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Introduction

An iterative system [2] is a pair (4, R), where 4 is a set (of states)
and R is a binary relation in 4. 4 complex iterative system [3] is a pair
(4, {R;: i &1}), where {R;:1 & I} is a family of binary relations in
the set A. We construct, in an analogous way as in [6] and [7], a closure
operation and a topology in the iterative system. The category of itera-
tive systems is studied and we show that it has limits and colimits. Some
relations hetween the category of iterative systems, the category of complex
iterative systems, the category of closure spaces, the category of topolo-
gical spaces and the category of partially ordered sets will be given, using
a theorem of J. BENABOU [1] and some analogous results from [7] and
[5]. The isomorphism theorems for complex iterative systems will be
proved in the same manner as in [11].

1. Relations

Tet A be a set and let R and P be two binary relations in 4, 1.e. X,
P A x A. The following notations will be used:

RP ={(v,9): Iz € A((», 2) & R and (z,y) € P)
R+ P = {(x,v):either (x,y) & R or (%, y) € P}

R ={(y,9): (%)) ER}
R" =1 ={(xx:rvs 4}
R* — RR"1 for any integer # > 1
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R* = 2 {R':7 = 1} (plus closure of R)

R* = Z{R':i > 0} (star closure of R)

R» =R+I={xy:(x )& R or x =1y}
R” =R —-—I={x2y):(x,9 &R and x # y}
R(x) ={y:(x, 9 & R} (the fibre of R at x)
RYY) = U{Rx):xgY} forany Y (C 4

Dom R = {x: R(x) # 0}

E =R*N (R*)1

Ry = RN (Y X Y) (the restriction of R to Y ( 4)

R C P iff (», v) & R implies (¢, y) & P for any x, y g 4).

The following results are well-known :

Proposition 1.1. R* s the / '

' : 1 smallest reflexive velaly i
S N . on contarnin,
R - RT is the smallest transitive velation containing R and R* is the smallesé;
reflexive and transitive velation containing R. Moveover :

(R*)* = (R*)* = R¥,
(R™)* = R* = (R")¥,
(R")" = R,

(R*)R = R(R*) = R¥,

E is an equivalence and the velation induced by R* in ) '

. _ rele 3 v the quotient
set A]éb; [zf a'.n,tqwi’e‘r (t.e. (AJE, R*) is a partially ordered set). a
Pt Illlll 110 n 1.1. The pair (A, R) will be called an iterative system,
et o (;}ca ed the set of states and R — the transition vealalion. For a subset
YS] e Sft HY) =Y — Dom Ify will be called the set of exit states of
m’la;lg sett] 1Y) =Y — Dom (R")y  — the set of entrance states of Y. Parti-

y, the set t(A) will be called the set of terminal states and 1(A) — the
set 0]1; wnitial states of the iterative system (A, R).
i) ;e/lla‘monal machine [8] is an iterative system (4, R) such that
N #HA) = . A Pawlak machine is an iterative system (4, R) such

that for = ' i i
relation),any ¥ & A, R(x) has at most one element (R is a single-valued

2. Some topological aspects

Let cpiexp 4 —» exp A be tl i . DA
any XA (exp A ={¥: ¥ C ay. r defined by cp(X) = R*(X) for
is clear that ¢y(X) = X {J R(X) = X R(X \d B
(X UY) = Cp(X) U cp(Y). Consequently : U R"(X) and ey(0) =9,
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Proposition 2.1 (4, cg) is a closure space.

Definition 2.1, The map cp= {X = RNX)} will be called the
quasidiscrete closure genevated by the velation R in the set A.

Proposition 2.2. For any XC A, pX)=U{exl#): v & X}.
Moveover, every familly of subsets of A is closure presevving. Every closed
set of (4, cg) is of the form R*(Z) with Z C A.

Proof. The first and the second part follow from the definition. For
the third, let X C A be a closed set of (4, eg). X = cp(X) = X U R(X)
implies Ri{(X) = R¥{(X) U R*Y(X) and then X = U {RI(X):i =N} (N is
the set of nonnegative integers), hence X = R*(X). Conversely, for any
Y C A, R*(Y) is a closed set of (4, ¢g), since R*(Y) U RR*(Y) = R¥*(Y) U
U R* (V) = R*(Y).

Corollary 2.1. The familly of all closed sets of (A4, cg) s
{R¥(Y):Y C A}; at the same time the familly of all closed sets may be defines
by the following two conditions :

1) A set of terminal states 1s closed,
2) If Z is a closed set and R*(Y) C Z then Z \JY 1is closed,

Proof. Z C #(A) implies R(Z) =@ and then cp{(Z) = Z, also
ez UY)=2zUY UR(Z UY)=2ZUY URY)=2UY since Zis a
closed set and R™(Y) C Z, that is R(Y) C Z\JY. As well, it is clear that
the conditions 1) and 2) determine the familly {R*(Y):Y C 4}

Proposition 2.3, i(ce(X)) = i(X), i(R*(X)) C X and HR*(X) C
C #(A) for any X C A. Moreover, X & cald — {x3}) for any noninitial state
% and consequently i(A) is the sel of all isolated poinis of (4, cx).

Proof. For any binary relation P in 4, Dom Py =X ,
therefore i(cp(X)) = X U R™(X) — (X U R*(X))N R"(4)) = X U R"(X)
—— (Dt;mJL(R")}}1 U R"(X)) = X—Dom (R")x' = #(X), hence 1(eplex(X)))
= 12(X) and by repetition (R*(X)) = i(X) C X. Simultaneously, {R*(X))=
= R*¥(X) — (R")*(4) N R¥(X)) = R*(X) — Dom R™ = 4) N B*(X)
since (R")~1(4) N R*(X) = {x: x & R*(X) and R"(x) # @} = Dom R" ("

R*(X). Tor the second part of the propositien, let x be a noninitial
state of (4, R). Then there is a state y such that (v, ) € R” and in
conclusion # & ¢p(y) C cx(d — {#}) namely every x &4 —i(d) is an
accumulation point of (4, ¢z) and therefore #(4) is the set of all isolated
points of (4, cg).

T.et uy, be the topological modification of the closure ¢, 4.e. the closure
defined by ug(X) = N {Y: X CY = lY), ¥ C A}

Proposition 24. The topological modification ug of the closure
operation cy is the closure operation generate by the star closure of R (briefly
Up = Cry)-

Proof. R¥ is a reflexive and transitive relation and then the map
¢ = X — R¥(X) is a topological closure operation for A, ((R*)"=
= (Rt)*= R*), Indeed, creers(X)) = cre(X) as R#R* C R*. Also the
familly of all closed sets of (4, cxe) is {R*(2): £ C A} then coincides with
the familly of all closed sets of (4, ¢g). But R#*(X) is the smallest closed
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set of (4, ¢,) containing X, for any X ( 4, therefore ¢z« is the topological
modification of ¢; and will be denoted by u,.

Proposition 2.5, For every subset X of A theve s a subsel I
of the imitial states such that X C wup(l). Particularly, i(A) is dense and
every subset Y of nominitial states is a nowhere dense set in (A, uy).

Proof. I =1(4) N (R*)~1YX) and then R*(I) D X. Particularly, 4 C
C R*(4(A)) that is i(A)-dense set in (A4, uy). Y (C A — ¢(A) then u,(Y) N
M 1(A) =@ therefore uy(Ad — up(Y)) = 4.

3. Some categorial aspeets

Definition 8.1 Let (4, R) and (B, P) be lwo ileralive sysiems
and f: A — B a mapping of the set A into the set B. . (4, R) - (B, P)
s called a morphism of iterative systems (briefly is-morphism) #ff (x, y) & R
mmplies (f(x), f(y)) & P for any %, y < A.

It is easy to verify that the composition of two is-morphisms is an
is-morphism. Also the identical mapping ¢: (4, R) — (4, R) is an is-mnor-
phism. Consequently :

Proposition 3.1 All dterative systems with morphisms of iterative
systems form a category demoted by Is.

Proposition 3.2 If f: (A, R) — (B, P) is an is-morphism ilhen
Ji(Ad, cg) = (B, cp) and f: (A, uy) — (B, up) are continuous mappings.

Proof. For any integer ¢ > 1, (x, ¥) & R' implies the existence of a
sequeiice @, dq, ..., a; with ay =%, a, =y and (q, a;,,) € R for k=
—0,1,...,1— 1. Then flay) = f(x), fla) = fly) and (F(a,), fa,) € P
for £ =0, 1, ...,7 — 1, namely (f(x), f(v)) & P’. Hence (x, y) & R* implies
(f(%), () & P* for any x, v & A and therefore fluy(X)) = fAR*(X)) C
PHf(X)) = up(f(X)), for any X C 4. Besides, (x,y) & R” is equivalent
with (x, ) & R or x =y, then (f(x), f(y)) € P or f(x) = f(y), namely
(J/{x), Hy)) & P~, for any %,y & A. Consequently, fcp(X)) = f(R"(X)) C
C PR(FX)) = cp(f(X), for any X C 4.

~Proposition 3.3 In the category Is a movphism f is a monomor-
plusm (epimorphism) if and only if it 1s an injeclive (surjective) mapping ;
[ ois an dsomorphism if and only if it is a bijective is-movphism and
(J(%), fly)) & P implies (x, y) & R for any x,y & A, i.e. iff f and f~1 are
1s-morphisms.
~ Proposition 34 Two iterative systems are isomorphic if and only
of the induced closure spaces ave homeomorphic.

Proof. (A, R) and (B, P) are isomorphic iff there is am isomorphism
fi(4, Ry — (B, P). Then f and f~' are is-morphisms hence continuous
mappings, i.e. fis a homeomorphisnm. Conversely, let f be a homeomorphism,
of the closure space (4 ¢g), onto the closure space (B, ¢p), then f(cx(X)) =
= ¢p(f(X)) and therefore f(R(X)) C f(X) U P(f(X)) for any X C 4. But
(%, y) & R implies v & R(x) and then f(y) & f(x) U P(f(x)) that is
(f(x), f(y)) & P since [ is bijective. Consequently, f is an is-morphism.
Similarly, f~7 is an is-morphism and then f is an isomorphism in the
category Is.
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If Ens is the category of sets let F: Is — Ens be the forgetful functor
(i.e. the functor wich assigns to each iterative system the underlying set
of states, and to each is-morphism the underlying mapping of the under-
lying sets).

Proposition 3.5 The forgelful fumctor F:Is — Ens s faithful
and it has an adjoint functor F'' and a coadjoint functor ''F. Moreover, for
any set A, "F(A) = (4,D) and F"(4) = (4, 4 X 4).

Proof. For any f, g: (4, R) » (B, P) [ = g if and only if F(f) = F(g)
and then F is a faithful functor (f = F(f): 4 — B). After that, for any
iterative system (4, R) and for any set B, the set of is-morphisms from
(B, @) into (4, R) coincides with the set of mappings of B into A since
f@) C R for any f: B — A, then "'F is a coadjoint of F. Similatly, f(R) C
B x B for any f:A — B, and then the set of mappings of 4 into B is
the same that the set of is-morphisimns of (4, R) into} (B, B X B), couse-
quently F'' is an adjoint of F. (f denotes the mapping induced by f: 4 — B

from the square of A into square of B, that is f((x, ¥)) = (f(»), f{y)) for
any %,y & 4.)

Proposition 3.6 The category of iterative systems s complete
and cocomplete, i.e. Is has limits and colimals.

Proof. The things that we have to prove are that the category Is has
products, coproducts, difference kernels and difference cokernels. Let
{(4;, R;): i & I} be a familly of iterative systems. We define an iterative
system (4, R) with 4 = IIA; (in Ens) and R = (1) 5; ' (R), where p;: A — 4,
for ¢ & I is the canonic projection (in Fns) and $,: 4 X 4 - A; X 4, is
the mapping naturaly induced by p, In other words, if {x;:7 & [} and
{y;,: 1 & I} are two elements of 4 (x;, &4, and y; € 4, for 1 & I) then
({x:i &1}, {y;:iel) &R ill for every ¢ &I (x;, ;) & R;. It is clear
that ,(R) = R; and therefore p,: (4, R) —» (4, R;) is an is-morphism
for any ¢ & 1. Also, it is easy to verify that < (4, R), {p;:i & l}>1s
the product of the familly {(4,, R;) 14 & I} In fact, if 5;: (B, P) = (4,, R)
is an is-morphism for any ¢ & I then there is a mapping s: B — 4 such
that s, = p;s for any ¢ & I, since << 4, {p,:4 & I} > is the product of the
familly {4;:¢ & I} (in Ens). But for any #»,y & B, (¥, y) & P implies
(s:(x), s;(y) & R ‘then (ps(x), pys(y)) & R;, for any i &I, namely
(s(x), s(y)) & R. Consequently, s: (B, P) — (4, R) is an is-morphism.

For two is-morphisms f, g: (4, R) — (B, P) we define an iterative
system (K, Q) with K= {rv:2v &4, flx) =g®)} and Q = Ry Let
h: (K, Q) — (4, R) be the inclusion mapping. Then A(Q) C R and / is
an is-morphism. If j: (C, S) — (4, R) is another is-morphism such that
fi = gj then there is a mapping k:C — K, j= hk because < K, h>
is the difference kernel of f, g (in Ens); if (x,y) &S for %,y & C then
(4(x), §(3)) = (bk(x), hk(y)) & K and consequently, (k(x), k(y)) € @, since
h is an inclusion, i.e. & is an is-morphism, and < (K, Q), # > is the diffe-
rence kernel for f, g in Is.

Coproducts and difference cokernels may be construct in the same
manner, Consequently, the category Is has products, coproducts, difference
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kernels and difference cokernels and then Is has any limits and colimits.
Particularly, we can construct the intersection of a familly of iterative
systems and the pullbacks, images and inverse images etc. in a similar way.

4. Some functorial aspeets

Tet Cl be the category of closure spaces and Top — the category of
topological spaces (with continuous mappings). It is known that Cl and
Top have limits and colimits.

The association of a closure space (4, ¢g) to an iterative system (4, R)
defines a functor C:Is — Cl; the association of the topological space
(A, up) to the iterative system (4, R) defines a functor U:It — Top.
The proposition 3.2 provides that C(f) and U(f) are morphisms in Cl res-
pective in Top, for any is-morphism f: (4, R) — (B, P).

The association of a reflexive and transitive relation R* to a relation
R defines a functor O of the category Is into the category of ordered sets
(denoted by Ord). Indeed, the proposition 1.1 provides that (A4/E, R¥)
is an ordered set for any iterative system (4, R). Also, from the proof
of the proposition 3.2, f(R*) (C P* and f(R*~1) C P*~!{or any is-morphism
i (4, R) = (B, P). Accordingly, f is an isotone mapping of (4, R*) into
(B, P*), where 4 = A/(R* NR*Y) and B = B[(P* N P*1).

Proposition 4.1 The functors C, U, O defined above are faithful
and limits preserving functors.

Proof. The proof is similar for any oune of functors. We prove for
example for the first. Tet (4, R) and (B, P) be two iterative systems and
(4, ¢g), (B, ¢p) — the corresponding closure spaces. There is a bijective
mapping of the set of is-morphisms Is((4, R), (B, P)) onto the set of
continuous mappings Cl((4, ¢g), (B, ¢p)) and then the functor C is faith-
ful. Now, we prove that C preserves products and difference kernels. Tet
f,g: (4, R) = (B, P) be two is-morphisms and let (X, Q) be the difference
kernel of f, g in Is, It is easy to prove that (K, ¢ with inclusion
b (K, cg) = (4, cp) is the difference kernel of f, g in Cl. Sitnilarly, for
the product. If (4, R) is the product of the familly {(4,, K)): 7 I} then
(4, cg) is the product (in Cl) of the familly {(4,, cx,) 1 & [} with the same
projections p,: A — A;. Indeed, #;: (4, cg) — (4, CRi) is a continuous
mapping since #;: (4, R) = (4,, R,) is an is-morphism, for any A=WE
Besides, if (4', ¢) is a closure space and, for any s, there is a continuous
mapping s;: (4, ¢') = (4,, ¢x,), then there is a mapping s: A’ — A (since
A is the product in Ens) such that s; = p;s for any 7 & I. But §,;(R) = R,
implies p,(ca(X)) = ex,(£:(X)), and 5;(¢'(X)) C ex,(s,(X)) implies ps(e” (X)) C
C cr,(p;5(X)) and then s(c’(X)) C cp(s(X)) (since {p;:¢ & I} are canonic
projections in Fns) for any set X ( 4. Then s is a continuous mapping
and therefore (4, ¢,) is the product of the familly {(4;, cx,)} in the category
of the closure spaces. Consequently, the functor C preserves the difference
kernels and the products and then C preserves the limits.
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Proposition 4.2. There are three functors:
"C:Cl—=1Is, "U:Top —1Is, "0:0rd - Is
such that C is an adjoint of "'C, U is an adjoint of "U and O is an adjoint

of "'0.
Proof. We have the diagram:

s = Top ———z= Hns

Ord

where F,, IF,, Fy are corresponding forgetful functors and F,C = F,U = I
All this functors are faithful and there are "I, — a coadjoint of Iy, ""F, —
a coadjoint of F, and “F; — a coadjoint of F;. Since the category Is has
limits and the functors C, U, O are limits preserving functors, it follows
from theorem 4 of (1) that C, U, O have adjoint functors, respectively,
IIC, ”U, IIO.

We can counstruct the functors "C, U, "0 directly. Let (4, ¢) be a
closure space. We define a relation R (C 4 X 4 by (%, y) & R ilf v & ¢(x)
for any %, y & A. It is clear that R is a reflexive relation. R is transitive
iff the closure ¢ is topological, and R is an order iff (4, ¢) is a T y-topological
space (i.e. ¥ &¢(y) and y & ¢(») imply x = y). This construction defines
a functor C’: Cl - Is and a functor U': Top — Is (even a functor 7: Ty —
— Ord where T, is the subcategory of T -topological spaces). Indeed, if

fi(d4, ¢) = (47, ¢") is a continuous mapping and x, v €4 then x¥ & c(v)

implies f(x) C fle(y) C ¢'(f(y)) and therefore fis an is-morphism of under-
lying iterative systems. Moreover, if C'(4, ¢) = (4, R) then ¢, 1is the
quasidiscrete modification of the closure ¢. Now, let (4, R) be an iterative
system and (B, ¢) a closure space such that C(4, R) = (4, ¢p) and
C'(B, ¢) = (B, R,). Let f be an is-morphism of (B, R) into (4, R), that
is for any x, v & B, y & c(x) implies (f(x), f(¥)) & R, then f(y) & R(f(¥) C
C ¢ (f(c)) and therefore f:(B,c) — (4, ¢z) is a continuous mapping.
Conversely, if g: (B, ¢) — (4, ¢z) is a continuous mapping, (i.e. f(c(X)) C
C ex(f(X)) for any X C B) then y & c(x) implies f(y) & ¢a(f(#)) = /(x) U
U R(f(x)) and then (f(x), 7(») & R or f(x) = f(»), namely f: (B, R) —
— (A, R) is an is-morphism. This bijective correspondence between the
morphisms of C'(B, ¢) into (4, R) and the morphisms of (B, ¢) into C(4, R)
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prove that C’ is a coadjoint functor of C (that is equivalent with: C is
an adjoint for the functor C') and we can replace C' by "'C. The proof
is the same if we exchange C, ¢’ and Cl by U, U’ and Top. Consequently :

Proposition 4.3 For any closure (topological) space (A, c) the
velation R defined by (%, y) e Riff y &cw), Yz, y & A induces a functoy
of the category of the closure (topological) spaces into the category of iteralive
systems, which 15 @ coadjoint of C(U).

Tet now (4, u) be a topological space. We define an equivalence by
x ~ v iff w(x) = u(y) for any ¥, y & A. Then (A]~, u), with & — the topo-
logical closure operation induced by # in the quotient set,isa Ty — topolo-
gical space and the relation R defined above is an order. In this way, we
obtain a functor “T: Top — Ord which is faithful, limits preserving functor
and which has an adjoint 7. The proof is similar to that of propositions
4.1 and 4.2.

Combining the above results we obtain :

Proposition 4.4. There are ten functors, adjoints in pairs, S
that the following diagram to be commutative

0
Is = Ord
!!C T
Cl = = Top
Ilj
Proof. The functor ' J: Top — Cl is the inclusion (a topological space
is a closure omne) and has an adjoint functor /| — the topological modifi-

cation of the closure space. The commutativity of the diagram follows
from the construction of the functors. Particularly, JC = U = TO is
just the proposition 2.4.

5. Complex interative sysiems

Definition 5.1. Let I be a set and let {R i & I} be a family of

binary relations i1 & seb A, The pair (4, {R;:i &1}) will be called a
complex iterative system.
Let (4, {R;:1 & I}) and (B, {P;: I & 1I}) be two complex iterative

systems. A mapping f: I — B is called a morphism of complex iterative

systems (briefly a cis-morphism) iff (v, 5) & R, implies (f(x), fl)) & P
for any %, y & 4 and for any =N

Proposition 5.1. Al complex iterative systems with morphisms

of complex tlerative cysicms form a category denoted by Cis.
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Proposition 5.2 The association of an dlerative system (A, R)
to a complex tterative system (A, {R;:1 & I}), where R = X{R;:1 = 1}
defines a functor S:Cis —Is. S 45 a faithful functor. l -

; Proof. Let f: (A, {R;:i = 1I}) > (B, {P;:i&1}) be a cis-morphism
hen, for any %, y & A4, (%, ¥) & R, implies (f(x), /() € P; C LT {F;: 11}
therefoi'le, gx(}j‘y) E_:}.c E(,'E{RIE?}%S I} implies (f(x), fly)) € Z{P;ii & j"}. Con-
sequently, = fi (4 e all) = (B, Z{P;. 1 is & ‘phis
in Is. It is clear that S is faithful. S Wernely i maliian

Proposition 5.8 Themapping (A, {R;:7 &l}) — (R,
e 1)) defines a faithul functor V :pé)is €->( Is.{ o G Al

] Proof. Let f: (4, {R;:i & }) > (B, {P;:1 &1}) be a cis-morphism.
Then, ff)r any 1 =1, (%,9) €& implies (f(x), f(y)) & P; and therefore
(x,l_y) & N {R,: 7 & I} implies (f(x), fly)) =N {P,: 1 & I}. Consequently,
Vih=f A NR{:iel}) > B N{Lial}) is a morphism in the
category Is.

Proposition 54 The mapping Y:(4, R) - (4, {R;:i &l
wheve R; = R for any 1 < 1, defines a faithful ff(pmctor) of %s iﬂ;{ztot Cis. Th}z)';
functor vs an adjoint of S and a coadjoint of V.

Proof. Tirst part is clear. For the second, let A, R) be an iterative
system and let (B, {P;i¢ & I}) be a complex iterastive z;vstem. Hor agy
f:A—>B, fis a cis-morphism of Y (4, R) into (B, {Pf;‘é a I}) if and
only if f'is an is-morphism of (4, R) into V(B,{P;:i &l}) and
consequently, the sets of morphisms [(4, R), (B, N {P;:ff < I})] and
[Y(4, R), (B, {P;: i & I})] are isomorphic. Then the bifunctors (—, V(—))
(Y(—), —) are naturally equivalent. Similarly, there is an isomorphisn;
between the set of cis-morphisms of (B, {P;:7 & I}) into Y(4, R) and
the set of is-morphisms of S(B, {P;:+ & I}) into (A, R), and then the
bifunctors (—, Y(—)), (S(—), —) are naturally equivalent.

Y is an embedding functor and then the category Is can be copsidered
a subcategory of the category Cis. Proposition 5.4 proved that the category
Is is a reflective and coreflective subcategory of the category Cis.
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B i a{; SRR R he category of complex ilerative sysiems s
Proof. In the same manner as in proposition 3.6., we have to
prove that the category Cis has products and difference kernels.
Tet {(4;, .{Rj,,-: i< I):j & J} be a familly of complex iterative systems.
Tor any 4 < I, we define R; = U B (Ry):j & J}, where p;: lIA4; — 4;
is the canonic projection (in Ens) and §;: 114; X MMd; - A; X 4; is nal.tui
rally induced by g5, j & J. The complex iterative system (IL4;, {R;:i = I})
with the canonic projections {p;: je& Jb is a product of the familly
{(4;, {Ryy:7 & I}):j & J}. Properly Pi(R) = Ry;, for any j & J and then
#; is a cis-morphism, for any j & J. Also, if {s;:j & J} is a familly of cis-
morphisms of a complex iterative system (B, {P;: ¢ & I}) into the familly
{(4;,{Ri: 1 = 1}):j & J}, there is a mapping s: B — IA4; such that
%: pjs for any j & J (since < IA;, {p;:Jj & J} > is a product in Ens).
ut for any i &I, ¥, y = B, (x,9) & P; implies (s;(x), 5;(3)) & Ry; for
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anyj & J, then (p;s(x), p;5(y)) & Rj, namely (s(x), s(y)) € R;. Consequently
s: (B, {P,:iel}) » (I14;, {R,:i = I}) is a cis-morphism.

For two cis-morphisms f, g: (4, {R;:i &1}) - (B, {P;:t € 1}) we
define a complex iterative system (K, {Q,: ¢ & I}) with K = Kernus (f, &)
and Q, = Ry, for any 1 &I Let h: (K, {Q;:i &1}) = (4, {11 & I}
be the inclusion mapping, i.e. a cis-morphism. Let ¢:(C, {S,:7 & [}) —
— (4, {R;: ¢ & I}) be a cis-morphism such that fi = g/. Then there is a
mapping k: C — K, t = hk (from the definition of K), and, for any ¢ & I,
(x, y) & S, implies (¢(x), ¢(y)) = (hk(x), hk(y)) € R, therefore (k(x), k(y)) &
& Rix = Q,, since / is an inclusion. In conclusion % is a cis-morphism
and < (K, {Q;:i & I}), h > is the difference kernel for f, g in the cate-
gory Cis.

The existence of colimits follows from theorem 5 of (1) since the
category Is is cocomplete and the functor V': Cis -» Is has an adjoint Y.
Naturally, we can construct directly coproducts and difference cokernels.

6. Isomorphisin theorems

Definition 6.1 A cissmorphism f: (4, {R;::&1}) —
— (B, {P;: 1 & I}) will be called a strong factorization (11) or a strong cvs-
morphism if, for any i<l and for any z,y &4, (f(%), f(9) S Py,
mmplies (x, y) & K. ‘ .

Proposition 6.1 All complex itevative systems with strong cis-
morphisms form a category denoted by Ciss. Ciss is a subcategory of Cis. Move-
over, Ciss 1s a balanced category, i.c. every bijection is am 1S0movfism.

Definition 6.2 A relation K C A X A will be called left-permilied
in the complex itevative system (A, {R,: ¢ & I}) if, for any © < I, KR; C K;
An equivalence velation will be called a congruence in (A, {R;: 1 & I}) if
it 1is a lefi-permitied and a vight-permaitled relation.

It is clear that the identical relation I is a congruence in every complex
iterative system with the same set of states.

Definition 63 Let f: (4, {R;:v&l}) > (B, {P,:i&1l}) be a
cis-morphism. The binary velation defined in A by K(f) ={(x, y): f(%) = ()}
will be called the kernel of the cis-morphism f.

Proposition 6.2 For any cis-morphism f, K(f) is an equivalence
velation. K(f) is a congruence iff f is a strong cis-movphisim.

The proof is easy.

Let (A, {R;: ¢ & I}) be a complex iterative system and let E be an
equivalence in 4. If R] is the restriction of R; to the quotient set AlE,
for any i & I, then the complex iterative system (4/E, {R}:i & I}) will
be called the quotient complex iterative system relating to E.

Proposition 6.3 The canonical mapping f: A — A[E is a cis-
epimorphism in the quotient complex iterative system, for awy equivalence
E; fis a strong cis-epimorphism if and only if E 1s a congruence
(A4, {R;:i s 1}).

11 ITERATIVE  SYSTEMS AT

Proof. Tirst part is easy. For the second, let £, ¥ be two classes modulo
E, and let be (%, y) & R/. Then, for any ¥y &% and y &7, (x,y) S R;
iff E is a left-permitted and right-permitted relation.
Proposition 6.4 (I-stisomorphism theorem). Let f: (4, {R;: 1&1})
— (B, {P; 1 & I}) be a cis-morphism, and let K(f) be the kernel of f. If
(AJK(f), {Ri:v & I}) is the quotient complex ilevative system and (f(A),
e EI}) is the f-image complex itevative system then we have the
commutative diagram :

y (A AR iel)) — L (B, {Pic )

I g

(AJR(), (R & 1Y)~ (fA), Ryt i € 1))

where % is the canonical cis-morphism, g is the inclusion of the f-image
— that is a strong cis-monomorphism, and fis the bijection induced natu-
rally by f. If fis a strong cis-morphism then f is an isomorphism in Ciss,
and % is also in Ciss. Consequently, if fis in category Ciss then all above
diagram is in Ciss.

Proof. We have the decomposition f = gfh in Ens. If f is a cis-mor-
phism then g, f and % are cis-morphisms. The propositions 6.1, 6.2 and 6.3

complete the proof.

Proposition 6.5 (Il-ed isomorphism theorem). Let /s be an inclu-
ston of (B, {P;:1 < I}) into (A, }R;: 1 & [}) and let £ be an equivalence
i A. If AJE s considered as a subset of A, let (B',{P{:i & 1}) be the
complex iterative system defined by B’ = B (" (A[E), P{ = P,,, 1 &1.
There s a cis-bijection f:(BJE,{Pi: i =1}) > (B, {P/:ie=l}). If I
1s a congruence then [ is a strong cis-isomorphism.

Proof. Fundamentally B’ = {x: % & A[E, £\ B =0} and % & B|E.
iff ¥ & B'. This bijection (in Eus) is a cis-morphism. As a matter of fact,
we can apply the proposition 6.4 to the cis-morphism 72, where
(A, {R;:i e l}) - (A]E, {R;:7 & I}) is the canonical cis-epimorphism.
Then there is a cis-bijection f = th: (BJK(h), {Pi:i = 1}) — (h({B),
{Ripyp ¢ € 1}) and K(h) = Ep, th(B) = B'.

Proposition 6.6 (IlT-rd isomorphism theorem). Let £ and E”
be two equivalence velations in A and let (A, [R;:i & I}) be a complex itera-
tive system. If E' (C E then we have the following commutative diagram

(A, (ki g IyEaiE {R,’*:gi & )P (/E) K (g). (R i = )
f (AJE,(R!:7i < I}) k

where f, f' and % are canonical cis-epimorphisms and % is an isomorphism.
If E is a congruence then the above diagram is in Ciss, i.e. all morphisms
are strong.
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Proof. It E' C E and [', f are canonical cig-epimorphisms (in the
corresponding quotient systems) then there is a mapping g (in Ens) such
that gf’ = f. It is casy to verify that g is a cis-epimorphism. Proposition 6.4
applied to the cis-epimorphism g prove that % is a cis-isomorphism, Now,
if E is a congruence then f is a strong cis-epimorphism ; E' C E will be,
too, a congruence and then f’ and g are strong cis-epimorphisms. At the
same time f and % will be strong cis-morphisms since K(g) is a congruence
in AJE"

Remark. The final results can be transposed for the simple iterative
systems. Also, the most of above results are independent of the kind of
relations, and they may be formulated for n-ary relations.
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