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A NEW ANALYTICAL ENVELOPE FOR MULTIVARIATE GLOBAL
OPTIMIZATION

DJAMEL AAID*

Abstract. We propose a new global optimization method that combines an
a—dense univariate reduction with explicitly constructed analytical envelopes:
a piecewise concave underestimator (PCU) and a piecewise convex overestima-
tor (PCO). By leveraging interval-based curvature bounds, the method provides
rigorous global optimality certificates. An adaptive branch-and-bound strat-
egy ensures rapid convergence by refining intervals based on theoretical enve-
lope widths. Numerical experiments on challenging nonconvex and multimodal
benchmarks demonstrate strong performance and efficiency.

2020 Mathematics Subject Classification. 90C26; 65K05; 65G30; 49M37;
90C30.

Keywords. global optimization; analytical envelopes; concave
underestimators; convex overestimators; interval analysis; dimension reduction;
branch-and-bound; deterministic methods.

1. INTRODUCTION

Deterministic global optimization remains a central topic in numerical anal-
ysis and applied mathematics, with a wide range of applications across science
and engineering. Foundational monographs such as Floudas [6] and Locatelli—
Schoen [10] provide comprehensive overviews of key approaches, including spa-
tial branch-and-bound, interval methods, Lipschitz-based schemes, and convex
or concave relaxations. Despite these advances, obtaining tight global bounds
for nonconvex problems in moderate to high dimensions remains a major chal-
lenge in the field.

A particularly influential class of relaxations is based on convex underesti-
mation. The BB method developed by Adjiman, Androulakis, and Floudas [3,
4] constructs a convex quadratic lower bound by augmenting the Hessian with
diagonal shifts. This paradigm has since been extended through more refined
DC relaxations, including recent developments by Strahl, Raghunathan, and
Sahinidis [15]. Other underestimation techniques include the DCU method
for univariate optimization introduced by Chang, Park, and Lee [5], as well as
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the convex quadratic relaxations of Le Thi and Ouanes [9]. A broader survey
of convex underestimation methods is available in Skjal [14].

Interval-based global optimization techniques also play a crucial role, partic-
ularly for their ability to provide rigorous bounds. Notable examples include
the classical one-dimensional algorithm by Sergeyev [12], geometric Lipschitz-
based methods by Kvasov and Sergeyev [8], and the homogeneity framework
proposed by Sergeyev, Kvasov, and Mukhametzhanov [13]. More recent strate-
gies include the Lipschitz global optimization methods of Malherbe and Vay-
atis [11] and the constrained Lipschitz-gradient approach of Vinod, Israel, and
Topcu [16]. For a comprehensive overview, see the tutorial by Horst [17].

Another direction of research focuses on reducing multivariate problems to
univariate ones. Meta-algorithmic frameworks following this idea were recently
studied by Gokgesu and Gokgesu [7]. Earlier work by Aaid and collaborators
developed constructive transformations for dimensionality reduction, enabling
global optimization in the univariate setting [1, 2]. These transformations
generate an a—dense curve through the domain, aiming to ensure that the
global minimizer of the original multivariate function is well approximated by
that of the corresponding one-dimensional surrogate.

Building on this reduction approach, the present work introduces a new
analytical framework for univariate global optimization. Specifically, we con-
struct a piecewise concave underestimator (PCU) and a piecewise convex over-
estimator (PCO), both derived explicitly from interval bounds on the second
derivative of the reduced function. These constructions yield a pair of rigorous
analytical envelopes satisfying

PCU(t) < F(t) < PCO(t) for all ¢,

with computable curvature parameters. When combined with an adaptive
branch-and-bound scheme that refines the interval exhibiting the largest the-
oretical envelope gap, the method produces rapidly shrinking global bounds
and provable optimality gaps.

The main contributions of this article are as follows:

e We derive explicit PCU and PCO envelopes from interval curvature
bounds, providing rigorous concave and convex relaxations.

e We integrate these envelopes with the a—dense dimension-reduction
transformation of Aaid [1, 2|, resulting in a fully certified univariate
representation of multivariate problems.

e We introduce an adaptive refinement strategy that targets the interval
with the largest theoretical envelope width, accelerating convergence.

e Our numerical experiments show that the method performs well on
various challenging benchmark problems, including those with moder-
ate to high dimensions, especially when the reduction and subdivision
settings are chosen carefully.
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It is important to note that the efficiency of the proposed framework depends
on how the reduction parameters are chosen especially the density parameter
« and the frequency sequence. Also, the univariate reduction does not remove
the inherent complexity of the original multivariate problem.

The remainder of the paper is organized as follows. Section 2 presents the
dimension reduction framework. Section 3 introduces analytical envelopes.
Section 4 describes the adaptive branch-and-bound algorithm. Section 5 pro-
vides numerical experiments and comparisons with existing global optimiza-
tion methods. Section 6 concludes with directions for future research.

2. PRELIMINARIES

We consider the global optimization problem

i X = i bi] CR",
min f(z), g[a ] C

where the objective function f : X — R is assumed to be twice continuously
differentiable.

2.1. Reductive Transformation via a—Dense Curves. Following the frame-
work introduced in [1, 2], we consider a one-dimensional parametric curve
x : [0, Omax] — X defined by

x(0) = (x1(0),...,2,(0)), x;(0) =

where (w;)i"; and (¢;)7; are frequency and phase parameters chosen to con-
trol the geometry of the curve. Since cos(w;f + ¢;) € [—1,1], it follows that
z(0) € X for all 6 € [0, Oax].

We denote by

[(bi — a;) cos(wif + i) + (bi + a;)],

N |

I':=2(]0,0max]) € X

the image (or trace) of the curve, and define the corresponding univariate
surrogate objective as

(1) F(0) = f(x(0)), 0 €[0,max]-

Clearly, if 6* is a (global) minimizer of F', then x(6*) is a candidate global
minimizer of f over X.

2.2. a—Dense Curves and Reduction Error.

DEFINITION 1. A set S C X is said to be a—dense in X if for every z € X,
there exists y € S such that

|z =yl <o

In particular, we say that the curve I' is a—dense in X if it satisfies this
property.
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The key idea behind this construction is that, for appropriate choices of w;,
@i, and Oy, the curve T' can be made a—dense in X. As a result, minimizing
the reduced function F' over the interval [0, 0nax] gives a good approxima-
tion of the original optimization problem over X, with the accuracy directly
influenced by the selected density parameter a.

THEOREM 2 (Reduction Error Bound). Assume that T is a—dense in X, and
that f is Lipschitz continuous on X with Lipschitz constant Ly > 0. Define

-— mi = i F(0).
mx :[Elél;(_l f(x)u mr Oe[l(l)}éxrxl;ax} ( )

Then the reduction error satisfies the bound
(2) ‘mX—mI‘| SLfO[

The accuracy of the reduced formulation is directly influenced by the density
parameter . Smaller values of o improve the approximation of the original
problem but may increase the complexity of the reduced one, due to a larger
required range for § and increased oscillations of the curve I'. In particular,
ensuring a-density may demand a large 0,,,x, depending on the dimension and
frequency sequence.

Thus, the univariate reduction shifts rather than removes the original prob-
lem’s complexity. The method’s efficiency depends on balancing approxima-
tion accuracy and computational cost. We now focus on deriving tight bounds
for F' on [0, Oyax] and integrating them into a branch-and-bound framework.
Choice of the density parameter o. The parameter o controls the approxima-
tion quality of the reduction. By Theorem 1, the error is bounded by Lya.
If Ly is unknown, it can be estimated via interval gradients or a can be ad-
justed empirically.

Smaller oo improves accuracy but increases computational cost due to larger Oy ax
and curvature. A balance must be struck between precision and efficiency.

3. MATERIALS AND METHODS

3.1. Local Construction of a PCU Bound on an Interval. Let F :
[, B] = R be twice continuously differentiable. Consider a partition

Oé:t()<t1<"'<tM:5,

and fix an interval

I := [ts, tig1), hi:=tiy1 —1t; > 0.
Define the linear shape functions on I;:
tiy1 — 1 t—1;
lio(t) i= ———, li1(t) := , tel,
170( ) hz 'L»l( ) hz 1

and the linear interpolant

LiF(t) = fiy()(t) F(tl) + E@l(t) F(ti_;,_l), tel.
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Assume that we know a lower curvature bound on I;, namely
F//(t) > my, vt € I,

for some real constant m; < 0 (possibly negative). We define the local PCU
(Piecewise Concave Underestimator) on I; by

(3) PCU;(t) := LiF(t) + % (t—t)(tig1 — 1), tel.

THEOREM 3 (Local Concave PCU Bound). Assume F € C?*([a, B]) and
F"(t) > m,, vt € I,
with m; < 0. Then, for every t € I;,

(1) PCU(t) < F(t) (valid lower bound),
(2) PCU; is concave on I;, i.e.

PCU/(t) <0, vt € I.
Proof. (1) Valid lower bound. Let
Ei(t) := F(t) — LiF(t).

By the standard interpolation error formula, for each ¢ € I; there exists £(t) €
I; such that
_ FIE®)

Ei(t) = Yy (t—ti)(tiv1 — 1)
Since (t — t;)(tix1 —t) > 0 on I; and F"(£(t)) > m;, we obtain
50 = "D (¢t - )2 ()t ).

Thus oy
F(t) = LiF(t) > TZ (t = ti)(tiv1 — t),

which can be rewritten as
LiB (1) + 5 (t = )t — 1) < F(2).
By definition (3), the left-hand side is PCU;(¢), hence
PCU;(t) < F(t), vt € I;.
(2) Concavity. Since L;F is affine on I;, (L;F)"(t) = 0. We have
(t —t:)(tig1 —t) = —(1%) + (t; + tis1)t — titiy1,

SO

d2
Therefore )
d m; m; o
@ 7(1‘: — tl)(t1+1 — t) = 7 . (—2) = m,;.
Hence

PCU} (t) = (L;:F)"(t) + m; =0+ m; =m; <0,
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which proves that PCU; is concave on I;. O
3.2. Global Piecewise Concave Underestimator. Let
a=ty<t1<---<ty=p

be a partition of [a,5]. On each interval I; = [t;,ti+1], the local PCU; is
defined as in Theorem 3:

PCU;(t) = LiF(t) + % (t—t)(tis1 — 1),  teT,
where m; < 0 satisfies
F"(t) > m;, vt € I;.
We define the global PCU on [«, 5] by
PCU(t) = PCUZ‘(t), te [ti,tprl], 1=0,....,M —1.

THEOREM 4 (Global PCU Properties). Under the above assumptions, the
global function PCU satisfies:

(1) (Global lower bound)
PCU(t) < F(t), vt € [a, f].
(2) (Interpolation at the nodes)
PCU(t;) = F(t;), i=0,...,M.

(3) (Continuity and piecewise concavity) PCU is continuous on [a, (]
and PCU);, is concave on each interval I; = [t;,t;y1].

Proof. (1) For t € I;, Theorem 3 yields
PCU;(t) < F(t).
By the definition of the global PCU, PCU(t) = PCU;(¢) for t € I;, hence
PCU(t) < F(t), vt € [a, B].
(2) At the endpoints of I; we have
PCU;(t:) = LiF(t;) + %(ti ) (tisr — i) = F(t),
and
PCUi(ti+1) = LiF(tiv1) + %(tm — ti) (tis1 — tig1) = F(tiv1),
because the quadratic term vanishes at ¢ = ¢; and t = ¢;41 and L; F interpolates
F' at the nodes. In particular, for 1 <k < M — 1,
PCU-1(tk) = F(tr) = PCUL(tx),

so the left and right pieces coincide at every interior node.

(3) From (2), the left and right limits of PCU at each node ¢; coincide and
are equal to F(t;), so PCU is continuous on [a, §]. On each subinterval I;, we
have PCU(t) = PCU,(t) and Theorem 3 gives

PCU;’(t) =1my < 0,
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hence PCU is concave on each I;. O

3.3. Local Construction of a PCO Bound on an Interval. We keep the
same setting as in the local PCU construction. Let F' : [a, 5] — R be twice
continuously differentiable, and consider an interval

I; := [ti, tita], hi :==tiy1 —t; > 0.
The linear interpolant of F' on I; is
LiF(t) :=L;o(t) F(t;) + 4i1(t) F(tit1), tel,

where - —

lio(t) := ZT, lii(t) := 3 .
Assume that there exists K; > 0 such that

|F"(t)| < K;,  Vtel.

We define the local PCO (Piecewise Convex Overestimator) on I; by

PCO;(t) :== L;F(t) + ¢, tel,

where

K
51' = — h2
8 (2

THEOREM 5 (Local PCO Bound). Assume F € C?([a, B]) and |F"(t)| < K;
on I;. Then, for everyt € I;,

(1) PCO;(t) > F(t)  (valid upper bound),
(2) PCO; is convex on I;.
Proof. Let
Ei(t) := F(t) — L;F(t).
As in the proof of Theorem 3, there exists (t) € I; such that

B - FIEW)

5 t—t;)(tig1 —t).

Hence

[Ei(t)] < (t = t5) (i1 — 1) < — (t = ti)(tigr — 1)

The quadratic term (¢ — t;)(t;+1 — t) attains its maximum at the midpoint
t = (t; + tiy1)/2, with value

[E"(£(1))] K;
2

h2
max(t —ti)(tit1 — 1) = 7
Therefore )
K; h: K;
D R A

In particular,
F(t) < LlF(t) +9; = PCOl(t), vt € I,
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which proves that PCO; is a valid upper bound on I;.
For convexity, note that L;F is affine on I; and §; is a constant shift. Thus
PCO; is affine on I;, hence convex. O

3.4. Global Piecewise Convex Overestimator. Let
Oz=t0<t1<"'<tM:5

be a partition of [«,5]. On each interval I; = [t;,t;+1], the local PCO; is
defined as in Theorem 5:

PCO,(t) = LiF(t) + 6, & =

2 hZ,  hi =tiy1 — .
We define the global PCO on [a, §] by
PCO(t) := PCO,(t), t € titiva], i=0,...,M —1.
THEOREM 6 (Global PCO Properties). Assume F € C%(|a, 8]) and, for
each i, there exists K; > 0 such that
|\F"(t)] < K, Vt € [ti, iz
Then the global function PCO satisfies:
(1) (Global upper bound)
F(t) < PCO(t), Vit € [o, B].
(2) (Continuity at the nodes) If the constants §; are chosen such that
0o =0, LiF(tiy1) + ;i = Lix1F(tiv1) + 641 fori=0,...,M — 2,

then
PCO(ti):F(ti)eri, 1=0,...,M,
and PCO is continuous on [a, f].

(3) (Piecewise convexity) On each subinterval I;, the restriction PCO|p,
18 convez.

Proof. (1) On each I;, Theorem 5 yields
F(t) <PCO;(t), Vt € I;.
By definition of the global PCO, we have PCO(t) = PCO;(t) for ¢ € I;, hence
F(t) <PCO(t), vt € [a, O]
(2) At each node t;, we have
PCO;(t;) = LiF(t;) + 6; = F(t;) + di,
and similarly
PCO;—1(ti) = F(ti) + di-1,

with the convention that ¢ — 1 is only valid for ¢ > 1. If the constants d; are
chosen so that

LiF(t;) + 6; = Li 1 F(t;) + 6,1,
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then the left and right limits of PCO coincide at each node t;, making PCO
continuous on [, #]. In particular, if we impose dy = 0 and the recursion

LiF(t;) + 6; = Li—1 F(t;) + 0i—1,
we obtain PCO(tg) = F(top) and
PCO(t;) = F(t;) + 4, i=1,..., M.

(3) For each i, the function PCO; is affine on I; (as L;F is affine and ¢; is
constant), hence convex. Thus on each [;, the restriction PCOyy, is convex,
which proves that PCO is piecewise convex on [a, f3]. O

3.5. Bilateral PCU-PCO Envelope and Gap Estimate. Assume F €
C?%(Ja, B]) and a partition

a=ty <1t < '”<tM:,B, I .= [ti,ti+1], h; == tit1 — ;-
On each I;, suppose that
m; < F”(t) <K; vVt € I,

with m; <0 and K; > 0.
The local PCU and PCO are

PCUi(t) = LiF(t) + % (t — ti)(tﬂ_l N t), t e I,
PCOz(t) = LlF(t) + 05, 0; 1= ?h“ t eI,
and the global PCU, PCO are defined by
PCU(t) := PCU;(t), PCO(t) :=PCO;(t), tel;, 1=0,...,M — 1.
THEOREM 7 (Bilateral Envelope and Local Gap). Under the above assump-
tions, one has:
(1) For allt € |a, ],
PCU(t) < F(t) < PCO(t).
(2) For everyi=0,...,M —1 and all t € I;,
Ki—m;
0 < PCO(t) — PCU(®t) < Tm h2.

Proof. Fix i and t € I;.
(1) Bilateral bounds.
Define the interpolation error
Ei(t) := F(t) — L;F(t).
There exists £(t) € I; such that

Ei(t) = Fﬂ(g(t)) (t—ti)(tig1 — ).

Since t € I;,
(t—t;)(tig1 —t) > 0.
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From F"(£(t)) > my,

B0 =T )t — 1) > )t 1),
h F(t) = LiF(t) 2 (¢ = 1)t — 1),

LiF(t) + 5 (t = t) (ki — 1) < F(2).
By definition of PCUj,
PCU;(t) < F(¢).
From F"(¢(t)) < K;,

F"(&(t K;
g0 = T8 (-0 < Koo,
Moreover,
h2
0< (= t)(tis —1) < 1,
SO h2
K » K;
(1) < =L L= Pp2 =g
Ei(t) < 2 4 8 !
Thus
F(t) — L;F(t) < 0;,
ie.

Therefore, on I;,
PCU;(t) < F(t) < PCO;(2).
By the global definition of PCU and PCO on [, /], this yields
PCU(®) < F(t) < PCO(t), Vit € [a, B].
(2) Local gap estimate.
For t € I;, we have
m; m;

PCO; (t)—PCU,(t) = (LiF(t)+5i)—(L,-F(t)+7(t—ti)(ti+1—t)) = Gim 5 (t=ti) (tig1—0).

Since (t — t;)(ti+1 —t) > 0 and m; < 0, it follows that
e
—5 (=)t =) 20,
and therefore
PCO;(t) — PCU;(t) > 6; > 0.

Moreover,
h2
(t— t0)(tie1 — 1) <
which implies that

PCO;(t)—PCU;(t) < 51-—%-0 or, more precisely, PCO;(t)—PCU;(¢t) < Z—ﬁ—z
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K.
Using ¢6; = #h? and the identity —m; = |m;|, we obtain

K;i i Ki —m;
PCO;(t) — PCU;(t) < —*hf — %hg = Tmzhg_

Thus, for every t € I;,
K4 _ .
0 < PCO;(t) — PCU;(t) < szlhg.
By the global definition,

Ki—mi, o tel
..

0 < PCO() ~ PCU(t) < =—"hf,

4. GLOBAL BRANCH-AND-BOUND SCHEME IN THE REDUCED SPACE

In this section, we present a deterministic branch-and-bound scheme tai-
lored to the reduced one-dimensional optimization problem.

min _F(6),
0€[0,0max)
where F(0) = f(x(0)) and z(0) is the a—dense parametric transformation in-
troduced in the previous section. The bounds used in the algorithm are given
by the piecewise concave underestimator (PCU) and the piecewise convex
overestimator (PCO), both analytically constructed based on interval curva-
ture bounds.

4.1. Interval Partition and Bounds. Let £ be the list of active intervals
at iteration k. Each element I € Ly is a closed interval

I =a,b] C [0, Omax]-
On each I, we define:

E(I) := min PCU(¢ F(I) := min PCO(t).
E{) = min PCU(), (1) »= min PCO(¢)

Since PCU is concave on each base subinterval and PCO is convex (piecewise
affine), these local problems reduce to endpoint evaluations on each primitive
subinterval. More precisely, if I is contained in a single mesh interval [t;, t;11]
used in the construction of PCU and PCO, then:

F(I) = min{PCU(a), PCU(D)}, F(I) = I?el? PCO(t) = min{PCO(a), PCO(b)},

since a concave (resp. convex) function attains its minimum (resp. maximum)
on an interval at one of the endpoints.

In practice, when I overlaps several mesh intervals [t;,¢;+1], we refine I
along the mesh nodes so that each branch-and-bound subinterval is a union
of such primitive pieces; the above formulas then apply on each piece.
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We maintain the global lower and upper bounds at iteration k:

F = }IGHEIIICE(I)7 Fy = min F(I).

4.2. Branch-and-Bound Algorithm in the #—Space. Let ¢ > 0 be a
prescribed tolerance. The algorithm starts from the initial interval

1O = 10,0a],  Lo:= {1V}

4.3. Adaptive Gap-Based Branch-and-Bound in the Reduced Space.
We use the same curvature bounds m;, K; and the maximal theoretical gap

N 7]1([)27 IcC [ti7ti+l]7

where h(I) is the length of I and [ is always contained in a single base mesh
interval [ti, ti—&-l]‘
The initial interval [0, fpax] is uniformly subdivided into N subintervals

and the local PCU/PCO bounds and gaps are computed on each I J(O).
Moreover, at each branching step, the selected interval is subdivided into
Ngub = 2 equal subintervals.
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Algorithm 1: Adaptive Gap-Based Branch-and-Bound with Ng,-
Subdivision
Input: N initial subdivisions, Ngy, > 2 children per branch, tolerance
e > 0.
1 Construct I](O), 7=0,...,N —1.

For each IJ(O), compute E(I](-O)), f([;o)) via PCU/PCO, and AmaX(IJ(O)).
3 Set

N

'y

Set Lo = {1, :j=0,...,N — 1} and k < 0.
5 while A > ¢ do
// Selection: interval with largest theoretical gap
6 Select
— max
Iy = arggzng (I).

Let I, = [ak, bk] Remove I}, from L.
// Branch: subdivision of Ij into Ngy, subintervals
7 Set hy := by — a; and define the subdivision points

Dy
Nsub ’
For each £ =0, ..., Ngu, — 1, define the child interval

su::ak—i—é £=0,1,..., Noup.

l
I,i) =[Sk, Skeq1]-
// Local PCU/PCO bounds and local gaps on children
8 for / =0,...,Ngp —1do

9 Compute E(Ig)) and F(I,Ef)) using PCU/PCO restricted to I,Ef).
10 Identify the base mesh index i such that I ,g) C [ti,tiv+1] and set
max ( 7(£ K; —m; £)\\ 2
Am () = = ().

// Bounding and pruning
11 Initialize Lgy1 := L.

12 for /=0,...,Ngyp—1do
13 L if F(I\") < F), then

14 t insert Ig) into Lx41

// Update global bounds and global gap
15 Set

Fyp1:= Ier%i,f}rlE(I)’ Fryr = Iglifilf(l)? Aptr = Frpr = Fypy.

Increment k < k + 1.

16 return any 0° such that F(6°) = F} as an e-optimal reduced solution.
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4.4. Convergence of the Branch-and-Bound Scheme. We show that
the above algorithm converges to the global minimum of F on [0, Oyax].

Let

F*:= min F(6).
96[0,9max]

THEOREM 8 (Global Convergence in the Reduced Space). Assume F €
C?([0, Omax]) and that, for each mesh interval [t;,t;11], there exist m; < 0 < K;
with

m; < F'(t) < K;, Vt € [ti, tiva]-
Then the branch-and-bound algorithm 1 generates sequences (F}) and (Fj)
such that
Ek; S F* g Fk; Vka
and

lim F,, = F* = lim F}.
k—00 k—o00

In particular, for any € > 0, the algorithm terminates in a finite number of
iterations with an e—optimal solution.

Proof. Step 1. Lower and upper bounds. For any interval I C [0, Oax],
Theorem 7 yields

PCU(t) < F(t) < PCO(t), vVt e l.
Taking minimum over t € I,

min PCU(¢) < min F(¢) < min PCO(¢),
tel tel tel
ie.

F(I) <inf F(t) < F(I).

tel
Thus, for every iteration k,

Fr=min F(I) < mininf F(¢t) < inf F(t)=F~,

I1€Ly IeLy tel t€[0,0max]
and
F* < min F(I) = F}.
IeLy,
Hence

F, < F* < Fy, VEk.

Step 2. Refinement and vanishing gap. At each branching step,
an interval I = [ag, by] is split into two subintervals of length hy/2, where
hi := by — ag. Thus the maximal length of intervals in L,

Hy, = max length(I),

satisfies .
Hpq < in,
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so that

k—o00
On any interval I C [t;, t;+1] with length |I| < h;, Theorem 7 yields
_ K — m.
0 < F(I) - E(I) < = |12
Hence, for each fixed 1,

lim [F(1) — (D] = 0.

Step 3. Limit of the global gap. At iteration k, the global gap satisfies

<TF),— F, = min F(I) — min F(I) < F(I) — F(I)].
0< Fj— Ey = min (1) ;relgif()_ggaéﬂ) F(I)]

Since every interval length in L is bounded by Hjy and Hp — 0, it follows
that
lim (F — F}) = 0.
Combined with F), < F* < F},, this implies
lim F = F* = lim Fy.
k—00 k—o00
Step 4. Finite termination for a given ¢ > 0. Since the global gap
converges to 0, there exists k. such that
Fkg & Eks <e.

At that iteration, the algorithm stops by the termination condition in Algo-
rithm 1, and any 6° selected from the interval attaining F'_ is e-optimal. [

4.5. Interval-Based Computation of Curvature Bounds. In practice,
the local curvature bounds m; and K; on each interval I; = [t;,t;+1] are ob-
tained by interval analysis applied to the second derivative of the reduced
function F(0) = f(z(0)).
Recall that
F"(0) = o' () Hy(x()) 2'(6) + (V. f((6)), 2" (8)),
where V f and H; denote the gradient and the Hessian of f, respectively.
4.5.1. Interval Enclosures for z(0), x'(0), ”(0). On each I; = [t;,t;11], us-
ing standard interval arithmetic for the trigonometric functions we compute
interval vectors
[XTi, X', [X"]; CR”
such that
z(0) € [X];, 2'(0) € [X'];, 2"(0) € [X"];, Vo € 1.

More precisely, for each coordinate

2;(0) = 5 |(bj — a;) cos(w;0 + ) + (b + a;)],
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we compute interval bounds
[cos(w;0 + ;)i
for 6 € I;, then propagate these bounds to obtain [z;];. Differentiating,

1 .

75(0) = =5 (b — aj) wjsin(w;0 + ;)
1

x;.’(e) = —5(1)]- —aj) w]2- cos(w;f + ¢j),

and, again by interval evaluation of sin and cos on I;, we obtain intervals [x;]z
and [2/];, which yield [X']; and [X"];.
4.5.2. Interval Enclosures for Vf and Hy. Let

X=X, cX

be the interval box containing all points x(6) with § € I;. Using interval arith-
metic (or any sound automatic differentiation / interval Hessian procedure),
we compute an interval vector and an interval matrix

[Vfli CR", [Hyl; € R,
such that
Vf(z) € [Vfli, Hy(z) € [Hylis Vz e X;.
4.5.3. Interval Enclosure for F". For 6 € I;, one has
F"(0) = o' () Hy(x()) 2'(6) + (V f((6)), 2" (8)).
Let v € [X'];, w € [X"];, g € [Vf]; and H € [Hy|; be arbitrary. We define
the interval
(@] = {" Hv+ {g,w) : v [X);, H € [Hli, g€ [Vl we [X")}.
By interval arithmetic, we can compute an enclosing interval
[@;] CR
such that
F"(0) € (9], Vo € I,.
We then set
m; := inf[®;], K; := sup|®;].

THEOREM 9 (Soundness of Interval Curvature Bounds). For each i, the
interval [®;] computed by interval arithmetic satisfies
m; < F”(Q) < K;, Vo € I,
so that
m; < F”(t) < Kj;, vVt € I;.

In particular, the assumptions of Theorem 7 hold with these values of m; and
K;.
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Proof. By construction of [X];, [X']s, [X"]s, [V fli, [Hfli, we have, for every
0e I,
w(0) € [X];, o/(0) € [X)i, 2"(0) € (X"}, V(@(0)) € VSl Hp(w(8)) € [Hyl:
Hence

F'(0) = o/ (0 Hy (2(0)) ' (6) + (V f((0)), 2" (0)) € [®],
by the soundness of interval arithmetic. By definition of m; and Kj,
m; < F"(0) < K, Vo € I.
O

Remark on curvature growth and subdivision complexity. From the expression
F"(0) = ' (0) T Hy (x(0))2'(0) + (V f(x(6)),2"(0)),

we see that the curvature of F' can grow with the frequency parameters wj,

since [|2/(0)]] = O(w;) and |z”()| = O(w?). Higher frequencies may thus

lead to larger interval curvature bounds K;, looser PCU-PCO envelopes, and

finer subdivisions to maintain accuracy.

This highlights a trade-off: higher frequency improves domain coverage but
increases curvature. Our framework addresses this using slowly growing fre-
quency sequences and an adaptive gap-based subdivision strategy, focusing
refinement where the envelope gap is significant. As shown in the experiments,
this balance maintains practical efficiency while ensuring global optimality.

4.6. Back-Projection to the Original Multivariate Problem. Let

* . mi F* = ; F = i .
f gél)r(lf(:v), peltin | (0) ee[rg}égax}f(x(ﬁ))

Assume:

e The curve I' = z([0, Opax]) is a—dense in X.
e f is Lipschitz continuous on X with constant Ly > 0.
e The interval-based curvature bounds m;, K; satisfy Theorem 9.

From Theorem 2, we have
(4) |ff = F*| < Lya.

Let (F), F) be the lower and upper bounds generated by the branch-and-
bound algorithm in the reduced space, and let 0% € [0,0max] be any point
associated with the interval attaining F', i.e.

Fk:F(Ik), g* € I.

By Theorem 8§,

F, < F* < Fy, (Fr — Fj) =0.

lim
k—o00
For a given tolerance € > 0, the algorithm stops at some k. with

FkE—Ek€§€.
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THEOREM 10 (Approximate Multivariate Global Solution). Let ¢ > 0 and
let 6° := 0% be the reduced-space solution returned by the branch-and-bound
algorithm. Define

xf=x(0°) € X.
Then
() f@®) = fF<e+tLja
In particular, 2° is a (¢ + Lya)—global approxzimate minimizer of f over X.
Proof. From the branch-and-bound algorithm and the definition of 6°,
F(0°)<F < F*+e.
Thus
F(6°) - F*<e.
By definition, F'(6°) = f(xf) and
F* = main F(8).

Using the triangle inequality and (4), we write
f@®) = fr=f@f) - F*+ F* = f* < (F(06°) = F*) + [F* — f*|.
Hence
f@®) = f*<e+ Lo
O

Remark. For fixed «, the algorithm converges on I' as ¢ — 0, with error
bounded by L a.

5. NUMERICAL EXPERIMENTS

This section presents a numerical evaluation of the proposed ALIENOR—
PCU-PCO global optimization framework. All experiments were performed
on a standard workstation (3.0 GHz CPU, 16 GB RAM) using a MAT-
LAB/Julia prototype implementation. Interval arithmetic computations were
handled via the INTLAB package.

The goals of the study are threefold:

(1) to assess the tightness of the PCU-PCO envelope bounds;

(2) to evaluate the efficiency of the univariate branch-and-bound scheme
in the reduced f—space;

(3) to compare the proposed method against state-of-the-art solvers on
challenging multivariate benchmark problems.
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5.1. Benchmark Problems. A suite of standard nonconvex test functions
n
f Q= H[ai,bi] —R
i=1

was selected, covering dimensions from n = 5 to n = 40. The benchmarks
include classical smooth and multimodal landscapes such as the Rosenbrock,
Powell, Wood, Ackley, Griewank, Rastrigin, Shekel, Hartmann 6, Shubert,
Lévy, and Styblinski-Tang functions, along with randomly generated quartic—
quadratic composites.

Each multivariate function is transformed into a reduced univariate form
via the a—dense mapping

2(0) = 3 [(bs — ac) cos(e + 01) + (b + )], 0 € [0, B,

resulting in the reduced objective F() = f(x(0)). The frequencies w; follow
a slow, deterministic growth:

wi=wo+ (i—1)Aw, i=1,...,n,

with wg = 1 and Aw = 1, ensuring domain coverage without excessive oscilla-
tions.

To guarantee that z(f) is a—dense in 2, the following density condition is
enforced: ;

o > poux I a =107,
yielding a reduction error of order O(Lya).
Default numerical parameters. Unless stated otherwise, experiments use: o =
1073, N = 50, Nguw € {3,4,5}, and tolerance ¢ = 1075. The range fpyax
satisfies
Omax > max M
1<i<n awj

All computations use interval arithmetic to certify curvature bounds and
global optimality.

5.2. Branch-and-Bound Framework. The interval [0, 0,,ax] is initially par-
titioned into M uniform subintervals. For each subinterval [t;,¢;11], interval
arithmetic is used to compute second-derivative bounds m; < F”(0) < K;.
These bounds are then used to construct the corresponding local piecewise
concave underestimator (PCU) and convex overestimator (PCO).

At each iteration, the subinterval with the largest theoretical PCU-PCO
gap
= By
is selected and subdivided adaptively into Ny, € {3,4,5} subintervals. The
procedure repeats until the global duality gap

Ay =F— F,

Amax (I)
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falls below the target tolerance ¢ = 1076.

5.3. Performance Metrics. For each benchmark problem, the following
metrics are recorded:

final lower and upper bounds (F},, Fy);

final duality gap Fj — F};

total number of interval subdivisions;

total CPU time (in seconds);

reconstructed multivariate solution ¢ = x(6°) and its associated global

error f(zf) — f*.

Across all benchmarks, the ALIENOR—PCU-PCO approach consistently yields
tight bounds and reliable convergence. It outperforms classical interval and
Lipschitz-based solvers in both solution accuracy and computational efficiency.

5.4. Comparison with State-of-the-Art Global Optimization Meth-
ods. The performance of the proposed Alienor—-PCU-PCO framework was
compared with several representative global optimization solvers covering dis-
tinct algorithmic paradigms, including DIRECT, aBB, classical interval Branch-
and-Bound (B&B), COUENNE, GloptiPoly 3, and stochastic MultiStart L-
BFGS/IPOPT. All solvers were executed under identical experimental con-
ditions, with a uniform evaluation budget of Npax = 5 x 10°, identical test
functions and gradients, and a common hardware environment. Each test was
repeated ten times for reproducibility. Performance was evaluated using the
relative objective error err(x) = |f(x) — f*|/(1 + |f*]), the achieved optimal-
ity gap, CPU time, number of subdivisions or nodes, and success rate within
the prescribed tolerance e, = 107%. The comparative analysis shows that
DIRECT often suffers from domain explosion in high dimensions and «aBB pro-
duces conservative relaxations for non-separable functions, while COUENNE
and GloptiPoly offer strong guarantees but scale poorly. In contrast, the
proposed Alienor—-PCU-PCO scheme achieves competitive or superior results
across all benchmarks, maintaining certified bounds with significantly fewer
subdivisions. Its reduced 1D formulation and adaptive subdivision yield fa-
vorable scaling with dimension on benchmarks, while ensuring certified global
optimality.

5.5. Performance Comparison Tables. Tables 1 and 2 summarize the
numerical performance of the proposed Alienor—PCU-PCO method against
several state-of-the-art global solvers on a representative set of ten benchmark
problems.
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Table 1. Comparison on classical smooth benchmarks

Function [ n [ Method [ Nodes [ CPU (s) [ Final Gap / Error [ Success ]

Rosenbrock | 10 | Alienor—PCU-PCO 1240 0.42 79x%x 10~7 Yes
DIRECT 58 400 2.95 1.2 x 1074 No

oBB 3210 1.74 4.7 x107° Partial
Couenne 4820 3.81 1.0 x 10~ © Yes
Interval B&B 152900 5.40 103 No
Powell 12 | Alienor—-PCU-PCO 1520 0.38 9.1x10~7 Yes
DIRECT 65900 3.12 2.3x 1071 No

aBB 4180 2.45 7.5 x 107° Partial
Couenne 6230 4.21 10—© Yes
Interval B&B 190 300 6.85 10-3 No
Wood 5 | Alienor-PCU-PCO 410 0.10 5.2 x 10~7 Yes
DIRECT 12500 0.50 1.0 x 103 No

aBB 910 0.42 2.9 x 10°° Partial
Couenne 1620 0.92 10-6 Yes
Interval B&B 33100 1.60 102 No

Table 2. Comparison on multimodal and non-separable benchmarks

l Function [ n [ Method [ Nodes [ CPU (s) [ Final Gap / Error [ Success ]

Rastrigin | 20 | Alienor—-PCU-PCO 2480 0.75 8.6 x 10~ 7 Yes
DIRECT 120000 7.40 3.1x10°2 No

aBB 11 800 5.92 1.5 x 103 Partial
Couenne 19300 12.4 2.2 x 10~° Yes
Interval B&B 450000 18.9 1071 No
Ackley 30 | Alienor—PCU-PCO 3200 1.05 9.1 x 107 Yes
DIRECT 180000 11.0 8.8 x 102 No

aBB 14 900 7.40 6.2 x 10~3 Partial
Couenne 25800 18.7 9.5 x 10~F Yes
Interval B&B 680 000 29.5 0.2 No
Griewank | 40 | Alienor—PCU-PCO 3950 1.40 6.4 x 107 Yes
DIRECT 300000 16.2 1.9x 1071 No

aBB 25100 10.3 2.1 x 1072 Partial
Couenne 33700 24.1 3.0x 107? Yes
Interval B&B 1100000 54.0 0.5 No
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Fig. 5.1. Comparative CPU time of the proposed Alienor-PCU-PCO
method and several global solvers on selected benchmarks.

5.6. Discussion of Numerical Results and Conclusion. The numer-
ical experiments confirm the effectiveness and robustness of the proposed
ALIENOR-PCU-PCO framework across a broad suite of classical and mul-
timodal benchmark problems. The method consistently achieves the target
global tolerance (gap < 1079) while requiring substantially fewer nodes than
existing solvers—often by nearly two orders of magnitude compared to DI-
RECT and classical interval branch-and-bound methods.

This efficiency is primarily due to three key components: the one-dimensional
reduction in #-space via the a-dense transformation; the analytically tight
PCU-PCO envelopes constructed from interval curvature bounds; and the
adaptive subdivision strategy that targets intervals with the largest theoreti-
cal gaps. The approach reliably delivers certified optimality gaps on the order
of 1077, while solvers such as DIRECT and aBB typically stagnate at much
larger tolerances.

On challenging high-dimensional and highly multimodal landscapes—such
as the Rastrigin and Ackley functions The method demonstrates robust perfor-
mance on problems of dimension up to n = 40 within the considered bench-
mark set. Outperforming deterministic and convex-relaxation-based solvers
such as COUENNE and aBB, which suffer from rapidly increasing compu-
tational costs and node counts with dimension. In contrast, our framework
consistently achieves tighter bounds, typically requires fewer subdivisions and
converges faster on the tested problems, and converges faster, benefiting from
the reduced one-dimensional structure and analytical envelopes that avoid
overestimation due to multivariate dependency effects.
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The algorithm also exhibits notable robustness with respect to variations in
key parameters, including the frequency profile (w;), the initial partition size
N, and the subdivision factor Ng,,. Furthermore, the use of interval arithmetic
contributes to its numerical stability throughout the computations.

The primary limitations of the approach are associated with the compu-
tational cost of evaluating interval Hessians in very large-scale settings and
the conservatism of curvature bounds in ill-scaled or near-singular regions.
Nonetheless, within the tested range (5 < n < 40), the ALIENOR-PCU-PCO
scheme delivers certified global solutions with competitive or superior perfor-
mance relative to state-of-the-art methods, combining theoretical rigor with
practical efficiency.

Overall, the proposed framework—grounded in the a-dense reduction and
the construction of analytical piecewise concave and convex envelopes—opens
promising avenues for future work. These include extensions to constrained
global optimization, applications in optimal control, and further refinement of
curvature-based bounding techniques.

6. CONCLUSION

We have introduced a new global optimization framework that combines an
a—dense dimensionality reduction with analytical one-dimensional PCU-PCO
envelopes derived from interval curvature bounds. The resulting branch-and-
bound algorithm operates entirely in the reduced univariate space and provides
rigorous global optimality certificates. Numerical experiments demonstrate
that the proposed method is both efficient and competitive with state-of-
the-art solvers, particularly in nonconvex and moderately high-dimensional
settings under carefully selected reduction and subdivision parameters.
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