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1 . 1. Introduction.

" In [14] an unified treatment of the theory of approximation by func-
having restricted ranges was developed by ¢. D. TAVLOR. A generali-
tion of this problem and other results were obtained in [5], [3].
Several authors have dealt with the problems of monotone approxima-
o1l - 0. sHISHA [13], 7. A. ROULIER [12], ¢. ¢. LORENTZ and K. L. ZELLER
6], [7], ¢. 6. LorENTZ [8], R. A. LORENTZ [9]. A
||' The paper [10] presents the problem of positive approximation, a
ombination of the theory of monotone approximation and the theory of
approximation with positive convex constraints of 3. ®. rice [11].
“,,‘_The aim of this paper is twofold : to indicate a new generalization of
-ll_egprobl.em of uniform approximation by functions having restricted ranges
and to give a result in a more general problem of positive approximation.

2. Basie definitions and mnotations

. Let 7 be a compact Hausdorff space and let C(7) denote the Banach
I_gace of all real-valued continuous functions defined on 7 with norm:

A ”f“ = max {lf(t)l, P s T}, feC ().

wh Let H — [¢1, ..., ¢,] be an n-dimensional Haar subspace of C(7),
“Hete the functions ¢y, ..., ¢, form a basis for H.
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Recall that an #-dimensional subspace H of C(7) is called a Haar
subspace if every function in H ~ {0} has at most # — 1 zeros in 7.
We shall fix away a couple (#, ) of extended real-valued functions :

w:T >R and v: 7T > R

subject to the following restrictions :
() {aT u)= —oc} =0
{taT:ult) = foo} =T,
i) {aT:0() = +oo} =0

taTlT:vt) = —oo} = T_,

but
may be nonempty,
but

may be nonempty

2

fil) T .eand T_, are open subsets of T,
{iv) u is continuous on 7" ~ T, and v is continuous on 7" ~ 7T_ ,
(v) e T:ul) >0} =T
Now let w be a linear operatot :
o C(T) - C(T)

and if f & C(T) we denote f, = w(f).

Then define the set of approximating functions:
T = {p & H:oll) < polt) = ult), L & T},

Definition 1. A function p° & H is said to be a best restrictive
approximation to f & C(T) provided :

If — 5% = inf {If — 2| p & H}.

The following terminology will be used in the statement of the results
on best restrictive approximation.

Definition 2. The operator w is said to be monoton if it satisfies
the condition :

(1) I JO) <), teT then f,() <g,l0), ta T
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Now fix f & C(T). Let p° & H and define the following critical point
sets :

vo ={aT:fi) —p°0) =If—2°I}

Yo ={taT:fty —p°t)= —IIf —2°II}

Yo ={t & T :po (t) = w(t)}

vo={&T: po(®) =)}

Yo=To Ut Ys=1 Ur Is =¥ U*o
o=+, UYs; Io=Ty UTy

3. Results on best restrictive approximation

In this section we shall ascertain that there is a complete analogy
between our problem and the problem of approximating a continuous func-
tion by functions having restricted ranges. By this we mean that for each
result which is valid for the Taylor problem, there is a corresponding result
valid for the new more general problem. In particular all our results reduce
to well known ones in the case when the operator o is the identity map
[14].

raporeM 1. If H is nonempty for the couple (u, v) then there exists
at least one element of best vestrictive approximation p° & H to f e C(T).

It follows immediately from the facts that H is a closed subset of a
finit dimensional subspace of C(7T) and:

inf {|If — pll, p € Hy = inf {||f —pll, p &H and ||p|| < 2/|/]I}-

THEOREM 2. If f & C(T) then the set of the elements of best restrictive
approximation in H to fis a convex set.
It is easy to prove:

Lemma 1. If Iy N\ Ty =20 and o is a monotone operator then p° &

= H is a best vestrictive approximation to f & C(T). ) ]
For the remainder of this section we assume that the function f & €(T)

is taken such that T O T’y = @ for all p° g H.

Lemma 2. If for a function p° a H there exists a function p < H
satisfying
2 b @) >0  for all ta v,
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(3) P () <0  for all LS yo
(4) Polt) >0  for all ! E o
(5) Polt) <O for all I E vy

then $° is not an clement of best vestrictive approximation to f < C(T).
The proof of this statement is immediate [5].
A first characterization theorem is a corolar of Theorem 8 from f7:

THEOREM 3. The element p° & H is a best vestrictive approximation

w | & C(T) if and only if for any element p & H there exists a point ' <
such that : o

(6) ) = p°(t)
or a point "' & yo such that:
7 P = p°@")

cing of v, by Iy and respectively vy by I'y. st
* Once again referring to the techniques of [5] we immediately obtain
the following: ' N '

Remark. If isa monotone operator the theorem 3 holds by repla-

THEOREM 4. Suppose that:
(8) w is momotonefoperator
(9) There exists at least one p & H such that:

v(t) < pot) <ult), t=T.
The element p° & H is a best restrictive approximation to [ & C(T) if and

only if there exist k poinis (k<<mn + 1) ¢, ...., ¢, n Ty (at least one tn )
and a functional of the form : : - :

D(p) = 2 wplt) + 2 o pult) P € C(T),

LET, LETT

such that .

(10) o) =0if pesH

(11) 0, >04f L, Ty and o, <0 if t; T

I Tis a compact subset of [a, b] containing at least # -+ 1 points we
find an analogous result with Theorem 3.2 from [14].
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rHEOREM 5. Let f & C(T), p° & H and suppose that « is a monotone
operatov. Then the following statements ave equivalent :

(12) p° is a best vestrictive approximation to f.
(13) The origin of Eucliden n-space belongs to the convex hull of

(E0F t eV, where E() = + 1 ift & Ty &) = —14ft &Tg and
= (oult), - 9alt)-

(14) There exists n - 1 distinct poinis ¢, < .... <tup1 m I satisfying

(8) = (— 1)+ (), 6 =2, ..., n+ L.

X

There may be get easy a uniqueness theorem and a strong unicity
theorem [2]:

THEOREM 6. If p° & H is a best restrictive approximation to f & C(T)
then p° 4s unique.

rHEOREM 7. Let p° & H be the best vestrictive approximation to fec(T).
T'hen theve exists a constant 8 > O such that for any p S H:

W —2ll = IIf — 2°ll + 3lip° — 2lI.

Remarks 1° An exemple of problem of restrictive uniform approxi-
mation is treated in [4].

2° The problem of restrictive uniform approximation may be stated
more  general using the idea of [3].

%. Statement of the probleme of partitional positive approximation

Tet T, Q. Qg ..., Q, be closed subsets not necessarily disjoint, of
a compact Haussor{f space S and let C(X) denote again the linear space
of all real-valued continuous functions defined on a compact Hausdorif
space X.

Tet o, &y «..., 0, be linear not necessarily bounded operators:

w;: C(Q

1

) > CQ), i=1,....,m

K3

and let H be a finit dimensional subspace of C(S).
Denote H o, the set of restrictions of all functions p & H to the sub-

set Qz=1,....,m) and

ﬁgi = {P = HQ,‘ : ]5@1.(3) _Z 0) s & QL}
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Then define the set of approximating functions :

H = Ho,

1=1

Tet
IfIl = max {{f(s)|, s & T}, for f & C(S).

Definiti on 3. The function p° & H is said to be an clement o
best partitional positive approximation to rsecs) i: "

f = p°ll = inf {||f — pl|, p = H}.

Remark. If T=0Q,=...=Q,=35 we obtain the problem
of positive approximation studied in [107].

Compactness and convexity arguments show that: if H =« @, for each
{‘E C(S) there exists at least one best partitional positive approxima-
ion,

) Next we define for p° g H and f & C(S) the following critical point
sets ;

Lo=1{saT:fls) —p°s)l = (If — p°II}.

'Yf) = {s Eg)i;p&i(s) =0} i=1,.... m,

=]

and we say that p° is a constraint interior element of H if and only if viis
nonempty for some <.

The following characterization theorem, of the Kolmogoroff type,

may be proved only if we assume that I has a constraint interior point.

_THEOREM 8. Let f & C(S) and p° & H with ||f — p°|| 0. Then p° o

& H is an clement of best partitional positive approximation to f if and only
if there is no element p < H for which :

(15) max {(fls) — p°(NA(S), s & Top < 0
and
(16) Pofs) <0, sy, i=1,.....m

[10]We omit the proof which is similar to the proof of the Theorem 3.1
_ The uniqueness of the element of best partitional positive approxima-
tion is an open question.
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