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Concerning a more general problem stated by p. TURAN (see in [2]),
% . sTRAUS has proved the following theorem (unpublished) :

Given any continwum X (= compact connected sel) in the Euchidean
plane B2, such that for some triangle A BC in the plane no three points A', B’, C’
in X form a triangle similay (o ABC, then X is a simple arc.

Trom this theorem in particular follows that if I is a closed arc, then
there exists a triangle A’B'C’ similar to ABC, which is inscribed in I’ in
the sense that 4’, B', C' &T.

We ask now about the existence of a triangle A'B'C’ inscribed in the
closed arc T', which has parallel sides with the sides of the triangle 4 BC
and the same orientation. This special case appears in some problems in
the geometry of convex sets (see our notes [1] and [2]). The answer in
general may be negative. In our note we solve this problem in the special
case when T is a closed arc of class C* and has additional conditions about
its tangent lines. From our theorem we derive a characterization of the
strictly convex closed arcs of the class Ch

Lemma 1. Let be Q the strip formed by the points (%, ) of the Eucli-
dean plane R* with a < x < b (@ < b). Denote by I and I"' two simpple arcs
of the class C* in Q, with disjoint inteviors, having the paramelric vepresen-
tations given by

¥ = ot), . % = £t
1 .t e 0, 1], and T .
y e y = 1)

and -suppose that ¢(0) = &(0) = a and o(1) = (1) = b. Suppose that 1
and 17 have a finite number of points in which the tangent is parallel to Oy

e [0, 17,
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and in the neighbourhood of which the arc is on the same side of the tangent
line. Then: !

(i) There exists a set of segments T'(t)T"'(t) with the endpoints T'(1) T
and T"(f) T, depending continuously on the pavameter t < [0, 1], such
that for any t the segment is parallel to Oy and T'(0) = (¢(0), $(0)), T'(1) =
= (3(1), (1) and_7"(0) = (£(0), 7(0)), T"(1) = (£(1), n(1)).

(ii) If T" 1" is arbitrary, then theve exists a point T" =T such
that T" = T'(t) and T"' = T"(t) for some t in [0, 1],

(iii) There exist neighbourhoods U’ and U of T'(0) and T"(0), such
that of T' TV N\ U and T" 1" (\ U" and T'T" is parallel to Oy, then
there exists a & such that T' = T'(t) and T" = T"'(t).

Proof. We proceed by induction on the number m of points of IV
and I'" (different from their endpoints), in which the tangent is parallel
to Oy and in the neighbourhood of which the arcs are on the same side
of the tangent lines. (The number of these points is obviously even.)

Suppose that m = 0. In this case the arcs I and I'' may be repre-
sented in the form

IV:9=f(x) and T": y = g(x).

Then the set of segments 7"(#)7"'(f) where tm:_ﬂ" and
R — i

T'(t) = (f(t(b—a)+a), Ho—a)+a), T"() = (g(Uo—a)+-a), b—a)+a),

satisfies all the conditions of the lemma.

Suppose that the lemma holds for m =< 2n and prove it for m = 2(n -+ 1).

Let be T{ & 1", the point in which the tangent is parallel to Oy and
has the minimal abscissa relative to all the points with this property in
the interior of I" and I'. Suppose that T} = (o(tf), U(#)) and let be T} =
= (o(&), $(¢#)), i =1, ..., B — 1 all the points with ¢/ < #;, and with the
property that the tangents to I' are parallel to Oy. Suppose that 7/ =
= (@(#), ¥(#)), 1=1="% — 1is a point with the maximal abscissa relative
to the set of points 77, 7 =1, ..., k — 1, (see Fig. 1). For i = k we shall
denote by #’ the minimal value of ¢/ with the property that Z(t/') = (t!).
PUtOTs” = (&), m(#]")). Then the segments T/T{’",¢ = 1, ..., k are parallel
to Oy.

Consider now the strip @ < x < o(¢}), and the part I'} of I' for 0 <
=1 =1 and the part I'/' of I'' for 0 << ¢’ = ¢. The number of points
on I’y and I'{ in which the tangents are parallel to Oy is = 2n, because
two such points, the point T, and 77, are eliminated (77 is eliminated
because # > and then T} g I'| and 7/is eliminated because it is an
endpoint of I'l.) By the induction hypothesis there exists then the set of
segments T7(¢)7"'(t) with the propeties (i), (i) and (iii) with respect to the
arcs I'{ and Iy’

By a similar way may be seen the existence of a set of segments
I'(#)T"(¢) with the properties (i), (i) and (iii) for the parts I'; of I for
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t] = ' =<t and T4 of T for &' 1" =< {;'. (Here we have ' < {{’, from
the definition of the points 7} and T}', because E(t:') << E(4).)

We may consider now the part I' of I and_I‘é’ of_ M for fp =1 = 1
and £’ =<1" =1 respectively, and apply the induction hypothesis for
'3 and T3 ' _ =

As a final step, by a simple joining of the obtained families of
segments T'(f)T"'({) we obtain a family of segments which completes the
proof of the assertion for m = 2(n - 1). This completes the proof of the
lemma.

ranoreM 1. Lel be ABC a triangle in the Euclidean plane RE. Suppose
that T is a simple closed arc of class C* in W, which has the properly thal
for at least one of the sides of ABC there is a finite mumber of points of
T, in which the tangents are parallel to the respective side and in the neigh-
bourhood of which the arc is on the same side of the tangent line. Then
theve exists a triangle A'B'C’ with sides pavallel to sides of ABC and of H;Je
same ovientation as ABC, which is inscribed in I', in the sense that A',
B, C' el

5 — Revoe d'analyse numérigue et de la théorig de l'approximation, tome 1, 1972,
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Proof. Suppose that BC is the side for which there are a finite number
of points in which I' has tangents parallel to BC and in the neighbourhood
of which the arc is on the same side of the tangent line, and let BC he
parallel to Oy. Let be @ and b, @ < b the minimum, respective the maximum
ol abscissas of the points in which I' has tangents parallel to Oy. Denote
by A’ and A" the lines ¥ = a, respectively x = b and let he PP sA'N T
and P" & A" () I. The points P’ and P divide the arc I in two arcs:
I and T

Consider now the triangle A BC and let be D the foot of the perpen-
dicular from 4 to the supporting line of BC. Then D = ¢B + (1 — ¢)C
for a given number ¢. Denote by » the vector 4 — D. Then A4 = D |- 7.

Tet be T'T" a segment parallel to BC. The triangle 77'T" having
parallel sides with the gides of ABC and the same orientation, may be
determined by putting
(1) T=qT' + (1 — 7" 220,

f - 1BC|

We proceed now to construction of an arc ¢ in the following way:

According to Lemma 1, the segment 77(0)T"(0) (= P’) can be moved
continuously to T'(1)T"(1) (= P') such that all the intermediate positions
are segments 77" parallel to Oy, and T' &I", 7" & I'’. Consider this
family of segments 7’7" depending continuously on the parameter { &
& [0, 1], i.e. suppose that the endpoints 7" and T" depends continuously
on {. Then by (1), T depends continuously on ¢ Denote

v = {T{):t< 0 1]

We have obviously v(0) = 7(0) = P’ and (1) = T(1) = P".

According to the theorem of Jordan, I' determines two domains of
B2, which we will call the ,,inside” and the ,,outside” of I'. In what follows
we shall prove that there exists a value £, in (0,1) such that 7'(¢,) is inside
and a value ¢4 in (0,1) such that T(f,) is outside I'.

We observe that from the condition of the theorem it follows that
P’ is an isolated point with the property that the tangent to I' is parallel
to Oy. Let be T’ a point on 1" and let be 7" the point on I with mini-
mal value of the parameter ¢’ such that T'7T" is parallel to Oy. Let be
TR and T'R" the segments parallel to CA and BA respectively. Letting
I" — P’, the segment T'T" tends to P’'. From the property that 1" is of
class €1, it follows that the parallel line in P’ to B4 will intersect ' in
a point. Denote by Q' the nearest point to P’ with this property. Then
the open segment P'(Q)’ will be inside I". Similarly, let P'Q’ be the segment
with the same property, parallel to CA. Let be T| a point on I'" and
denote by Ti’ the point on I'" with minimal value of the parameter ¢,
such that T{T{’is parallel te Oy. Suppose that the abscissa of 71 = mini-
mum of the abscissas of Q' and Q”'. Then T77{" will intersect P'Q’ in R’
eid P'Q” in R”. Because I' is a simple closed are, for T sufficiently near
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to P’ the triangle R'P'R"” will be inside I'. Consider a point S inside this
triangle and let T; be the intersection point of I and the parallel line in
S to BA having the minimal value of the parameter #, and respectively,
let 7" be the intersection of I'"” and the parallel line in S to CA, with the
minimum value of the parameter #”. Suppose that the abscissa of 7' <
than the abscissa of Ty". Put 7' = T; and denote by T'T" the segment
parallel to Oy with 7" & I"”” being the point with the minimal value of the
parameter ¢'* with this property (see Fig. 2). 7" will be obviously ,,above”
the line T§'S, and therefore the point T defined by (1) will be inside
the triangle R'P'R" and therefore T is also inside I'. According (iii) in Lemma
1 it follows that for 77 and T’ sufficiently near to P’, there exists a value
ly of the parameter ¢ such that 7" = T'(¢,), T" = T"(t,) and therefore
T = T(t,)-

Denote by A" and A" the supporting lines of the convex hull Co (')
of I', parallel with BA and CA respectively, such that their intersection
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point U has the abscissa > b (see Fig. 3). Denote by U’ the point of
' on A’ nearest to U and by U"’ the point of I on A’’ nearest to U. Suppose
that the abscissa of U’ = than the abscissa of U " Put U = T' and let
be T"' a point of I’ such that T'T" is parallel to Oy and such that T'T"
oocurs in the construction of y (see (ii) in Lemma 1), i.e., there exists a
parameter {; such that 7" = T'(t,) and T" = T"(t,). The point 7" = T(t)
defined by (1) will be on T'U, and because the segment 7"U is outside
T (excepting ), T(t) will be outside I'.

Tt follows that the open arc y will intersect ', according the theorem
of Jordan. Denote by T an intersection point. Then from the definition
of v it will follow that there exist the points 7" &T" and 7" & T such
that the triangle T7'T" has the required property. This completes the
proof of the theorem.
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fig. 4.

Remark A special interest presents for us the case when ' in
Theorem 1 is a convex curve. Then an other proof may be given, which
malkes use of Brouwer’s fixed point theorem, In this case our theorem
follows from the more general Theorem 1 in the paper [1] (or [2]).

curoreym 2. Let be ABC a triangle in the Euclidean plane B> Suppose
that 1 is a strictly convex, closed arc of class C*. Then there exists a single
triangle A,B,C; with sides parallel to sides of ABC and of the same orien-
tation as ABC, and which is inscribed in T, in the sense that Ay, By, c,el.

Proof. The existence of a triangle A,B,C, with the required properties
follows from the Theorem 1. It remains to show the unicity.

Suppose that 4,5,C, and 4,B,C, are two triangles with parallel sides
and with the same orientation. Then one of their vertices is contained in
the convex hull of the other five. Consider the supporting lines of 4,5,
and 4,B,. Because A,B,C, and A,B,C, have the same orientation, one of
these lines, say 4,B; (1 =1 or 2) determines a closed halfplane which
contains both triangles. By the same reasoning there is a jand a k (=1
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or 2and & = 1 or 2) such that the supporting line of B;C; and the supportin g
line of C,4, have the same property. Then two indices of %, 7, k coincides,
say ¢ = 7 = 1 and one of the possible situations is that in Fig. 4. It follows
that B, is in the convex hull of the vertices 1 By, Cy, Ay, Cy. Tt is easy
to see that in any other relative positions of A B\Cy and A,B,C, a similar
conclusion holds.

If we suppose now that 4,B,C, and AyB,yC, are two triangles inscribed
in I' with sides parallel to the sides of ABC and having the same orientation,
fhen we get a contradiction with the hypothesis that T" is strictly convex.

THEOREM 3. If T' is a simple closed arc of class C' with the property
that for any divection it has a finite number of tangents parallel to this divec-
tion, and for any triangle ABC theve exists a single triangle A,B,C, inscribed
in U having his sides pavallel to the sides of ABC and the same orientation
as ABC, then T is a strictly convex arc.

Proof. Suppose that I' is not strictly convex. Then there exists a seg-
ment which intersects I' in the points Py, P, and P,. Without loss of
generality we may suppose that we have the situation in Fig. 5. Because
Py, P,, Py are isolated intersection points of I' and P, P, (this follows
from the hypothesis that I has a finite number of pointsin which the tangent
to I' is parallel to P,P;), we may suppose that P,P; is not tangent to
I' in the point P,. Then there exists a segment P, which is inside the
closed arc Q formed by the segment PP, and the part T'y of I' from
P, to P, (see Fig. 5). Let be P,R parallel to P40 and R in the segment
P,Q. Then R is inside the closed arc Q. Denote now by P a farthest point
from P,P; on I',. Then the tangent line in P is parallel to P, P,. Moving
now the segment 777" continuously and parallel to PPy, from P,P,
to P (see Lemma 1), we may construct with the same procedure as in
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9
iang "7 with T, T', T on I'y with
f of Theorem 1 a triangle T7'7" wi , T, T Y
E}ﬁ: Eirc{)eos 1;)aralle1 to the sides of QP,P, This contradiction proves the
theorem.
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