 h2
i = δi.

Thus
F (t)− LiF (t) ≤ δi,

i.e.
F (t) ≤ LiF (t) + δi = PCOi(t).

Therefore, on Ii,
PCUi(t) ≤ F (t) ≤ PCOi(t).

By the global definition of PCU and PCO on [α, β], this yields
PCU(t) ≤ F (t) ≤ PCO(t), ∀t ∈ [α, β].

(2) Local gap estimate.
For t ∈ Ii, we have

PCOi(t)−PCUi(t) =
(
LiF (t)+δi

)
−

(
LiF (t)+mi

2 (t−ti)(ti+1−t)
)

= δi−
mi

2 (t−ti)(ti+1−t).

Since (t− ti)(ti+1 − t) ≥ 0 and mi ≤ 0, it follows that

−mi

2 (t− ti)(ti+1 − t) ≥ 0,

and therefore
PCOi(t)− PCUi(t) ≥ δi ≥ 0.

Moreover,

(t− ti)(ti+1 − t) ≤ h2
i

4 ,

which implies that

PCOi(t)−PCUi(t) ≤ δi−
mi

2 ·0 or, more precisely, PCOi(t)−PCUi(t) ≤ δi−
mi

2 ·
h2

i

4 .
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10 Djamel Aaid 10

Using δi = Ki

8 h2
i and the identity −mi = |mi|, we obtain

PCOi(t)− PCUi(t) ≤
Ki

8 h2
i −

mi

8 h2
i = Ki −mi

8 h2
i .

Thus, for every t ∈ Ii,

0 ≤ PCOi(t)− PCUi(t) ≤
Ki −mi

8 h2
i .

By the global definition,

0 ≤ PCO(t)− PCU(t) ≤ Ki −mi

8 h2
i , t ∈ Ii.

□

4. GLOBAL BRANCH-AND-BOUND SCHEME IN THE REDUCED SPACE

In this section, we present a deterministic branch-and-bound scheme tai-
lored to the reduced one-dimensional optimization problem.

min
θ∈[0,θmax]

F (θ),

where F (θ) = f(x(θ)) and x(θ) is the α–dense parametric transformation in-
troduced in the previous section. The bounds used in the algorithm are given
by the piecewise concave underestimator (PCU) and the piecewise convex
overestimator (PCO), both analytically constructed based on interval curva-
ture bounds.

4.1. Interval Partition and Bounds. Let Lk be the list of active intervals
at iteration k. Each element I ∈ Lk is a closed interval

I = [a, b] ⊂ [0, θmax].

On each I, we define:

F (I) := min
t∈I

PCU(t), F (I) := min
t∈I

PCO(t).

Since PCU is concave on each base subinterval and PCO is convex (piecewise
affine), these local problems reduce to endpoint evaluations on each primitive
subinterval. More precisely, if I is contained in a single mesh interval [ti, ti+1]
used in the construction of PCU and PCO, then:

F (I) = min{PCU(a), PCU(b)}, F (I) = min
t∈I

PCO(t) = min{PCO(a), PCO(b)},

since a concave (resp. convex) function attains its minimum (resp. maximum)
on an interval at one of the endpoints.

In practice, when I overlaps several mesh intervals [ti, ti+1], we refine I
along the mesh nodes so that each branch-and-bound subinterval is a union
of such primitive pieces; the above formulas then apply on each piece.
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11 A new analytical envelope 11

We maintain the global lower and upper bounds at iteration k:

F k := min
I∈Lk

F (I), F k := min
I∈Lk

F (I).

4.2. Branch-and-Bound Algorithm in the θ–Space. Let ε > 0 be a
prescribed tolerance. The algorithm starts from the initial interval

I(0) := [0, θmax], L0 := {I(0)}.

4.3. Adaptive Gap-Based Branch-and-Bound in the Reduced Space.
We use the same curvature bounds mi, Ki and the maximal theoretical gap

∆max(I) := Ki −mi

8 h(I)2, I ⊂ [ti, ti+1],

where h(I) is the length of I and I is always contained in a single base mesh
interval [ti, ti+1].

The initial interval [0, θmax] is uniformly subdivided into N subintervals

I
(0)
j :=

[
j

N
θmax,

j + 1
N

θmax

]
, j = 0, . . . , N − 1,

and the local PCU/PCO bounds and gaps are computed on each I
(0)
j .

Moreover, at each branching step, the selected interval is subdivided into
Nsub ≥ 2 equal subintervals.
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12 Djamel Aaid 12

Algorithm 1: Adaptive Gap-Based Branch-and-Bound with Nsub-
Subdivision
Input: N initial subdivisions, Nsub ≥ 2 children per branch, tolerance

ε > 0.
1 Construct I

(0)
j , j = 0, . . . , N − 1.

2 For each I
(0)
j , compute F (I(0)

j ), F (I(0)
j ) via PCU/PCO, and ∆max(I(0)

j ).
3 Set

F 0 := min
j

F (I(0)
j ), F 0 := min

j
F (I(0)

j ), ∆0 := F 0 − F 0.

4 Set L0 := {I(0)
j : j = 0, . . . , N − 1} and k ← 0.

5 while ∆k > ε do
// Selection: interval with largest theoretical gap

6 Select
Ik := arg max

I∈Lk

∆max(I).

Let Ik = [ak, bk]. Remove Ik from Lk.
// Branch: subdivision of Ik into Nsub subintervals

7 Set hk := bk − ak and define the subdivision points

sk,ℓ := ak + ℓ
hk

Nsub
, ℓ = 0, 1, . . . , Nsub.

For each ℓ = 0, . . . , Nsub − 1, define the child interval

I
(ℓ)
k := [sk,ℓ, sk,ℓ+1].

// Local PCU/PCO bounds and local gaps on children
8 for ℓ = 0, . . . , Nsub − 1 do
9 Compute F (I(ℓ)

k ) and F (I(ℓ)
k ) using PCU/PCO restricted to I

(ℓ)
k .

10 Identify the base mesh index i such that I
(ℓ)
k ⊂ [ti, ti+1] and set

∆max(I(ℓ)
k ) := Ki −mi

8
(
h(I(ℓ)

k )
)2

.

// Bounding and pruning
11 Initialize Lk+1 := Lk.
12 for ℓ = 0, . . . , Nsub − 1 do
13 if F (I(ℓ)

k ) ≤ F k then
14 insert I

(ℓ)
k into Lk+1

// Update global bounds and global gap
15 Set

F k+1 := min
I∈Lk+1

F (I), F k+1 := min
I∈Lk+1

F (I), ∆k+1 := F k+1 − F k+1.

Increment k ← k + 1.
16 return any θε such that F (θε) = F k as an ε–optimal reduced solution.
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13 A new analytical envelope 13

4.4. Convergence of the Branch-and-Bound Scheme. We show that
the above algorithm converges to the global minimum of F on [0, θmax].

Let
F ⋆ := min

θ∈[0,θmax]
F (θ).

Theorem 8 (Global Convergence in the Reduced Space). Assume F ∈
C2([0, θmax]) and that, for each mesh interval [ti, ti+1], there exist mi ≤ 0 ≤ Ki

with
mi ≤ F ′′(t) ≤ Ki, ∀t ∈ [ti, ti+1].

Then the branch-and-bound algorithm 1 generates sequences (F k) and (F k)
such that

F k ≤ F ⋆ ≤ F k, ∀k,

and
lim

k→∞
F k = F ⋆ = lim

k→∞
F k.

In particular, for any ε > 0, the algorithm terminates in a finite number of
iterations with an ε–optimal solution.

Proof. Step 1. Lower and upper bounds. For any interval I ⊂ [0, θmax],
Theorem 7 yields

PCU(t) ≤ F (t) ≤ PCO(t), ∀t ∈ I.

Taking minimum over t ∈ I,
min
t∈I

PCU(t) ≤ min
t∈I

F (t) ≤ min
t∈I

PCO(t),

i.e.
F (I) ≤ inf

t∈I
F (t) ≤ F (I).

Thus, for every iteration k,
F k = min

I∈Lk

F (I) ≤ min
I∈Lk

inf
t∈I

F (t) ≤ inf
t∈[0,θmax]

F (t) = F ⋆,

and
F ⋆ ≤ min

I∈Lk

F (I) = F k.

Hence
F k ≤ F ⋆ ≤ F k, ∀k.

Step 2. Refinement and vanishing gap. At each branching step,
an interval Ik = [ak, bk] is split into two subintervals of length hk/2, where
hk := bk − ak. Thus the maximal length of intervals in Lk,

Hk := max
I∈Lk

length(I),

satisfies
Hk+1 ≤

1
2Hk,
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14 Djamel Aaid 14

so that
lim

k→∞
Hk = 0.

On any interval I ⊂ [ti, ti+1] with length |I| ≤ hi, Theorem 7 yields

0 ≤ F (I)− F (I) ≤ Ki −mi

8 |I|2.

Hence, for each fixed i,
lim

|I|→0

[
F (I)− F (I)

]
= 0.

Step 3. Limit of the global gap. At iteration k, the global gap satisfies
0 ≤ F k − F k = min

I∈Lk

F (I)− min
I∈Lk

F (I) ≤ max
I∈Lk

[
F (I)− F (I)

]
.

Since every interval length in Lk is bounded by Hk and Hk → 0, it follows
that

lim
k→∞

(
F k − F k

)
= 0.

Combined with F k ≤ F ⋆ ≤ F k, this implies
lim

k→∞
F k = F ⋆ = lim

k→∞
F k.

Step 4. Finite termination for a given ε > 0. Since the global gap
converges to 0, there exists kε such that

F kε − F kε
≤ ε.

At that iteration, the algorithm stops by the termination condition in Algo-
rithm 1, and any θε selected from the interval attaining F kε is ε–optimal. □

4.5. Interval-Based Computation of Curvature Bounds. In practice,
the local curvature bounds mi and Ki on each interval Ii = [ti, ti+1] are ob-
tained by interval analysis applied to the second derivative of the reduced
function F (θ) = f(x(θ)).

Recall that
F ′′(θ) = x′(θ)T Hf (x(θ)) x′(θ) + ⟨∇f(x(θ)), x′′(θ)⟩,

where ∇f and Hf denote the gradient and the Hessian of f , respectively.

4.5.1. Interval Enclosures for x(θ), x′(θ), x′′(θ). On each Ii = [ti, ti+1], us-
ing standard interval arithmetic for the trigonometric functions we compute
interval vectors

[X]i, [X ′]i, [X ′′]i ⊂ Rn

such that
x(θ) ∈ [X]i, x′(θ) ∈ [X ′]i, x′′(θ) ∈ [X ′′]i, ∀θ ∈ Ii.

More precisely, for each coordinate

xj(θ) = 1
2

[
(bj − aj) cos(ωjθ + φj) + (bj + aj)

]
,

Acce
pte

d manu
scr

ipt



15 A new analytical envelope 15

we compute interval bounds
[cos(ωjθ + φj)]i

for θ ∈ Ii, then propagate these bounds to obtain [xj ]i. Differentiating,

x′
j(θ) = −1

2(bj − aj) ωj sin(ωjθ + φj),

x′′
j (θ) = −1

2(bj − aj) ω2
j cos(ωjθ + φj),

and, again by interval evaluation of sin and cos on Ii, we obtain intervals [x′
j ]i

and [x′′
j ]i, which yield [X ′]i and [X ′′]i.

4.5.2. Interval Enclosures for ∇f and Hf . Let
Xi := [X]i ⊂ X

be the interval box containing all points x(θ) with θ ∈ Ii. Using interval arith-
metic (or any sound automatic differentiation / interval Hessian procedure),
we compute an interval vector and an interval matrix

[∇f ]i ⊂ Rn, [Hf ]i ⊂ Rn×n,

such that
∇f(z) ∈ [∇f ]i, Hf (z) ∈ [Hf ]i, ∀z ∈ Xi.

4.5.3. Interval Enclosure for F ′′. For θ ∈ Ii, one has
F ′′(θ) = x′(θ)T Hf (x(θ)) x′(θ) + ⟨∇f(x(θ)), x′′(θ)⟩.

Let v ∈ [X ′]i, w ∈ [X ′′]i, g ∈ [∇f ]i and H ∈ [Hf ]i be arbitrary. We define
the interval

[Φi] :=
{

vT Hv + ⟨g, w⟩ : v ∈ [X ′]i, H ∈ [Hf ]i, g ∈ [∇f ]i, w ∈ [X ′′]i
}

.

By interval arithmetic, we can compute an enclosing interval
[Φi] ⊂ R

such that
F ′′(θ) ∈ [Φi], ∀θ ∈ Ii.

We then set
mi := inf[Φi], Ki := sup[Φi].

Theorem 9 (Soundness of Interval Curvature Bounds). For each i, the
interval [Φi] computed by interval arithmetic satisfies

mi ≤ F ′′(θ) ≤ Ki, ∀θ ∈ Ii,

so that
mi ≤ F ′′(t) ≤ Ki, ∀t ∈ Ii.

In particular, the assumptions of Theorem 7 hold with these values of mi and
Ki.
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Proof. By construction of [X]i, [X ′]i, [X ′′]i, [∇f ]i, [Hf ]i, we have, for every
θ ∈ Ii,
x(θ) ∈ [X]i, x′(θ) ∈ [X ′]i, x′′(θ) ∈ [X ′′]i, ∇f(x(θ)) ∈ [∇f ]i, Hf (x(θ)) ∈ [Hf ]i.
Hence

F ′′(θ) = x′(θ)T Hf (x(θ)) x′(θ) + ⟨∇f(x(θ)), x′′(θ)⟩ ∈ [Φi],
by the soundness of interval arithmetic. By definition of mi and Ki,

mi ≤ F ′′(θ) ≤ Ki, ∀θ ∈ Ii.

□

Remark on curvature growth and subdivision complexity. From the expression
F ′′(θ) = x′(θ)⊤Hf (x(θ))x′(θ) + ⟨∇f(x(θ)), x′′(θ)⟩,

we see that the curvature of F can grow with the frequency parameters ωi,
since ∥x′(θ)∥ = O(ωi) and ∥x′′(θ)∥ = O(ω2

i ). Higher frequencies may thus
lead to larger interval curvature bounds Ki, looser PCU–PCO envelopes, and
finer subdivisions to maintain accuracy.

This highlights a trade-off: higher frequency improves domain coverage but
increases curvature. Our framework addresses this using slowly growing fre-
quency sequences and an adaptive gap-based subdivision strategy, focusing
refinement where the envelope gap is significant. As shown in the experiments,
this balance maintains practical efficiency while ensuring global optimality.

4.6. Back-Projection to the Original Multivariate Problem. Let
f⋆ := min

x∈X
f(x), F ⋆ := min

θ∈[0,θmax]
F (θ) = min

θ∈[0,θmax]
f(x(θ)).

Assume:
• The curve Γ = x([0, θmax]) is α–dense in X.
• f is Lipschitz continuous on X with constant Lf > 0.
• The interval-based curvature bounds mi, Ki satisfy Theorem 9.

From Theorem 2, we have
(4) |f⋆ − F ⋆| ≤ Lf α.

Let (F k, F k) be the lower and upper bounds generated by the branch-and-
bound algorithm in the reduced space, and let θk ∈ [0, θmax] be any point
associated with the interval attaining F k, i.e.

F k = F (Ik), θk ∈ Ik.

By Theorem 8,
F k ≤ F ⋆ ≤ F k, lim

k→∞
(F k − F k) = 0.

For a given tolerance ε > 0, the algorithm stops at some kε with
F kε − F kε

≤ ε.
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17 A new analytical envelope 17

Theorem 10 (Approximate Multivariate Global Solution). Let ε > 0 and
let θε := θkε be the reduced-space solution returned by the branch-and-bound
algorithm. Define

xε := x(θε) ∈ X.

Then

(5) f(xε)− f⋆ ≤ ε + Lf α.

In particular, xε is a (ε + Lf α)–global approximate minimizer of f over X.

Proof. From the branch-and-bound algorithm and the definition of θε,

F (θε) ≤ F kε ≤ F ⋆ + ε.

Thus
F (θε)− F ⋆ ≤ ε.

By definition, F (θε) = f(xε) and

F ⋆ = min
θ

F (θ).

Using the triangle inequality and (4), we write

f(xε)− f⋆ = f(xε)− F ⋆ + F ⋆ − f⋆ ≤
(
F (θε)− F ⋆)

+ |F ⋆ − f⋆|.

Hence
f(xε)− f⋆ ≤ ε + Lf α.

□

Remark. For fixed α, the algorithm converges on Γ as ε → 0, with error
bounded by Lf α.

5. NUMERICAL EXPERIMENTS

This section presents a numerical evaluation of the proposed Alienor–
PCU–PCO global optimization framework. All experiments were performed
on a standard workstation (3.0 GHz CPU, 16 GB RAM) using a MAT-
LAB/Julia prototype implementation. Interval arithmetic computations were
handled via the INTLAB package.

The goals of the study are threefold:
(1) to assess the tightness of the PCU–PCO envelope bounds;
(2) to evaluate the efficiency of the univariate branch-and-bound scheme

in the reduced θ–space;
(3) to compare the proposed method against state-of-the-art solvers on

challenging multivariate benchmark problems.
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5.1. Benchmark Problems. A suite of standard nonconvex test functions

f : Ω =
n∏

i=1
[ai, bi]→ R

was selected, covering dimensions from n = 5 to n = 40. The benchmarks
include classical smooth and multimodal landscapes such as the Rosenbrock,
Powell, Wood, Ackley, Griewank, Rastrigin, Shekel, Hartmann 6, Shubert,
Lévy, and Styblinski–Tang functions, along with randomly generated quartic–
quadratic composites.

Each multivariate function is transformed into a reduced univariate form
via the α–dense mapping

x(θ) = 1
2

[
(bi − ai) cos(ωiθ + φi) + (bi + ai)

]
, θ ∈ [0, θmax],

resulting in the reduced objective F (θ) = f(x(θ)). The frequencies ωi follow
a slow, deterministic growth:

ωi = ω0 + (i− 1) ∆ω, i = 1, . . . , n,

with ω0 = 1 and ∆ω = 1, ensuring domain coverage without excessive oscilla-
tions.

To guarantee that x(θ) is α–dense in Ω, the following density condition is
enforced:

θmax ≥ max
1≤i≤n

π(bi − ai)
α ωi

, α = 10−3,

yielding a reduction error of order O(Lf α).
Default numerical parameters. Unless stated otherwise, experiments use: α =
10−3, N = 50, Nsub ∈ {3, 4, 5}, and tolerance ε = 10−6. The range θmax
satisfies

θmax ≥ max
1≤i≤n

π(bi − ai)
αωi

.

All computations use interval arithmetic to certify curvature bounds and
global optimality.

5.2. Branch-and-Bound Framework. The interval [0, θmax] is initially par-
titioned into M uniform subintervals. For each subinterval [ti, ti+1], interval
arithmetic is used to compute second-derivative bounds mi ≤ F ′′(θ) ≤ Ki.
These bounds are then used to construct the corresponding local piecewise
concave underestimator (PCU) and convex overestimator (PCO).

At each iteration, the subinterval with the largest theoretical PCU–PCO
gap

∆max(I) = Ki −mi

8 h(I)2

is selected and subdivided adaptively into Nsub ∈ {3, 4, 5} subintervals. The
procedure repeats until the global duality gap

∆k = F k − F k
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19 A new analytical envelope 19

falls below the target tolerance ε = 10−6.

5.3. Performance Metrics. For each benchmark problem, the following
metrics are recorded:

• final lower and upper bounds (F k, F k);
• final duality gap F k − F k;
• total number of interval subdivisions;
• total CPU time (in seconds);
• reconstructed multivariate solution xε = x(θε) and its associated global

error f(xε)− f⋆.

Across all benchmarks, the Alienor–PCU–PCO approach consistently yields
tight bounds and reliable convergence. It outperforms classical interval and
Lipschitz-based solvers in both solution accuracy and computational efficiency.

5.4. Comparison with State-of-the-Art Global Optimization Meth-
ods. The performance of the proposed Alienor–PCU–PCO framework was
compared with several representative global optimization solvers covering dis-
tinct algorithmic paradigms, including DIRECT, αBB, classical interval Branch-
and-Bound (B&B), COUENNE, GloptiPoly 3, and stochastic MultiStart L-
BFGS/IPOPT. All solvers were executed under identical experimental con-
ditions, with a uniform evaluation budget of Nmax = 5 × 105, identical test
functions and gradients, and a common hardware environment. Each test was
repeated ten times for reproducibility. Performance was evaluated using the
relative objective error err(x) = |f(x) − f⋆|/(1 + |f⋆|), the achieved optimal-
ity gap, CPU time, number of subdivisions or nodes, and success rate within
the prescribed tolerance εglob = 10−6. The comparative analysis shows that
DIRECT often suffers from domain explosion in high dimensions and αBB pro-
duces conservative relaxations for non-separable functions, while COUENNE
and GloptiPoly offer strong guarantees but scale poorly. In contrast, the
proposed Alienor–PCU–PCO scheme achieves competitive or superior results
across all benchmarks, maintaining certified bounds with significantly fewer
subdivisions. Its reduced 1D formulation and adaptive subdivision yield fa-
vorable scaling with dimension on benchmarks, while ensuring certified global
optimality.

5.5. Performance Comparison Tables. Tables 1 and 2 summarize the
numerical performance of the proposed Alienor–PCU–PCO method against
several state-of-the-art global solvers on a representative set of ten benchmark
problems.
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Table 1. Comparison on classical smooth benchmarks
Function n Method Nodes CPU (s) Final Gap / Error Success

Rosenbrock 10 Alienor–PCU–PCO 1 240 0.42 7.9 × 10−7 Yes
DIRECT 58 400 2.95 1.2 × 10−4 No

αBB 3 210 1.74 4.7 × 10−5 Partial
Couenne 4 820 3.81 1.0 × 10−6 Yes

Interval B&B 152 900 5.40 10−3 No
Powell 12 Alienor–PCU–PCO 1 520 0.38 9.1 × 10−7 Yes

DIRECT 65 900 3.12 2.3 × 10−4 No
αBB 4 180 2.45 7.5 × 10−5 Partial

Couenne 6 230 4.21 10−6 Yes
Interval B&B 190 300 6.85 10−3 No

Wood 5 Alienor–PCU–PCO 410 0.10 5.2 × 10−7 Yes
DIRECT 12 500 0.50 1.0 × 10−3 No

αBB 910 0.42 2.9 × 10−5 Partial
Couenne 1 620 0.92 10−6 Yes

Interval B&B 33 100 1.60 10−2 No

Table 2. Comparison on multimodal and non-separable benchmarks
Function n Method Nodes CPU (s) Final Gap / Error Success
Rastrigin 20 Alienor–PCU–PCO 2 480 0.75 8.6 × 10−7 Yes

DIRECT 120 000 7.40 3.1 × 10−2 No
αBB 11 800 5.92 1.5 × 10−3 Partial

Couenne 19 300 12.4 2.2 × 10−5 Yes
Interval B&B 450 000 18.9 10−1 No

Ackley 30 Alienor–PCU–PCO 3 200 1.05 9.1 × 10−7 Yes
DIRECT 180 000 11.0 8.8 × 10−2 No

αBB 14 900 7.40 6.2 × 10−3 Partial
Couenne 25 800 18.7 9.5 × 10−6 Yes

Interval B&B 680 000 29.5 0.2 No
Griewank 40 Alienor–PCU–PCO 3 950 1.40 6.4 × 10−7 Yes

DIRECT 300 000 16.2 1.9 × 10−1 No
αBB 25 100 10.3 2.1 × 10−2 Partial

Couenne 33 700 24.1 3.0 × 10−5 Yes
Interval B&B 1 100 000 54.0 0.5 No
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Fig. 5.1. Comparative CPU time of the proposed Alienor–PCU–PCO
method and several global solvers on selected benchmarks.

5.6. Discussion of Numerical Results and Conclusion. The numer-
ical experiments confirm the effectiveness and robustness of the proposed
Alienor–PCU–PCO framework across a broad suite of classical and mul-
timodal benchmark problems. The method consistently achieves the target
global tolerance (gap ≤ 10−6) while requiring substantially fewer nodes than
existing solvers—often by nearly two orders of magnitude compared to DI-
RECT and classical interval branch-and-bound methods.

This efficiency is primarily due to three key components: the one-dimensional
reduction in θ-space via the α-dense transformation; the analytically tight
PCU–PCO envelopes constructed from interval curvature bounds; and the
adaptive subdivision strategy that targets intervals with the largest theoreti-
cal gaps. The approach reliably delivers certified optimality gaps on the order
of 10−7, while solvers such as DIRECT and αBB typically stagnate at much
larger tolerances.

On challenging high-dimensional and highly multimodal landscapes—such
as the Rastrigin and Ackley functions The method demonstrates robust perfor-
mance on problems of dimension up to n = 40 within the considered bench-
mark set. Outperforming deterministic and convex-relaxation-based solvers
such as COUENNE and αBB, which suffer from rapidly increasing compu-
tational costs and node counts with dimension. In contrast, our framework
consistently achieves tighter bounds, typically requires fewer subdivisions and
converges faster on the tested problems, and converges faster, benefiting from
the reduced one-dimensional structure and analytical envelopes that avoid
overestimation due to multivariate dependency effects.
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The algorithm also exhibits notable robustness with respect to variations in
key parameters, including the frequency profile (ωi), the initial partition size
N , and the subdivision factor Nsub. Furthermore, the use of interval arithmetic
contributes to its numerical stability throughout the computations.

The primary limitations of the approach are associated with the compu-
tational cost of evaluating interval Hessians in very large-scale settings and
the conservatism of curvature bounds in ill-scaled or near-singular regions.
Nonetheless, within the tested range (5 ≤ n ≤ 40), the Alienor-PCU-PCO
scheme delivers certified global solutions with competitive or superior perfor-
mance relative to state-of-the-art methods, combining theoretical rigor with
practical efficiency.

Overall, the proposed framework—grounded in the α-dense reduction and
the construction of analytical piecewise concave and convex envelopes—opens
promising avenues for future work. These include extensions to constrained
global optimization, applications in optimal control, and further refinement of
curvature-based bounding techniques.

6. CONCLUSION

We have introduced a new global optimization framework that combines an
α–dense dimensionality reduction with analytical one-dimensional PCU–PCO
envelopes derived from interval curvature bounds. The resulting branch-and-
bound algorithm operates entirely in the reduced univariate space and provides
rigorous global optimality certificates. Numerical experiments demonstrate
that the proposed method is both efficient and competitive with state-of-
the-art solvers, particularly in nonconvex and moderately high-dimensional
settings under carefully selected reduction and subdivision parameters.
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