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CERALIZED JUXTAPOLYNOMIALS WITH SOME
b APPLICATIONS
by
I. MARUSCIAC
(Cluj)

§ 1. Introduetion

‘h'e- set of generalized polynomials with respect to the system f = (f,)7:

p(2) = p(f; 2) = arfilz) + ... -+ a,f,(2).

mes we shall omit the word ,,generalized’’ and so instead of saying
lized polynomial” we shall simply say ,,polynomial”,

b Definition 1.1. A4 polynomial = € P(f) is called juxtapolynomial
O F on K if there is no polynomial p < P(f), p == n such that

Fiz) —n(f;2) =0, z. € K= p(f; 2) = =(f; 2),

L(z) —=(f;2) = 0, 2 € K= |F(z) — p(f; 2)| < |F(z) — =(f; 2)].

b -‘?{e; igff(f generalized juxtapolynomials to F on K will be denoted
Vhen f,(z) = 21~*, then we obtain the set ¢}, (K, F) of algebraic juxta-

lials of degree #—1 to the function £ on K , defined by MoTZKIN, T. 8.
ISH, 7.1, [14].

. The Juxtapolynomials to a continuous function F are a special case
i€ generalized infrapolynomials defined by the author [10].
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i o rectifiable arc, and © & DAf) ‘is 1:.]1& best approximation
| norm Ly(K), then © & LK ; F’f) t K= [0, 1] and
tﬂF 2 sting example is the following. Le = § te (f,)"
oo intere ntinuous functions on [0, 1]. Moreover, if = P
valqegj';iem on [0, 1], then / & PUf) being Fourier's poly
ma :

+ on [0, 1] of the order n, i.e.

If F(z) = 2", and f, = 22— k — 1,2, ..., %, then
IE) = {# — x(9)lr & ¢, (K ; 2"}

is the set of infrapolynomials of degree # on K, defined in 1998
TEJER, L. [1]. Tal
Remark 1. If A, B K are two compact sets and 4 —~
from p S J(4; F;[f) it follows P & J(B; F;f), because if there
polynomial of A(f) satisfying (1.2)—(1.3) on A, then obviously
no stich a polynomial satisfying the same conditions on B.
The purpose of this paper is to point out some general pr
this generalized juxtapolynomials and also to give certain appli 5 9 %
in approximation theory. f a, = SF(x) Wdr, k=12,
Among the best known juxtapolynomials to a function F are 4 g 0
which approximate F in a given norm. We are going to prese
examples. ‘
1" reg(K;F;f), and

Hf; x) = afi(®) + -0+ aufa(%),

(= Q([O, 11; F; f). =W : then obviously ¢ is the
f n P = 0‘ 1], I'{:ﬁ»)_—"{(flx x)’ T !
aantymomial 0o F on' 0, 11, If Fx) 2 f(f; 2, * ) o e

dsts a point %, & [0, 1] on which F(x) — z(f:o-’”ul T f) Then
ffv{u let us suppose on the contrary that &g ([0, 1], I; /).

xists a polynomial

o(f, %) = bufu(%) + ... + buful%), (b, = b - iby)

W) =F() —n(f;2) 20, 2 & K,

then 7 is a polynom of best approximation to F on K with respect to i}
norm

[26(2)].

1 ;
el male (1.2) —(1.3). But from (1.8) we obtain

2° The polinomial = < P(f) of best approximation to F on Ki IF(x0) — q(f; %0)| < |F(x0) — U5 %)

uniform norm, i.e.

by continuity of F, f,, k=1, 2, ..., n, we have
max [F(z) —=(f;2)| = inf max [F(z) — p(f; 2)|
rER pePu) €K . 1 % 1 " .
L@ - S unmrar =\ F@ — 3 b <
is a juxtapolynomial to F on K, too. o ) ~ p =

Indeed, if we suppose that there exists a polynomial p & P(f),
satisfying the conditions (1.2)—(1.3), then we have

]

1
< S [F(x) — Y a,ful) ]2 dx,
max [F(2) — p(f; 2)| < max |[F(z) — =(f; )], 5 *l
€K seK ; ier’ fficient
| contradicts the well known property of the Fouriet’s coe

i.e. a contradiction. of the function F. Hence { = g([0, 11; F, /).

Similarly we can verify that : N
3°If Z, = {z}{ and = = P(f) minimizes the weighted mea-_ll

[Zpi|F(z;) — PUf 5 2)

§ 2. Basice properties

Thr=1, p e P,

. . | . . ls
We are going to give some general properties of the juxtapolynomia >
i‘g'iven continuous function on K, which do not coincide with the func
1 ol any point of K.

where

=0, Zp, = 1, then = g HZ,: F; f)
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Thus, let S K F; 1 fixed jux i 3
ey s, P =g f) be a fixed Juxtapolynomial to F on K,

Fz) —p(f;2) =2 0, z = K.

We consider the continuous function

Z(z) = —— 28 o
£7(z) — pUf, 2) q ¢(f);

which maps the compact set K onto a compact set K, of the plane (2
Let X, be the convex hull of K, and P ! @ plane (7).

= m Iq‘
€

THEOREM 2.1. A polynomial p €D (f), p(f;2) =4 Fl2), z = K, is a
Juxtapolynomial to F, i.e. PeEg (K; F; if and ly if % i
origin O, of the plane Z). Al e PRA K comtainsthe

Proof. We shall prove the equivalent statement: there exists g polytomial

7 & P(f), g = p, satisfying (1.2)—(1.3) if a 1f g is
AR bt ying (1.2)—(1.3), if and only if there exists 7 P

¥ zZ*
Indeed, if such a polynomial ¢ € P(f) exists, ie. the conditions
(1.2)—(L.3) are satisfied, then for r = ¢— p and Z() = A
we have =2l

iz llz'Mijp(I' :)—1 _ (8 — qlf5 )|
7E) — P/ 2) ()~ pif: )]
fllf;ir%jlé 7{/\} cl'={Z: 1z -1 < I} and hence %, TI'. So it follows

Y_‘tC‘onvgersely, if for some r & P(f), X, does not contain Oy, then there
exists a line L trough O, which does not tersect ¥,. Thus there exists
a complex number a == (), such that

Z — a] =< lal, V¥ze K.

This inequality implies that 2 — TR

V=17 1= I}, and hence that

= — lies in the disk
all(z) — p(f; 2)]
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verifies de conditions (1.2)—(1.3), because we have

:{1_ " 2 =1—Z <1

'F(z) —-4q(f: %) ;
F ; all@z) — pif; )]

) — 49U %)
(z) — (/3 %)

The Theorem 2.1 has the following counterpart in Fuclidian space
of 2m — dimensions.

Lemma 2.1 Let I be a compact set and p < P(f), p(f;2) = F(2),
2 & K. Let E be the corvesponding 2n — dimensional set whose points are
expressed in the n complex valued coovdinates T = (G, G, ..., C,), where

£it2)
=48 ek
Y -9

Then p < G ; F; f) if and only if the ovigin of R®* lies in the convex
hull & of E. _ _
Proof. Using the notation of Theorem 2.1, we may write

(21) 7 — r(f; 2) L cifile) + - 4 enful?) L ClCl SEA il C“C”.
F(z) — p(f3 2) F(z) — plf:2)

Now, by Theorem 2.1 it follows that p & G(K ; F; f) ifand only if 0, & X
Thus from (2.1) it follows that p & (J(K; F; f) if and only if the origin o
IR** i contained in the convex hull & of F.

THEOREM 2.2. A4 polynomial p & P(f), p(f;2) =+ F(z), z &K 15 a
Juxtapolynomial to F on K, ve. p & (K ; F;f), if and only if there exist
an tnteger m with 1 << m << 2n + 1, a set of posttive constants 3; and a set

of m points Z,, = {z}}i' C K, such that

ne

(2.2) o @ prices 1)

j=1 Fz) — plf; 7))

IfpaqK;F;f) then p & J(Z,,; T; f).

—0, Vis{l,2 ..., m

Proof. By Lemma 2.1, p & P(f), p(f;2) =£F(2), 2 & K is a juxta-
polynomial to ¥ on K if and only if the origin O of R* is contained in
&. Hence the origin O is the centroid of m points ¢; & E, corresponding
tom points z; & K, withm <C 2n - 1. That is we may find positive constants
d; such that

Rl

Z 8] fk(z;l')

=0, Vks{l,2 ..., 0.
j=1 " [(z) — PS5 25)

ie. (2.2) is satisfied.
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The last part of Theorem 2.2 follows from the fact that O, & # = (. L,
7€ (P
where , is the convex hull of M,, M = Z,, and so by Theorem 2.1 it
follows that p & (J(Z,,; F; f).

"

Corollary 2.1 Let K be a compact set containing at least n -+ 1

points and f— (f,)Y is a Tchebycheff system on K. Then the number m,
wn Theorem 2.2, satisfies the inequalitics.

# 4+ 1=<m=2n - 1.

Moreover, if I, f = (f )i arve real valued functions on K, thew m — n + 1.
Proof. 1f m < n, then since f is T'chebycheff system on K, we can find
a polynomial ¢ € P(f) such that

o2 =r@), Ve rz,

ie. ¢ satisfies (1.2)—(1.8) on K, hence pe (2, I, f) therefore
P & I ; F; f), contradiction.

Definition 2.1. We say that M C K is a characteristic sel of
the juxtapolynomial p < (J(K; F;f) if p = (M ; I; f) and for any
M, C M, My=M, p e (M, Ff.

By Theorem 2.2 it follows that each juxtapolynomial pegK;F; f),
P(f; 1) £ F(2), z € K has at least one finite characteristic set M but it
may be not unique.

From Definition 2.1 and Theorem 2.2 it follows:

Corollary 22 Let Z, be a characteristic set of pE UK, F; f)
and p(f; z) = F(2), 2 & Z,. Then there exists the positive numbers S; such
that (2.2) are satisfied.

We saw in § 1 that each polynomial p & P(f) of best approximation
to F on K is a juxtapolynomial to F on K, too. We can characterize
the juxtapolynomials to F on K which are at the same time a polynomial
of best approximation to F on K.

THEOREM 2.3. A juxtapolynomial p (K ; F;f), p(f;2) = I'(z),
z & K s a polynomial of best approximation to F on K if and only if on
any its characteristic set Z,, = {z;}\" we have

2% F() ~ plf; )l = max [F() — p(f:2)), Vi€ (L2 ..., m).

Proof. It peg(K ; F; f), p(f; 2) == F(2), z&K, then from Theorem 2.2
it follows that p possess at least a characteristic set Z,, — 23 (1 == m <

= 27 + 1) on which (2.2) are satisfied. Now if moreover on Z,, the equalities
(2.3) are satisfied, then (2.2) may be written under the form

w

(2.4) 2 dex(i0)fy(%) = 0, V{0, 1, ..., "}
j=1
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[F i—1,92, ..., m. DBy the well-known
ner 0; = arg .{'Z'-—'(f,,d;)], 1: ’ A o . . :
;;}_},S[l}??'s ;:heo‘?:ear’nL[l(Sj)p.%Q'?] it follows, that p is a polynomial of best

VLI 2 ) ¥
approximation to F on K,
Conversely, if p € fp(fﬂ
on K in the uniform norm, then :
7, = {z})' be a characteristic set of p. We shall show that
m

j i ‘oximation to F
is a polynomial of best approxima
) i11 iS);L juxtapolynom to I' on K, too. Let

23) [l — pi )] = o = max [FG) — p(f5 AL Vi€ 2 m-

Let us suppose on the contrary that, for instance, [p(z,) —F(z,)| < ¢
4 Suppo

We set Zmwo1 = Zp — {Zu}- I .
By Definition 2.1 of the characteristic set it

a polynomial g & P(f) such that
Flzy) — qlf; 2| < \F(z) — p(F32)l Vel oom— 1
But then for ¢ & 10, 1[ sufficiently small the polynomial

g=t+ 1103 P

follows that there exists

satisfies the inequality
Fle) — alfsm)l <o Vie L2 ...om

which contradicts the fact that p is a polynomial of best approximation
to f on K.

§ 3. Matrix charaeterization of (he juxtapolynomials

As we saw in Theorem 2.2, each .juxtapolynomleto a\hc?lﬁé";;{meb
function on K is characterized by a finite 511133& Z"’f , ﬁu?et of‘ tre
S Zu; F 1 f). The problem is to characterize sucl a &?h]br Cteriza:ti(n'l
the czlge of polynomials of best approximation sug 1 EII. Lt }?eacase " e
was given by 1EBEDEV N. A, and RYZAKOV, T, JU. E 1. ‘:inns e Civon
generalized juxtapolynomials some similar charactenza ¢
by author [13].

Definition 3.1 Let p & (f(K; I [f) be any j-.t-mtq;boiyﬂo.mm% lo
Fon K. A subset Z,, = {z}i’ C K is called lo be a ¢} — szez (juxta set) of p,
if on Z, the conditions of the Theorem 2.2, are sai‘es:;{f.ec. .

Let1 M = (ay) be a matrix of t}]e type (m, n), w “ﬁre‘f,ﬁ e C.
that the vector = (Ay, ..., A,) 18 orthogonal to M 1

Mx =0
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1Al vector & = (3, ..., },) is called to be strictly different from zero
(strictly positive) if

Ve {1,2 ..., m} =20, >0).

.~ Definition 32 The matvix M is called H-matrix (H P-matrix),
if theve exists a vector ) strictly different from zero (strictly positive) orthogo-
nal to M.

Let Z,, = {2;}1" be an arbitrary subset of K. We denote by
fl(zl) . fl(zm)]
M(fii Z3) =l v sy, on |
ﬁl(zl) o fu(zm)J

Sz) - fulz,)

/i . . fn(zl) s fn(zm)
M2 = Py [ R

LjT,,(zl) o

ﬁt (zﬂl) j

THEOREM 3.1. A polynomial = & P(f) for which

W) =Fle) —n(f;2) =0, s & K

is a juxtapolynomial to F on K if and only if theve exists a subsel 7 — {21

C K(1 =m=72n+ 1) of distinct points, such that the matrix M{(f};lZc;
18 a H — matrix and there exists a vector ) — (M ooy N, strictly d@ffﬁfgzié
from zevo orthogonal to M(f; Z,) for which '

’

arg (W) = arg (MW)), V; & {1, 2, ..., m}

where W; = W(z;).
. Proof. Necessity. Let n & P(f) be a juxtapolynomial to F on K, for
which W(z) =2 0, z & K. Then by Theorem 2.2, there exist a subset Z, =

= {1 C K (1 < m < 2n + 1) of distinct points, and the positive numbers
8j, such that (2.2) are satisfied.

But the system (2.2) is equivalent to the following

m

(3.1) 5> Wil =0, VEe{l,?, ... n}.

oy —=a

9 GENERALIZEL JUXTAPOLYNOMIALS 8]_
Putting
3 157
3.2 = :
(5.2 T

we are led to the further system:

wm

D0z =0, Vke{l,2, ..., 1}
i=1

where all 2; == 0. Therefore the matrix M(f; Z,) is a H -— matrix. From
(3.2) we obtain

Wi >0, Yie{l,2 ..., m,
hence
arg (W) =0, Vie{l,?2 ..., m}.
Sufficiency. Letussuppose that for Z,, < K the matrix M(f; Z,)

is a H — matrix, W, =20, j = 1,2, ..., m, and there exists a vector A
strictly different from zero orthogonal to M(f; Z,) such that

"

(3.3) Sonflz) =0, Ves{1,2, ..., n},
j=1

arg (W, W;) = arg \LW1), V7 € {2 ..., m}

Putting

we have
2 = 8 W;ex (10), Vi {12, ..., m}
and replacing in (3.3) we obtain

"

j;stjew flz) =0, Ve & {1,2, ..., #}

G — Revue d'analyse numérique et de la théorie de I'approximation, tome 1, 1972.
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whence

K12

SWifus) =0, Ve e {1,2, ..., n)

=1
and by Theorem 2.2 it follows that = e (J(K ; F; f).

Corollary 31 Let Z,={z}))' 1 <m<2u-+1) be a subset of
distinct points of K. If the matvix M(f; Z,) is a H — matrix, then there
exists a continuous function F: K — C, such that w fi20=0 26K, is a
Juxtapolynomial to F on K.

Proof. Let Z,, C K be an arbitrary subset of K such that M(f; Z,)
is a H — matrix. Then A = (%, ..., %,) being a vector strictly different
from zero orthogonal to M(f;Z,) the relations (3.3) hold. We counsider
a continuous function F: K — C satisfying the conditions

F(z) = ])ﬁ], Viel{l,2 ...,m

) .

(Such a function, may be, for instance, Lagrange’s interpolatory polyno-
mial of degree m -— 1). Then the function F and the zero-polynomial =,
satisfies the conditions of the Theorem 3.1, and therefore nye¢f (K ; I; f)

Corollary 32 Let Z, (1=m="2n -+ 1) be an arbitrary subset
of K and p & (P(f) a given generalized polynomial. If M(f; Z,) is a H —
matrix, then there exisls a continuous function I: K — C such that p
& (J(K; F;f).

Proof. If M(f; Z,) is a H — matrix then there exists a vector x =
= (Ay, ..., A,) strictly different from zero orthogonal to M(f; Z,). We
consider a continuous function F: K — C satisfying the conditions :

(3.4) F(z) = plf; ) + '7’—1’ Vie (1,2 ..., m
3
Yrom (3.4), we have

W, =F(z) — p(f; %) =220, Wie (1,2, ..., m

v
and

arg (W) = arg (W), Vi e {1,2, ..., m}.

Therefore the polynomial p & P (f) and the function F satisfy the
conditions of Theorem 3.1, hence p & J(K ; F; f).
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- pHEOREM 3.2. Let Z,, = {&}y (1=m =<2n + 1) be a subset of dis-
tinct points of K and = & (K F ; f) such that :

Wi = W) =0, V2 € Z,,

7., is a characteristic set for m if and only if the matrix M(F; Z,) 15
a HP — matrix of the rank m — 1, where

Z

F = (Fy,Fy ..., F,), Fia) = WEf(2), k=12, ..., n

Proof. Necessity. Iet Z,, be a characteristic set of © & (UK ; I; /).
Then by Corollary 2.2, there exist the positive numbers 3; such that we
have

w

(3.5) > 5 Wifule) =0, Vh&{L2 ... m.

But then we have also:

i

(3.6) S 5 Wif, () =0, Yee{l,2, ..., 0}

i=1

iti S =(8y, ..., 8,)

By (3.5), (3.6) it is clear that the positive vector. (81, .

is ortg’og(ona)l to the matrix M,(F,; Z,). Hence M (Fy; Z,)isa HP —
matrix.

Obviously
y = rank M(F,; Z,)=<m — 1

If we suppose that 7 < m — 1, then from a LEBEDEV and RYZAKOV'S
result [6, p. Iji}O] it follows that M ,,(If',,; Z,,) possesses a I:] P /} smlplelz1 C&l};
ponent, i.e. there exists a subset Z, = {3t C 2 ./1, = Ly, SUC . ;
M(F,,Zy) isa HP — matrix, too. Therefore there exists a positive vector
g (‘djl, cer @) orthogonal to M, (F,; Z,). In special, we have

1) —
di, Wi, folz) =0, Vhe{l,2, ...«
1

=

But from Theorem 2.2 it follows that = & ¢ (£, 1; ; f) which contradicts
he assumption that Z, is a characteristic set of . i
the %u f fE; ciency. Assume that M(F, Z,) is a I—{P — matrix 30[
the rank m — 1. Then there exists a positive vector ¢ = (84, e | -
orthogonal to M (F,;Z,), i.e. (3.5) and (3.6) arc satisfied. Hence = &
& (Zuw: T ).
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If we stuuppose th Co1 t]- v th t 7/ 1 t l - t 1 ~t t f
. pl SE€ 011 e contra S a 4 S not a character STIC set o1 7t
" < i
et P { f];}l C 2 w Hp ,/ /m a C N

But then from the necessit ;
: y of Theor 3. : , o
is o P — saakchr and em 3.2 it follows that M (F_; Zy)

rank M(F,_, Z,) = p—1<m— 1,

contradiction. Therefore Z,, is a characteristic set of .

caﬂ!etji_);fl l.l'ltio n 3.3. The set Z, = [z} of distinct points of K is

f)ﬁ* K fma;, -:g J;ziﬁrzc;czmcﬂmﬂfist;o} frJ?‘( I({j if there exist a comlinuous function F

ot - Juxeapoiynomiar ped) (K5 F; f), such th L e

Se G{V P and for which W(z) -_—/f«‘(z) » p(f} z; 4l Oat ?Zéi,f a characteyistic
e are going to give ; —_ T A Ll “wm

teristic subsegt ong. give a theorem characterizing the f — juxtacharac-

;:‘JU'E-"H.;.E‘I_IO?O}}EA} }iﬂﬁh {,fj’f 2.;;,;; ;f{zj}’; (: 5_}: " % 2n 4 1) a subset of distinct

. This sel Z,, i — guxtacharacteristic set for I © f

é: %(f; 7y i n 15 ¢ oy ¢ set for K if and only if .
were exists a vector strictly different

orthogonal to M(f;Z,) for which () APy SR

) ey 2 ."' 1 X X P/ "

i) FoZp) f ch the (2n, m) type matrix M(f; %; Z,) =

Ar, .

S fiz), =12 ..., n
[l
[l
7‘k

fiz), i=n41,.. . %

15 0..}1;[13./— matrix of the rank m — 1.

voof. Necessity. Assume that Z,, = {z;}¥ i
o ) As L =140 C K (A==m=2n 4 1) is
i ‘;m—fctguxt%charalsterlstlc set for K. Then by Definition 3.3 ‘cher_le~ el;ist
a tton £ continuous on K and a juxtapol i AN
for which Z,, is a characteristic set an({ PO RS F, J

™(f;5) = Fz), Via{l, 2 ..., m.

By Theorem 3.2, M (F,; Z,) is a HP — matri F Ll n
But then M(f, 2,) i ol " lT’lr;I),tl‘iX. matrix of the rank m — 1.
Let us set

No=W;=F@) —={f;z), j=12 ... m

Let § = (8, ..., §,) be a positive vector orthogonal to MF,: Z,). From

(3.5), (3.6) it follows that the positive vector d — (dy, ..., d,), where
dj = 8;|W,]

is orthogonal to M(f; »; Z,).
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Therefore M(f; %; Z,) is a HP — matrix. The rank of M(f; n; Z,)

is m — 1, because this matrix is obtained from M (F.; Z,), multiplying

its columns by different from zero factors.
~Sufficiency. If the vector A satisfies the conditions of theorem

then {rom Corollary 3.1, it follows that there exists a continuous function
F: K — C such that mo(f; 2) = 0, z € K is a juxtapolynomial to F on K.
But in this case, by the definition of the matrix M(f; »; Z,) and by the
relations :

Fe) =2, vie,2 . ...m

J
it follows
Mc(F-n: ; Zm) . M(F’ A Zm)'

The conditions of Theorem 3.1 being satisfied, the subset Z,, is a
characteristic set of the juxtapolynomial m, to F on K. Therefore Z,

is a f-juxtacharacteristic of K.
Tet us next consider the pointsets of the real axis. Thus, let A be

a compact real set and F, f;, kb = 1, 2, ..., n, continuous on A real valued
functions. If X,, = {#}% C 4, then obviously

rank M (f; X,,) = rank M(f; X,,).

Hence, by Theorem 3.2, we have
Corollary 83. Let X, ={x}2 (1==m=mn-+1) be a subsel of

distinct points of A and
w(f3 %) = GAM® + oo+ @)
a juxtapolynomial to F on A such that
W; = F(x) — n(f; %) =20, Vi {1, 2, ..., m}.
X. s a characteristic set of m & ¢} (A ; F;f) if and only if M(F.; X,) s

« 'HP — matrix of the rank m — 1.

Similarly, by Theorem 3.3, we obtain

Corollary 3.4. A subset X, = {xj7t C A(l=m=mn -+ 1) i a
f-juxtacharacteristic set of A if and only if the matviz M (f; X,)is a H-matriz

and
rank M(f; X,,) =m — L.

Remark 3.1. All results of this paragraph were established in the

case where the juxtapolynomials = & @ (f) to F on K do mnot coincide
with the function F on K. This restriction is not essential. It is possible
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to give similar results also in the casc inci i i

2 c;rtaiu e Kas.[(i 2vx]1here T co1n01‘des with the function
£t us suppose that the functions F fuh Bl=11;x2

cml a (1091;,1111 containing the compact K and let fP,( f" 6Uf)b%e ’Slrg gﬁ%?iﬁ

polynomials p & @ (f) satisfying on U, — {u}], the conditions

(3.7) PO w) =F® (), k=0,1,2, . L7y t=1,2 s

>

. o, ..
Where 7y, #,, ..., 7, are integers satisfying the conditions

7’:71-’_72_‘—-"—,_73) lgﬂ’—f—Sé%

Definition 3.4. 4 pol ' '
1 4. ynomial p < P (f) is called v 4 s — ;
tevpolatory juxtapol ) ; el R i
st ys c]ztisﬁ £Z . ynomial to F on K if p < () (K; F; f) and the conditions
We denote by 7, . (K:. : F: i
tUIYI].{uXtaP()]ynomizaé; t(o F 0;1 ’K.,f) the P au et i erpola-
L ¥ + s = u, then obviously, the set K;U ;F: i
IIEa%ra_ngOe — Hermitte's interpo]zlltory polygrfnbnﬂfialé to I }OJI? Eﬁgtiiﬁitso illjy
. (K_'“Lf 3 If“ 7)?3 C%lllfilia zj; ;—_ (/i) is Ia Tchebycheff = system on K, then
po]ynom?gil A by a single plynomial-Tagrange’s interpolatory
It is clear that for 7 -+ § = 0 we obtai i
d ; = ain 0 — int i
nonnétcl)i to f? ﬂcm K x;rluch coincid with the juxta;&;;%ﬁ:?ﬂgu; tz:)}])loljjg
e of the results givenin § 2 and §3 for the j ni ;
on K, can be extended to the int Rt e (T
on K, preinterpolat i ials [
Thus Theorem 2.2 has the following anallc))gouso.ry Ihrtepoimomisle: il

THEOREM 34. If p & (J, (K ;U F: ; &) =t
ﬁ:;d 1{;:}&8?’8 exists an closed subset C e K;,f}:;g}g};}z;g :fbi I’G‘(z&;j ?CI-%[? KI_*‘_%}
nu;?zberf%;::;ffk m)% _S;:—_”i %35(3% t}— r — s) + 1) points z o IE';_, ;fhes}"msz',ds'vé
g W suc}i tkat’ e complex numbers Ay b=0,1; ... i,

f]-

3.8 b .f (Z.) s R .
(3.8) ZSJL]——I—EE in g)(%)zo’ V/ca{1,2,...,n}

=1 " WizH)  =1i=o

If p s o i 'sfi
Nk {2;15’1”' PA(f; W) satisfies (3.8) then P EGs(Z,; Ui F5 ) where
When

bt =0
(3.8) becomes :

"

3.9 : NGRS
(3.9) gsjw()+;Aifk(ui):0; Vke{l,Z,...,n}

Zj
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15

Therefore, a polynomial p & P (f) wich satisfies the conditions

(3.10) P(f;u) = Fluw),

is a s — preinterpolatory polynomial on K if and only if there exists a

subset Z,, K such that (3.9) are satisfied. :
Let g=N (1=g="m) be given. We say that the vector A =
= (Mg, ..., A,) 18 a ¢ — vector strictly different from zero (¢ — vector

positive) if

vie(l,2 ... 5

X, 20, (3, >0), Yk € {1,2, ..., q.

Definition 3.5 4 matrix M of type (n, m) is called Hg — matrix
(HP, — matrix) if there exists a q — wvector strictly different from zero
(g — wvector positive) orthogonal to M.

If we denote:

filz) - Salay)
M(f;Zm;“ws)=< o

Sz fi(w) .
f”(z1> vt fn(zm)f (ul) " g

Fuleg)

then by Theorem 3.4 we are led to:

THEOREM 3.5. Under the conditions of Theovem 3.4, the polynomial
b & @(f; W) is as — preinterpolatory justapolynomial lo F on K if and
only if there exists a subset Z, C K (1=m=2(m —s) 1) of distinct
points such that:

1° the matrix M(f; Z,,; M) is a H, — matrix;

2° there exists a m-vector A = (A, v) = (A, -+, 20 Y1, - -
different from zevo ovihogomal to M(f; Z,; U,) such that

arg (W) = arg (W), Via{l,2, ..., 5}

Proof. Necessity, Let © & ¢, (K;U,; F;f) be a s-preinterpolatory
juxtapolynomial to F on K satisfying the conditions of the. Theorem 3.4.
Then by this theorem it follows that there exist a subset Z,, C K(1 = m <
< 2(n — s) + 1), the numbers 3; with X§; = 1, and the complex numbers

A,, such that (3.9) holds.

Hence we have

o Ys) Strictly

(12 s

(3.11) 2 % folz) ; A, fu) =0 Vke{l,2 ..., n},

where
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Therefore, the vector A — (%) =y, ..., Yo Ay, oo, A) is a4 -
vector strictly different from zero orthogonal to M(f; 7, ; af,). Because

MW= 38 >0, Yie{l,2 ..., '}

the condition 2° .is satisfied, too.

Sufficienecy. Tet Z, C K be a subset for which the conditions
of Theorem 3.5 are satisfied. Tet A — (%, ) be a m-vector strictly different
from zero orthogonal to M(f; Z,,; U,) satisfying 2° Tet us denote by

di = Lo 0, 0 = arg (0, W),
W]

whence

N = d;iW;. ex(:0).
Then from (3.11) we obtain

m

(3.12) Eldjvﬁfk (2) ex (16) - . lyifk () =0, Yee{1,2 ... n.
J= L

If we now define §; and A; by the relations

di|Wjl2 o .
8.- :‘]l‘:") A] = (7 ex (* 10)
;w2 Sdj|Wj

(8.12) becomes :

"

(3.13) 3 3]% + ) =0, YEe (1,2, ..., n,
J i

=1

where 8; > 0 and £8; = 1. Therefore (3.9) is satisfied, and by Theorem 3.4.
it follows that =(f:z) = Flz) — W) & g,(K; WU, E [k

. Remark 3.2. Because each polynomial = & P(f) of the best appro-
ximation to F¥ on K isa juxtapolynomial to F on K [§ 1, 2°], too, our results
contain as a particular case some similar results given by LEBEDEV, N. A,
and RVZAKOV, I Ju. [6] for the best approximation problen:.

§ 4. Linear juxtasperators

~ Using the previous results we are going to construct a linear operator
defined over the set C(K) of continuous functions on K and with values
on the set of generalized Juxtapolynomials to a continuous function on K .
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Throughout this paragraph we assume that the coin];f?ct Ssﬁtho 1:0}1{-
sists of at least n + 1 point}s} alild:[{ = ({k) 1502111 'II‘é:htelll)eync 1§01- sg’aCh Lt
"Go if f= is ‘T'chebycheff system ! ste
of 123({) 11f {Joingk) 7? of K y1:herte exists an interpolatory polynomial

( - Z

Lz 2.: f1 Flz) & P(f) satisfying the conditions
AE e By T
. . N
Lz - 203 3 Flz) = Fz), Vi€ {2 ..., nj,
and it is unique. This polynomial can be expressed under the form

o ; o, By sy sn s T
Ulzgy vons Z5—10 2 Fj41 nid z_)’
(4.1) LG, ..., 2 [ Fla) = 2 (2

=1 Ulzy, 25 - s Zy)

where
Silxy) o fulza)
U(%y, %9y -, %5 ) =1+ -
fl(xn) A fn(xu)

The main result of this paragraph is the following.

THRORE . Let K be a compact set in lhe cr}-:-if;{:lcxfjn':z{m contarning
al Zadl;zflﬁlaoj—mi[ ng?-'ms and [ = (f,) @ Tchebycheff system on K. ;"ke ggl?::zm;ﬁze;‘rz
polynomial T & Pf), w(f: 2)=£F(2), 2 K 15 a j?r‘::l-fﬂﬁ()-\_’)’?ﬂ?;&bz k-
: 9K ie. n s QUK; F;f), iof and only if ihere exisls a suvsel L, C
(()Z -+ 1<m= 2 - ll} and the positive constants d; such lhat

Bdjy . rij”|U(2j1, A z"”)\ﬂl(zh, ce E 1 Fle) R
(42) ki (f; Z) == Xdjy, o UG 2 )i

where X is taken for all j, from 1 to m.

. ] (o F G f) and wm(f; 2) = F2),
. Necessity. Assume that =& (K F; d
7 e E’T‘O’i{mn {lejy Tgeorenl 2.2, there exist a set Z,, = {#}]y C K (n + 1=

<= m==2n + 1) and a system of positive constants {3;} such that

e 0, YEe{1,2, ..., 1}
8. - .. i bl ) b
(43) ]21 () - (o)
But the equalities (4.3) can be written under the form

m m

(4.4) S dinlf; z) fule) = 2 ds Fle)fy (), Vee{l,2 ... 0}
j=1 Jj=1

whete

=

- j -
W ()2

d;
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If
/32 = afild) + ... + a,ful2)
then the system (4.4) is equivalent to the following

(4.5) mlyg + alyy+ ... +a, Ly, =g, ks{l,2 ..., 1},

where

L, = ]A\?_/l dj'ﬁ(zf)fi(zj),

"m

J

‘The system (4.5) to which we add the equality

alfl(z) + Y1 + anfn(z) o Tt(f, Z)
permits to eliminate the unknown: ay, ay, ..., @, whence we get

w(F2) Al - 0

81 Lutl .l | _
F: L, ...L,
Hence
0 R g,
R R AR I IR
gL ... L, L,...L,

But, if we denote by

‘then

23

(4.7) det (Ly)= 25 dy...d fils) . fulz)) Uy o2, f).

Jivee dn=1

18
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Permuting in (4.7) the indexes jy, ..., 7, in all #! possible manners
and adding the resulting equalities, we are led to the further expression

1
det (L‘ik) = n—‘ 2 djl . ot dj” IU(Z]'I, .o, Zj” ; f)|2

where ¥ is taken for all indexes j, from 1 to m.

Similarly the determinant of denominator of (4.7) can be put under
the form

1
- = dj,, oo fi, Ul e i f) Viz 2 - Zjn;f;F),

where

0 fild ... 1
Vo ka s i Ty = | T S S

F(xn) fl(xn) cee fn(xn)
and Ulx, ..., %,; f) is the imaginary conjugate of U(xy, -+, %y f)-
But in view of (4.1), we have

V(z, %y -, %y f3 F) =Y (— WF(x) Uz, %1, oy %ot Barts - o5 %5 f) =

k=1
#
= — 2 U(x,, ey Xi—1, %, Kot 1y o - e, xn)f)F(xk) =
k=1

= — U(%y, + s %y s DL(Fns « oy %5 3 Fl2).

Replacing the expression of the determinants in (4.6), we obtain (4.2).

Sufficiency. Now, assume that =(f;2) is given by (4.2). First
we remark that the numerator of (4.2) may be written under the form

m

d1d9 dﬂ i 2
—_— By o0 vy B e, BN ey 2P
2 d’hdk'.: d"m—n IU( N ’ kl ’ ) kz ’ km—n’ ’f)l X

X L(2y, cos @y oy B e, 2R , oo [ Fl2).

1 2 m—n

where ,,ﬁ” points that the index % is missing.
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Thus
(4.8)
F() — n(f; )= L 332
A= L D Wl ooz sy iR
X [F(z)—L(zl,...,z;;,...,z,g s oo 2y 5 Fl2)]
where
A — Z dl d”l U
dk1 dk2 d,,,_u l (Zb ’ ZAl ! ' ,f)lz
But we have *
F(z) ~ L%y, %, ..., %,;f; Fla) = 2& %0 oo i [ F)
! Uy, % o oo, 2y '
where o o
F(z) i) ... fu(2)
(49 Dlemymy .o ny fr By — [T Si0) )
F(xu)fl(xn) . f (x.)
From (4.8) and (4.9) we obtain ”
B —nif; )= oy~ e,
A dk1 "t dkm;u U(zl) o z/:;., ,f) ><
XD(Z,ZI, ,Z’]:, )fiF)J
whence
Fla) — nlf5 ) = L5~ 7
i) A E s Rl (— 1)Uz, s8R 5 24, i) x
X D(z, e LB A o fid
Therefore
SSUIFE) — wlf; ) fye) — L5 e
] f ])]fk(zf)_AZd;; dk D(le "'!Z)’:J 1frF)X

"

X2 (= 1)i-10(,, ..

=1

2B 2y ) ue) =
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1 dy ... dy ) i
:XE d,‘_..dkm; D(Z]’ v ARy ,f,P) X
filz) f1(z1) faulz1)
Fulzr)  Falzp) f.(z3)
X . . . =0
fk(z;gﬂlf” (z,:\ﬂl—ﬂ i z’\ﬂb—n
fk(zm) fl(zm) fn(zm)
Thus we are led to the further equations:
i Y Fulz) 0, Vka{l2 ..., )
i=1  Wiz)
where

S = di| Wiz

and by Theorem 2.2 it follows that = & 7 (K ; E ;).

Corollary 4.1. Under the conditions of the Theorem 4.1, a polyno-
mial © & @P(f) s a justapolynomial lo f on K if and only if there exist
a subset 2, C K (n+1=m=2n-1) and the positive constants A, . .,
with T Aj =1 such that

o 2 [ Fl2).

(4.10) n(f;z) = 2 A, .., LE ..
Indeed (4.10) follows from (4.2) if we denote
iy, - g, UGy oo 2,0 P
Ajl""'jn . : : . L. 2
Zdji oo @, 1U(zjx - zjn'f)l

because obviously A;, .., >0 and Z A ...; = L

The operator of the right side of (4.10) which will be called juxia-
operator is an interesting linear operator which assigns to each continuous
fanction on K ome of its generalized juxtapolynomials on K. This operator
is linear because it is a linear combination of linear interpolatory opera-
tors - L.

Tt is interesting to note that (4.10)
casy a juxtapolynomial to a given function f
set K. It is sufficient to choose an arbitrary subset Z,, C K

gives us the possibility to construct
continuous on a compact
n+l=m=
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= 2n 4+ 1) and by the arbitrary positive constants w .
nomial = as in (4.10). Yy P onstants we construct the poly-

When m = n -+ 1, then the juxtaoperator has a simpler form :
(4.11) n(f; 2) :]};’)Aj Lzg, ..., 25, ..., 2, f; Fl2).

By Corollary 2.1 it follows that this is the case when F — (
are real valued functions on K, ie. we have. 5 and f = ()

Corollary 4.2 If [ =(f,) is a Tchebycheff system on K and F,

[ = (f,) are real valued functions on K, then a polynomial = < P(f), =(f; 2) ==

1;; ‘.I's(z). reKisa ;z}x}?ﬁc}@;wmml to fon K if and only if there exist nii- 1
VIS Zgy By« o0y 2, 6 and positive constanis Ay, A4, ... b2 =

such that (4.11) holds. ¢ A e i = 1

By virtue of Theorem 2.3 and Theorem 4.1 we have

. Corollary 4.3: Let K be a compact set of the comblex bla X7

g at least n -+ 1 points, F a cont'sz.fﬁus fw-mﬁ:ion on ?{ mfd ?3:0(‘?3{5)%?;
Tchebycheff system on K. The generalized polynomial = < (P(f) is a poZynoim'af
of fiesﬂ approximation to I' on K if and only if theve exists a subset 7 =
CI; (n “|-} 1t%;m_£, 2n - 1) and the positive constants A, in with Z Ay y
= 1 such tha L ’

S

(4.12)  |F(z) —=n(f; )| = ¢ = max |F(2) — =(f;2)], Vj & (1,2, ..., m,

r=11¢

(4.18) n(f;2) = Z A, . i, Ly, oz 5 fi Fl).

This result was established by the author in 1964 [9].

When m = # + 1 the constants A; can b plicitlsy
i ren an = : e expressed explicitly [9],

| D(z9, 24y v vvy 25 [ F)|
1

XUz ooy 25, ey 2us f)]

=0

p:

Tr(f;z) N By B s 1) Lz, Ce 2 e By [ TF2)

R | Uz, v .., TR 2y )

All our 1'_esu]t5 were established under the assumption that the juxtapoly-
nomial to I’ does not coincide with the function I on K. This assumption
1s not essential, it is possible to give a similar result also for the preinterpo-
latory juxtapolynomial to F on K. Thus we have [12]

v
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rarorEM 4.2. Let t,  K(1 =< s="n) be a subset of K, F conbinuous
on K and f = (f,) a Tchebycheff system on K. A polynomial g & (P(f) satis-
fying the conditions

g(f;u;) = Flu), Vi (1,2, ...,s}
g(f; 2) == F(2), 2 € K — QU
is a s-preinterpolatory juxtapolynomial to Fon K, ie. g € I AU I ; £

if and only if there exist a subset Z,, C K(n — s + 1=m <2n — 2s + 1)
and the positive constants A; . ; . Wwith ZA; = 1, such that

""" in—s

(4.14) q(f; ) = BN, g L, o w2, oo 2, T Flz).

§ 5. Extremal solutions of a differential equations

Tet us consider the linear differential equation

(5.1) L(y) = Ao(x)y® + ... + dp(x)y = F(4),
where A, 44, ..., d,, F are continuous functions on the compact real
set K.

The problem which will be considered is to find an approximate solu-
tion of (5.1) in the set P(f), where f,, k=1,2, ..., n, are assumed to be
p-times differentiable liniearly independent (on K) functions. :

If

(52) y = alfl(x) 0 -+ anfn(x)y
then

L(y) = e, L(fy) + ... + aLl(f.)-

Let us denote by L,(%) = L[f,], k=1,2, ..., n. Then the approxi-
mation problem is the following: to approximate the continuous function
F on K by the generalized polynomials

PL; %) = aly(x) + ..+ a,L(#).
Definition 5.1. A polynomral

(5.3) o = P R) = aF AR . aff(®)
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is called solution of best approximation of the equation (5.1) on K in

the class P(f) if

(5.4) inf max |F(x) — 2 a,L,(x)] = max [F(x) — Y afL,(x)].
1’6@(/) reK k=1 reK k=1
From our assumption with respect to the functions F, 4; and f, it
follows that each equation (5.1) has at least one solution of best approxi-
mation on K in the class P(f). Generally such an approximate solution
may be not uunique

Definition 5.2. 4 polynomial y & P(f) is called Cauchy’s solution
of best approximation of the equation (5.1) on K wn the class P(f), of v, beside
(5.4) satisfies the Cauchy’s condition

(5.5) yW(x,) = y», VeEa{0,1,...,p— 1}

Obviously, the problem is not trivial only if » < 7, because otherwise,
if p = n, either the system (5.5) is incompatible, or it permits to determine
the coefficients a,, a4, ..., @, and, therefore the polynomial y & P(f)
which satisfies Cauchy’s conditions (5.5) is completely determinated. Thus
we assume that p << 2.

Under our assumption it is known that such an approximation of
Chauchy’s solution always exists, [11] but it may not be unique.

It is clear that we can consider a similar approximation problem in
the other norms. To include all these extremal solutions we shall consider
the . juxtasolutions of a linear differential equation (5.1).

Definition 5.3. 4 polynomial v & P(f) is called juxtasolution
(Cauchy’s quxtasolution) of the equation (5.1) on K of L(y) is a juxtapolynomial
(p — 1 — preinterpolatory polynomial) to f on IK.

We denote by J(K; L; F;[f) and J(xe; K; L; I'; f) the set of the
juxtasolutions and respactively Cauchy’s juxtasolutions of the equation
(5.1) on K.

Obviously each solution of Cauchy’s problem of the equation (5.1)
of the form (5.2) (if such a solution exists) is respectively juxtasolution and
Cauchy’s juxtasolution of the equation (5.1) on every compact set K C R.

By virtue of Definition 5.1, it follows that each best approximation
solution of the equation (5.1) on K is also a juxtasolution of this equation
on K.

Using the properties of the juxtapolynomial to a continuous functions
on a compact K of the real axis, given in the previous paragraphs, we can
state some properties of the juxtasolution respectively Cauchy’s juxta-
solutions of equation (5.1) on K.

First, by Theorem 2.2 we are led to the:
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raroreM 5.1. If va J(K; L F;f), L(y) % F(x), x & K, then there

exist m(l << m=n 4 1) distinct povnis, x; & K, | positive numers S; such
that

wm

- L)
5.6 5; k) UL G g )2, L )
5.6 ;1 ! P — L) ¢ J

IfyaJK;L;F;f) then yaJ(X,; L;F;f), where X = {x}{"

If furthermore (L,)% is a Tchebycheff system on K, then the number
m in Theorem 5.1 'is'equal to n 4 1.

Because Cauchy’s conditions (5.5) are linear conditions with respect
to the coefficients ay, a,, ..., a, by virtue''of 'a general result established
by the author for generalized restricted infrapolynomials [12] we have a
similar characterisation for the Chauchy’s juxtasolutions of a differential
equations (5.1), too.

THEOREM 5.2. If y&d,-a(xo, K;L; I f), y(x) == F(x) x & K — {%,} and
there exists a closed subset C C K — {xo} such that y & (Jy_1(%y, C; L ; F; )
then theve exist m(l<<m <n — p + 1) distinct pownts x; & K — {x,},
positive nwumbers 3; with, %8; = 1 and veal numbers vy, such that

"

p—1
5.7 5, —alx) (%) — 0.
5.7) 2 Flag) = Liyle) g ()

If y S Jp (%0 K; L Ff) then y & (p1(%0, X,s L F 5 f).

If L, Ly, ..., L,is aTchebycheff system on K, then from Corollary 4.2
regarding the structure of the juxtaoperator, it follows an interesting struc-
ture for the juxtasolutions of a linear differential equation.

rurornnM ' 5.8. Let L' and f == (f,)1 be such away that (L,){ forms a
Tchebycheff system on K. A polynomial vy < P(f), L(y) = F(x), x & K
is a juxtasolution of the equation (5.1) on K if and only if there exist a subset

Xupv={x )i and the. positive constants Ay with X Ay =1, such that

n-1

(5.8) y(x) = 0N, L(xd) 4o, 5 2o, Eupr 1L \F|4),

j=1

where L(zy, 2y, - ., 2,3 L; Flx) is the genevalized Lagrvange’s interpolatory
polynomial with respect to the sistem Ly, Lo, ..., L, on the knots 2y, 23, .., 2,
to the function F. ’

In the case of the linear and homogeneous differential equation ‘with
constant coefficients, approximated by algebraic'polynomial, it is possible
to give an interesting interpretation of the well known Fejér’s theorem
about the location of the'zeros of algebraic infrapolynomials [1].

7 — Revue d'analyse numérique et de la théorie de l'approximation, tome 1, 1972,
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Thus, let us consider the equation

(5.9) L(y) = Ao y® 4+ Ay ye-0 - . 4+ A,y =0,

Now we cousider algebraic juxtasolutions of the equation (5.9) of
the form

where A, Ay, ..., Ay ate constants and p << x.

(5.10) Y= a Tl  oaat - L+ oa,.
Obviously, if a,, s, ..., a, are independent then the single juxta-
polynomlal' of (5.9) is y = 0, obtained for @, =a, = ... =a, = 0.
Thus it is natural to assume that a, = 1.
Furthermore, because in the case Ay =d, = ... =4, , =0

Ap-_1 =20, each polynomial of degree at most % is a solution i.e. a juxta-
solution, of the equation (5.9), on every compact set K, we assume that
A, =2 0. Thus the equation (5.9) can be written under de form

(5.11) L{y) = Aoy 4 Ayy=D + ... F Ay v +y=0.

We denote by (P, the set of all # — 1/ degree polynomials with leading
coefficient one:

(5.12) P(x)=a"4 a1+ ... 4+ a,
If y = P,(x), then
(5.13) L(y) ="+ %+ ... + ¢,
where
¢, =a,+n—"k 4+ Ddp 1ar+m—Fk+)n—"Fr-+2)4, 5 a2+
+ .., k=12 ..., 5 '
~Definition 54. [8] 4 polynomial P, & P, is called infrapolyno-
mial on K if theve is mo polynomial Q, & P, satisfying the conditions
1° Py) =0, & K = 0u(x) = 0
2° Pn(x) F 0, xeK = lQn(x)| < |Pn(x)i

In [11] was shown the following assertion

THEOREM 5.4. The polynomial y = x* -+ ayx"~' - ... + a, 1S a juxta-
solution of the equation (5.11) on K if and only +f L(y) = x" + ¢4 ++ ... +¢,
is an infrapolynomial on K.

From this theorem as a consequence we obtain the following result.
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THEOREM 5.5. Each algebric juxtasolution y & (P, of the equation
(5.11) on K is exact solution on n points x; of the closed convex hull of K.

Proof. f y = %"+ ay%u_1 -+ ... + @, is a juxtasolution of the equa-
tion (5.11) on K, then by Theorem 5.4, -

L(y) = P,(x) = 2" + cxx"™ + ... + ¢,

where ¢, are given by (5.13), is an infrapolynomial of degree # on K. But
then, by virtue of Fejér’s theorem [1], all zeros of P, must be in the
closed convex hull of K, i.e. the points x; for which

Liy(x)] =0 Vie{l, 2 ..., n}.
belong to the closed convex hull of K.
Using a Marden’s result [7] it is possible to give a converse theorem

chatacterizing the algebric polynomials of degree » which are juxtasolutions
of the equation (5.11) on K.

TUEOREM 5.6. Let K be a veal compact sel containing at least n + 1
points and [A, B] the smallest interval containing K. If the polynomial

y=a"+ax1 4 ... +a,

is exact solution of the equation (5.11) on n distinct points %, & [4, B],

i=1,2 ... u which ave separated by points of K, then y is a juxtasolution
of the equation (5.11) on K.

Proof. We say that the points x;, x,, ..., %, atre separated by points
of K if

(%, v ]l N K s£9, VR € 1,2, ...,n —1}.

Now, if ¥ = " 4 a;»*~' + ... + a, has the property that there
exists a system of distinct points »; & [4, B) separated by points of K,
such that

Liy(x)1 =0, ¥, €{l,2 ..., n}
then from the equality
L(y) = P”(x) 2o xﬂ + clxn—l + [, + C”

it follows th: t all the zeros of P, belong to [4, B] and are sepgrated by
points of K. But in view of a MARDEN’s result [7], then P, is an infrapoly-
nomial on K, an by Theorem 5.4, y = P,(x) is a juxtasolution of (5.11)
on K.

Similar results can be established for Cauchy’s juxtasolution, too

using some of our results about restricted algebraic infrapolynomials [11].
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§ 6. Extremal solution of a linear sysiem.

To find an approximate solution' of an incompatible linear system
we use freqvently the last squares method. An other method, called the
best approximation method, was given by remEz ©E. 1. [15]. Obviously,
these two methods correspond to the two considered metrics. It is natural
to study all such, ),extremal” solution of an incompatible linear systen,
introducing the notion of the juxtasolution of such a system. £t

Let us consider a system

(6.1) Y, (2) = az =0, 1=1,2 ..., m,
where
AL b Rl MR LU G v U Ry LS e~ e ot L ) &
are complex vectors. Some times this system will be denoted :
(6.2) Az = b,

Definition 6.1. Let 27 = (24, 2, - - ., 2,) be an approximate solution
of (8.1). u® = (uy, 4y, ..., 0,) 1s called wundersolution of z (abbrevialed
u & U4, b; 2)) if the following conditions are satisfied :

1° Au =~ Az;

22 If j{1,2,...,m} and az = b = au =1,
If js{1,2, ..., m and az b= lajus— bj| < |az — bjl.

Definition 6.2. An approximate  solution z of (6.1) is called
Juxtasolution of the system (6.1) (abbreviated z & J(A, b)), it U(A ;b 2) =T,

In other words, 2z & C” is juxtasolution of the system (B6.1) if z has no
undersolution of this system. :

Obviously that each exact solution of the system (6.1) (if such a solu-
tion there exists) is a juxtasolution, too. , T erent

Among the most important juxtasolutions are those which minimize

certain norms. We e going to give, for instance, two of the most frequarently
met of them.

Definition 6.3. An approximate | solution z° & C* lof (6/1)1 is

called the best approximation solution of the system (6.1), or a Tchebycheff point
of the system (6.1) if. ol

(63) . O max I“izo - 'bi‘ = inflimax Iai‘Z e b1[ 15 Py T
' (%) ZEG” (1-)
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s m T .
T,et us consider a system of positive numbers p = (w)7 with Zp; =1,
and p > 1 a given real number.

Definition 6.4. An approximate solulion z* e C* of the systgm
(6.1) s called lo be a solution of best approximation in weighted mean of the

order p of (6.1) of:
m Yp : " 1/1,
(6.4) (EMW“Mﬂ:m42MW~M'
=1

ze()" 1=1

We can verify immediately that we have the following :

) ' smation of (6.1)
rHEOREM 6.1. If 20 and z* are solutions of best approxima
in umiform respectively in weighted mean of the ovdey p, HOYMS, then 2°,
7* add;b). ' .
By this theorem we have 1 particular
Corollary 6.1. The solution z* of (6.1) obtained by the last squares

: J uxtasolution of (6.1). i
mgm({geflsceﬂtﬂgg;et J(4, b) {:Cogltai)ns all the extremal solutions of the system

hich intervene in the applications. )
B I;zcause, the juxtasolutioﬁpof a linear system are the special casets
of the generalized juxtapolynomial to given function over a finite ste ,
all the properties of the juxtapolynomials may be formulated for the juxta-
solutions of a linear system, too.

u - (KM
Thus, let us denote by A = {agyic, =12 ....m B,, = {b;}t»
and let M, = {¢}1, be arbitrary finite pointset in the complex plane.
We consider the applications:
fii My > Awi, =12, ..., 7

"

F : M”l =% Bﬁl
satisfying the conditions
(6.5) i) =ay FE) =b, i=12_.,m

Then it is clear that the approximation problem of the solutions
of the system (6.1) is equivalent to the 'ap]_}roxlmatlo'n problem to the
function F on the set M,, by the generalized polynomials,

(6.6) plz; 0 = ufi(Q) + o+ 2l

Remark 6.1. As functions f,, I, we can take T,agrange’s interpola-
tory polynomial of degree m — 1 on the knots G G ooy Cone )

Trom the definition of the juxtapolynomial to a function on a com
pact set K, by virtue of Definition 6.2, it follows immediately -
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THEOREM 6.2. Let fi, fs, ..., f., F, be the mappings satisfvi
; Juids v Ju T . sfving (6.5).
The approximate solution z* of tkelsystem (6.1) is Afzpjug;smsolutgn %f ((6.51))
if and only if p(a*, ¥) is a generalized juxtapolynomial to fon M,

$ a consequence, from Theorems 2.2 and 6.2 we have im’?nediately

THEOREM 6.3. An approximate solution 20 of the system (6.1), for which
Yilzo) = b, Vi & {1, 2, ..., m}

1S a juxtasolution of (6.1), if and only if there exist p(1<<p <2 + 1)

eqUAtions vy, vi, ..., Yip and p positive numbers 3;, such that
(6.7) S8y
£~ 7 mzo, V/BG{I,Q, ...,%}.

2 4s a justasolution of the system

ytl(z) = bilJ vy yip(z) = bip’
too.
Definition 6.5. We say that the lincar forms, vy, Yo, ..., v, ave

strictly linearly dependent of the ovder m — 1 [15 7 1 .
the constants ¢, =- 0, Vi ejgl, 2, ..., m} such e T

e191(2) + ... A+ ¢ m(z) =0

and_theve is no similar velation between the linear forms of a subsystem

of {3

It is known that y,, y, i i
_ , Yoy - Yy are strictly linearly dependent of th
order s — 11if and only if rank A = m — 1 and if there exis%:)s a sub-matri§

C of i
fro(;n tileer (‘)cype (m, n — 1) whose all minors of the order m — 1 are different

Defin-t- ; "1t oy
A subsysiem 1tion 6.6. Let v be an integer (1 <<v << m) and {iiti-n C {7

A,z=B

7

b,
‘ B’:(:)
b,

15 called juxtacharacteristic subsystem. of (6.1) and 2z, & J(4, b) if

where

(6.8) A4, =

aill “512 S al’v“‘
v L & it Ve

a,-'l a,"g o - aim
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a) 2 g9(4,; B,)
b) if Ayz = B, is a subsysiem of A,z = B, then 2o ¢ J(A,; B,). The
matrix A, is called juxtacharacteristic of 2°.

Remark 6.2 By Theorem 6.3 it follows that each system (6.1)
has at least one juxtacharacteristic subsystem of 20 & J(4, b) and the
number p of the equations of a juxtacharacteristic subsystem of (6.1)
satisfies the inequalities

l<=p=2n+1

If moreover, the system (6.1) is real, then by Corollary 2.1, it follows

l=p=<n+41
Definition 6.7. A subsystem A,z = B, of (6.1) is called elementary
subsystem of (8.1) if the linear forms, vy, ¥ip -« -s Ys, are strictly linearly
dependent.

Definition 6. 8 We say that the system (6.1) has (1) property
(Tchebycheff’s property) if the rank of every submatrix of A of the type (n, n)
15 equal to n.

From Definitions 6.7—86.8, it follows

Coro llary 6.2. The system (6.1) has (T) property if and only if
each its subsystem of n - 1 equations is an elementary subsystem of (6.1).

Proof. The necessary and sufficient condition for a subsystem of w41
equations of (6.1) to be an elementary subsystem of (6.1) is that the rank
of the matrix of this subsystem is %, and each its minor of the order =
must be different from zero, because there is a single matrix of the type
(n + 1, n). Therefore, a system (6.1) has (T) property if and only if every
its subsystem of # 4 1 equations is an elementary subsystem of (6.1).

We can verify immediately that the system (6.1) has (T) property

if and only if the system f = (f,)i satisfying the conditions (6.5) is a
Tchebycheff system on M,,. So by Corollary 2.1, we have

Corollary 6.3. If the system (6.1) has (T)-property, then the number
p in Theorem 6.3. satisfies the inequality

m+1==p=<2n+'1

If moreover (6.1) is real then p = n + 1.

Using our results about matrix characterization of the juxtapoly-
nomials to a given function on a compact set K, given in § 3, we can
characterize the submatrix of A satisfying the Theorem 6.3.

A matrix A of theorem (6.7) will be called a J-matrix of (4, ) if the
conditions of the Theorem 6.3 are satisfied.
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THEOREM 6.4. An approximate solution 20 of the system Az = b, for
which

yilzo) £ b, Vie{l,2, ..., m}

1s its juxtasolution if and only if theve exists a submatrix A, of A
(1 << p<=2n - 1) which is a H-malrix and there exists a vector n sivictly
diffevent from zero orthogomal lo A, such that

(6.9) arg (Y;) = arg (0,Y,), Vie{l2 ..., 9},
where

Yj = 3i(°) — b;.

Proof. Necessity. Let us suppose that 20 & J(A, b) such that y,(z,) =~ b,
t=1,2, ..., m. Then by Theorem 6.3 there exist a submatrix 4, of 4

(1=<<p=<2n+4 1) and positive numbers §; such that (6.7) holds. But
then if we put

6.10 s, P
(6.10) =k,

(6.7) can be written under the from

L
[

#
(6..11) ; N Qi = 0, VRe{l1,2, ..., u.

Because 2; =2 0, Vj & {1, 2, ..., p}, (6.11) shows that 4, is a H-matrix.
From (6.10) we obtain

NY; >0, Yie{l,2 ... 5
henee arg (AY;) =0, Vie{l, 2 ..., p}
Sufficiency. Let us suppose that for the matrix A,(1 <<p =<
= 2xn + 1) and 2° & €" the conditions of theorem hold, i.e. 4 is a H-matrix

and there exists a vector A strictly different from zero orthogonal to 4,
such that (6.9) hold. Putting

5, =M 9 are Y
3 Vil 8(11)

ie, 3 = 8;Y; ex(¢0), and replacing in (G.ll), we obtain

. "
2 SiYjex(i0)ay, =0, VEs{1,2, ..., 4},
j=1
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whence
P i
33 Yiay, =0 Vee{l2 ... 1
=1

and by Theorem 6.3 it follows that 2* & (4, b).
Similarly, by Theorems 3.2, 6.2, and 6.3 we can deduce the following

pumorna 8.5 Let A, (1<p<2n+ 1) bea submatrix of A and
2 = J(4, b) such that

17'. —_— j/i(_xo) — b‘- :_',/_ 0, Vi E {1, 2, ey 7}1/}.

A, is a characleristic juxtamatrix of 20 € J(A, b) if and only if the matrix

0
, AL B,
Mzu(Ap, Bﬁ) — L) b H
where
3.;1'| (N S l/[l Ain
Aj=|" __
Y ip aa';,t ] lff[, a’ipu

is a HP-matrix of the rank p — 1. . ' .

Tinally, using the structure of the generalized ]uxtap’olynomlala‘s n
§ 4, we are going to give an explicite form of thg juxtasolution of a given
linear system. Tlor simplicity we suppose that (6.1) is a real system pos-
sessing (T)-property.

THEOREM. 6.6. Let
(6.12) Ax =0
, ; y ) imale
be a veal incompatible system possessing (I)-property. An_aj)jbro;wm,a.
solution x* 1s a juxtasolution, ie. x° & J(4, b), if and only if theve exst

a subsystem of (6.12) (we can suppose: Yix) =0, :=1,2...,n+1)
and n 4 1 positive numbers d; such that

741 g { . |
- N dy e dj.A d“_HD(l, RS BT A1 AYD(1, R T 1 1;4,0)
x0 = =2
* e v L1 Ay
(613) dy, avs djﬂ, v dy gy ID(L Y N . AY]
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where
A1 vv v s an Aij vvinnn a,
\ R T
. A ~
D, ..., 5, c.o,n-F1;4) =% ..., 27 i
Ang1,l ve Apti,5 - L I
a3 e @urr by aypr ... ap
. .
D1, ...,7, ..onb1; A) =8y o @ by @i .. ap,
1,1+ - o g1, k-1 bn«{»l au+1,le+1 R

Proof. 1f the system (6.13) is real and has (T)-pr ‘heor

‘ : _ property then by T}

6.3 in view of Corollary 6.3, it follows that x° & 5(1‘1};[)) if aid ;elzﬁ;e 131%
there exists a subsystem of (6.12) of # 4 1 equations (assume that these
are the first # + 1 equations) and n + 1 positive numbers d; such that

n+1
(6.14) El di Yi(x%)ay =0, Vea{l,2, ..., %)
=
Putting
n-+1
2 dj Aj; Ajr = Dy
j=1
w1

2 dibjay =D,
i=1
the system (6.14) becomes
(6.15) Dy sl + Dy . £ Dy a2 =Dy 5=—1,2, ..., 1

which permits to determine %, x3, ..., 3. Using the same method as in
[9], the solution of the system (6.15) can be put under the form (6.13).
If we denote by

Ajz dy .. .. df""dwrl D, ..., 9.,...,%—|—1;A)]2
#4-1 2
.Z dy, ... d]. dn-|—1[D(1' R 1; A2

ji=1

then (6.12) can be written under the form

ntl D, ....s ..., w1, 4;0
(6.16) xz:z A; 2 J i
~ D, .3 e m L A)
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So we have the following interesting result:

Corollary 6.4. Let Ax=D>b be an incompatible linear veal system
possesing (L)-property. Thew cach juxtasolution of this system Is a convex
combination of the Cramerian solutions of the elementary subsystem of (6.12).

We saw that every solution of best approximation of (6.1) in uniform
norm or last squares norm are juxtasolution of (6.1), too. By virtue of
the form (6.18) of the juxtasolutions of a real system (6.12) we conclude
that for certain choise of the constants 4; in (6.11) we can obtain both
of mentioned solution of best approximation of (6.12).

a) First we begin with last squares approximate solution. Thus for
obtain the solution of last squares method of the system (6.12) it is neces-
sary to minimize the function

F(x) = 2 Yi(%)

i=1

.e. it is necessary to solve the system

(6.17) I oS V()ay, =0, k=1,2, ..., m

oxy, i1

But (6.17) coincides with (6.14) for m =n + 1 and d; = d, = ... =
— du-H ==k
Therefore we have

Corollary B.5. A juxtasolution of a real system (6.11) possessing
(1)-property is a last squares solution of this system if and only if n (6.13)
I 2 e n+41 »

n+1
_ZID(I, cea B L AD(L,
0 — JI=
6.18)  #° —
> DL, ...,
j=1

.,}?,‘..,n—i—l;A;b)

7 Loan 41, A4)

b) To caracterize the juxtasolutions of a system (6.12) which is at
the same time the best approximate solution of (6.12) in uniform norm,
we nse Theorem 2.3 in view of which, a juxtasolution of a system is at
the same time a best approximate solutin of this system if and only if
for each juxtacharacteristic subsystem of (6.12):

V(%) =0, j=1,2 ...,041

J

we have

(6.19) Vi, (50)] = [Ya(wo)l = ... = [V, (%)l

n-1
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Using the conditions (6.19) it is possible to express the constants A;
in (6.16) and so, the solution of best approximation of the system (6.12)
can( “be )expressed explicitly, if we know a juxtacharacteristic subsystem
Remark 6.3 All our results can be easily extended to the case
where the system (6.1) is an infinite incompatible system i.e. when the
matrix 4 = (a;,) is of the type (oo, n). . ' /o
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