REVUE D'ANALYSE NUMÉRIQUE ET DE LA THÉORIE DE L'APPROXIMATION, Tome 1, 1972, pp. 37-43 off patelog state of the second as limited a few and the second as the s

ON RESTRICTIVE UNIFORM APPROXIMATION

The James of the momentum of the momentum of

by
GH. CIMOCA (Cluj) A San an analysis (In the by finician light jets the contract of the A state and the in

1. Introduction.

In [14] an unified treatment of the theory of approximation by functions having restricted ranges was developed by G. D. TAYLOR. A generalization of this problem and other results were obtained in [5], [3].

Several authors have dealt with the problems of monotone approximation: o. shisha [13], J. A. ROULIER [12], G. G. LORENTZ and K. L. ZELLER [6], [7], G. G. LORENTZ [8], R. A. LORENTZ [9].

The paper [10] presents the problem of positive approximation, a combination of the theory of monotone approximation and the theory of approximation with positive convex constraints of J. R. RICE [11].

The aim of this paper is twofold: to indicate a new generalization of the problem of uniform approximation by functions having restricted ranges and to give a result in a more general problem of positive approximation.

2. Basic definitions and notations

Let T be a compact Hausdorff space and let C(T) denote the Banach action on T with norm: space of all real-valued continuous functions defined on T with norm:

$$||f|| = \max \{|f(t)|, t \in T\}, f \in C(T).$$

Let $H = [\varphi_1, \ldots, \varphi_n]$ be an *n*-dimensional Haar subspace of C(T), where the functions $\varphi_1, \ldots, \varphi_n$ form a basis for H.

Recall that an n-dimensional subspace H of C(T) is called a Haar subspace if every function in $H \sim \{0\}$ has at most n-1 zeros in T.

We shall fix away a couple (u, v) of extended real-valued functions:

$$u: T \to \overline{R}$$
 and $v: T \to \overline{R}$

subject to the following restrictions:

(i)
$$\{t \in T : u(t) = -\infty\} = \emptyset$$
 but $\{t \in T : u(t) = +\infty\} = T_{+\infty}$ may be nonempty,

(ii)
$$\{t \in T : v(t) = +\infty\} = \emptyset$$
 but
$$\{t \in T : v(t) = -\infty\} = T_{-\infty}$$
 may be nonempty

- (iii) $T_{+\infty}$ and $T_{-\infty}$ are open subsets of T.
- (iv) u is continuous on $T \sim T_{+\infty}$ and v is continuous on $T \sim T_{-\infty}$
- (v) $\{t \in T : u(t) > v(t)\} = T$.

Now let ω be a linear operator:

$$\omega: C(T) \to C(T)$$

and if $f \in C(T)$ we denote $f_{\omega} = \omega(f)$. Then define the set of approximating functions:

$$\overline{H} = \{ p \in H : v(t) \leq p_{\omega}(t) \leq u(t), \ t \in T \}.$$

Definition 1. A function $p^{\circ} \in \widetilde{H}$ is said to be a best restrictive approximation to $f \in C(T)$ provided:

$$||f - p^{\bullet}|| = \inf \{||f - p||, \ p \in \overline{H}\}.$$

The following terminology will be used in the statement of the results on best restrictive approximation.

Definition 2. The operator ω is said to be monoton if it satisfies the condition:

(1) If
$$f(t) \leq g(t)$$
, $t \in T$ then $f_{\omega}(t) \leq g_{\omega}(t)$, $t \in T$.

Now fix $f \in C(T)$. Let $p^{\circ} \in \overline{H}$ and define the following critical point sets:

$$\gamma_{0}^{+} = \{t \in T : f(t) - p^{\circ}(t) = ||f - p^{\circ}||\}
\gamma_{0}^{-} = \{t \in T : f(t) - p^{\circ}(t) = -||f - p^{\circ}||\}
\gamma_{0}^{u} = \{t \in T : p_{\omega}^{0}(t) = u(t)\}
\gamma_{0} = \{t \in T : p_{\omega}^{0}(t) = v(t)\}
\gamma_{0} = \gamma_{0}^{+} \cup \gamma_{0}^{-}; \quad \gamma_{0}^{\tau} = \gamma_{0}^{u} \cup \gamma_{0}^{v}, \quad \Gamma_{0}^{+} = \gamma_{0}^{+} \cup \gamma_{0}^{v}, \quad \Gamma_{0}^{-} = \gamma_{0}^{-} \cup \gamma_{0}^{u}; \quad \Gamma_{0} = \Gamma_{0}^{+} \cup \Gamma_{0}^{-}$$

3. Results on best restrictive approximation

In this section we shall ascertain that there is a complete analogy between our problem and the problem of approximating a continuous function by functions having restricted ranges. By this we mean that for each result which is valid for the Taylor problem, there is a corresponding result valid for the new more general problem. In particular all our results reduce to well known ones in the case when the operator ω is the identity map $\lceil 14 \rceil$.

THEOREM 1. If \overline{H} is nonempty for the couple (u, v) then there exists at least one element of best restrictive approximation $p^{\circ} \in \overline{H}$ to $f \in C(T)$.

It follows immediately from the facts that \overline{H} is a closed subset of a finit dimensional subspace of C(T) and:

$$\inf \{||f-p||, \ p \in \overline{H}\} = \inf \{||f-p||, \ p \in \overline{H} \text{ and } ||p|| \le 2||f||\}.$$

THEOREM 2. If $f \in C(T)$ then the set of the elements of best restrictive approximation in \overline{H} to f is a convex set.

It is easy to prove:

3

Lemma 1. If $\Gamma_0^+ \cap \Gamma_0^- \neq \emptyset$ and ω is a monotone operator then $p^{\circ} \in$ $\in \overline{H}$ is a best restrictive approximation to $f \in C(T)$.

For the remainder of this section we assume that the function $f \in C(T)$ is taken such that $\Gamma_0^+ \cap \Gamma_0^- = \emptyset$ for all $p^{\circ} \in \overline{H}$.

Lemma 2. If for a function $p^{\circ} \in \overline{H}$ there exists a function $p \in H$ satisfying

(2)
$$p(t) > 0$$
 for all $t \in \gamma_0^+$

(3) If
$$t \in \gamma_0$$
 for all $t \in \gamma_0$

$$(4) p_{\omega}(t) > 0 for all t \in \gamma_0^{\nu}$$

(5)
$$p_{\omega}(t) < 0 \quad \text{for all} \qquad t \in \gamma_0^u$$

then p° is not an element of best restrictive approximation to $f \in C(T)$. The proof of this statement is immediate [5].

A first characterization theorem is a corolar of Theorem 8 from [1]:

THEOREM 3. The element $p^{\circ} \in \overline{H}$ is a best restrictive approximation io $f \in C(T)$ if and only if for any element $p \in \overline{H}$ there exists a point $t' \in \gamma_0^+$ such that:

$$p(t') \leq p^{\circ}(t')$$

or a point $t'' \in \gamma_0^-$ such that:

$$p(t^{\prime\prime}) \ge p^{\circ}(t^{\prime\prime})$$

(7) $p(t'') \ge p^{\circ}(t'')$ R e m a r k. If ω is a monotone operator the theorem 3 holds by replacing of γ_0^+ by Γ_0^+ and respectively γ_0^- by Γ_0^- .

Once again referring to the techniques of [5] we immediately obtain

the following:

THEOREM 4. Suppose that:

(8) ω is monotone operator (9) There exists at least one $p \in H$ such that:

$$v(t) < p_{\omega}(t) < u(t), t \in T.$$

The element $p^{\circ} \in \overline{H}$ is a best restrictive approximation to $f \in C(T)$ if and only if there exist k points $(k \le n+1) t_1, \ldots, t_k$ in Γ_0 (at least one in γ_0) and a functional of the form:

$$\Phi(p) = \sum_{t_i \in \Upsilon_0} \alpha_i \, p(t_i) + \sum_{t_i \in \Upsilon_0^{\mathsf{T}}} \alpha_i \, p_{\omega}(t_i), \qquad p \in C(T),$$

such that:

such that:
$$\Phi(p) = 0 \text{ if } p \in H$$

(11)
$$\alpha_i > 0 \text{ if } t_i \in \Gamma_0^+ \text{ and } \alpha_i < 0 \text{ if } t_i \in \Gamma_0^-$$

If T is a compact subset of [a, b] containing at least n + 1 points we find an analogous result with Theorem 3.2 from [14].

THEOREM 5. Let $f \in C(T)$, $p^{\circ} \in \overline{H}$ and suppose that ω is a monotone operator. Then the following statements are equivalent:

(12) ϕ° is a best restrictive approximation to f.

5

(13) The origin of Eucliden n-space belongs to the convex hull of

$$\{\xi(t)\hat{t}, t \in \Gamma_0\}, \text{ where } \xi(t) = +1 \text{ if } t \in \Gamma_0^+ \xi(t) = -1 \text{ if } t \in \Gamma_0^- \text{ and } \hat{t} = (\varphi_1(t), \ldots, \varphi_n(t)).$$

(14) There exists n+1 distinct points $t_1 < \ldots < t_{n+1}$ in Γ_0 satisfying

$$\xi(t_i) = (-1)^{i+1} \xi(t_1), i = 2, \ldots, n+1.$$

There may be get easy a uniqueness theorem and a strong unicity theorem [2]:

THEOREM 6. If $p^{\circ} \in \overline{H}$ is a best restrictive approximation to $f \in C(T)$ then p° is unique.

THEOREM 7. Let $\phi^{\circ} \in \overline{H}$ be the best restrictive approximation to $f \in C(T)$. Then there exists a constant $\delta > 0$ such that for any $\phi \in \overline{H}$:

$$||f - p|| \ge ||f - p^{\circ}|| + \delta ||p^{\circ} - p||.$$

Remarks 1°. An exemple of problem of restrictive uniform approximation is treated in [4].

2° The problem of restrictive uniform approximation may be stated more general using the idea of [3].

4. Statement of the probleme of partitional positive approximation

Let T, Ω_1 , Ω_2 , ..., Ω_m be closed subsets not necessarily disjoint, of a compact Haussorff space S and let C(X) denote again the linear space of all real-valued continuous functions defined on a compact Hausdorff

Let $\omega_1, \omega_2, \ldots, \omega_m$ be linear not necessarily bounded operators:

$$\omega_i: C(\Omega_i) \to C(\Omega_i), i = 1, \ldots, m$$

and let H be a finit dimensional subspace of C(S).

Denote H_{Ω_i} the set of restrictions of all functions $p \in H$ to the subset $\Omega_i (i = 1, \ldots, m)$ and

$$ar{H}_{\Omega_i}=\{ p \in H_{\Omega_i} \colon p_{\omega_i}(\mathbf{s}) \geqq 0, \ \mathbf{s} \in \Omega_i \}.$$

6

Then define the set of approximating functions:

$$\overline{H} = \bigcap_{i=1}^m \overline{H}_{\Omega_i}.$$

Let

$$||f|| = \max \{|f(s)|, s \in T\}, \text{ for } f \in C(S).$$

Definition 3. The function $p^{\circ} \in \overline{H}$ is said to be an element of best partitional positive approximation to $f \in C(S)$ if:

$$||f - p^{\circ}|| = \inf \{||f - p||, \ p \in \overline{H}\}.$$

Remark. If $T = \Omega_1 = \ldots = \Omega_m = S$ we obtain the problem of positive approximation studied in [10].

Compactness and convexity arguments show that: if $H \neq \emptyset$, for each $f \in C(S)$ there exists at least one best partitional positive approximation.

Next we define for $p^{\circ} \in \overline{H}$ and $f \in C(S)$ the following critical point sets:

$$\Gamma_0 = \{s \in T : |f(s) - p^{\circ}(s)| = ||f - p^{\circ}||\}.$$

$$\gamma_0^i = \{s \in \Omega_i : p_{\omega_i}^0(s) = 0\}, \ i = 1, \ldots, m,$$

and we say that p° is a constraint interior element of \overline{H} if and only if γ_0^i is nonempty for some i.

The following characterization theorem, of the Kolmogoroff type, may be proved only if we assume that \overline{H} has a constraint interior point.

THEOREM 8. Let $f \in C(S)$ and $p^{\circ} \in \overline{H}$ with $||f - p^{\circ}|| \neq 0$. Then $p^{\circ} \in \overline{H}$ is an element of best partitional positive approximation to f if and only if there is no element $p \in \overline{H}$ for which:

(15)
$$\max \{(f(s) - p^{\circ}(s))p(s), s \in \Gamma_{\mathbf{0}}\} < 0$$

and

(16)
$$p_{\omega_i}(s) < 0, \quad s \in \gamma_0^i, \ i = 1, \ldots, m$$

We omit the proof which is similar to the proof of the Theorem 3.1 [10].

The uniqueness of the element of best partitional positive approximation is an open question.

REFERENCES

- [1] Breckner, W. W., Kolumban I., Über die Charakterisierung von Minimallösungen in linearen normierten Räumen. Mathematica (Cluj), 10(33), 1, 33-46 (1968).
- [2] Cheney, E, W., Introduction to Approximation Theory, Mc Graw-Hill New York, 1966.
- [3] C i m o c a, G h., On uniform approximation by functions having restricted ranges. Mathematica (Cluj), 12 (35), 2, 237-251 (1970).
- [4] Cimoca, Gh., On a problem of restrictive uniform approximation, Mathematica (Cluj), 13(36), 2, 189-197 (1971).
- [5] Laurent, P. J., Approximation uniforme de fonctions continues sur un compact avec contraintes de type inegalité, R. I. R. O., 1, 5, 81-95 (1967).
- [6] Lorentz, G. G., Zeller, K. L., Gleichmässige Approximation durch monotone Polynome, Math. Z., 109, 87-91 (1969).
- [7] Lorentz, G. G., Zeller, K. L., Monotone Approximation by algebraic polynomials, Trans. Amer. Math. Soc., 149, 1-18 (1970).
- [8] Lorentz, G. G., Monotone Approximation, Inequalities. III, 201-215, Academic Press, Inc. New York and London (1972).
- [9] Lorentz, R. A., Uniqueness of Best Approximation by Monotone Polynomials., J. Approx. Theory, 4, 4, 401-418 (1971).
- [10] Lorentz, R. A., Positive Approximation. B M B W G M D 49.
- [11] Rice, J. R., Approximation with convex constraints. J. SIAM, 11, 15-32 (1963).
- [12] Roulier, J. A., Monotone approximation of certain classes of functions. J. Approx Theory, 1, 3, 319-324 (1968).
- [13] Shisha, O., Monotone approximation. Pacific J. Math, 15, 667-671 (1965).
- [14] Taylor, G. D., Approximation by Functions Having Restricted Ranges, III J. Math. Anal. Appl., 27, 241-248 (1969).

Received 16, IX, 1971