REVUE D'ANALYSE NUMÉRIQUE ET DE LA THÉORIE DE L'APPROXIMATION, Tome 2, 1973, pp. 49-53

SUPPORTING SPHERES FOR FAMILIES OF SETS IN PRODUCT SPACES by HORST KRAMER

ga vange renerge le su mestaman (Chuj) - Su ee Fanil enen le en dues en d omological and a later to the control of the later to the control of the later to t

Let M be a given set in the n-dimensional Euclidean space R^n . We shall denote by conv M the convex hull of M, i.e. the intersection of all convex sets in \mathbb{R}^n which contain the set M. In the following we need the notion of convexly connected sets introduced by O. HANNER and H. RAD-STRÖM in [5].

Definition 1. A set M in \mathbb{R}^n is called convexly connected, if there is no hyperplane H such that $H \cap M = \emptyset$ and M contains points in both

the open halfspaces determined by H.

Remark. The notion of convexly connected sets is used in [8] also with

an other meaning.

It is easy to verify that a connected set is also convexly connected and that the union of convexly connected sets having a point in common is convexly connected.

Definition. 2. Let M be a set in R". A maximal convexly connec-

ted subset of M will be called a convexly connected component of M.

O. Hanner and H. Radström have shown that there is a unique decomposition of a set M into convexly connected components. They have also proved the following result ([5], corollary 1): If $M \subset \mathbb{R}^n$ is compact and has almost n convexly connected components, then for each point p in conv M there exist n (or fewer) points a_1, a_2, \ldots, a_n of M such that pbelongs to conv $\{a_1, a_2, \ldots a_n\}$.

H. KRAMER and A. B. NÉMETH have given in [6] the following two

definitions:

Definition 3. There will be said that the family F of sets in a metric space E has a supporting sphere, if there is a sphere S in E having

^{4 -} Revue d'analyse numérique et de la théorie de l'approximation, tome 2, 1973.

common points with each member of the family F and the interior of S con-

tains no point of any member of F.

50

Definition 4. A family F of sets in R" is said to be independent if for any n+1 pairwise distinct members $K_1, K_2, \ldots, K_{n+1}$ of F any set of points $p_1, p_2, \ldots, p_{n+1}$, where $p_i \in K_i$, $i = 1, 2, \ldots, n+1$, determines a simplex of dimension n, or equivalently the vectors $p_2 - p_1, p_3 - p_1, \ldots$, $p_{n+1} - p_1$ are linearly independent. An equivalent condition is: $p_1, p_2, \ldots, p_{n+1}$ are in general position (see [3], p. 12 definition 5).

A family F of sets is independent if and only if there is no hyperplane

which intersects n + 1 (or more) members of F.

THEOREM 1. Let $F = \{K_i : i \in I\}$ be a family of independent compact convexly connected sets in \mathbb{R}^n . Then

$$F_{conv} = \{ conv \ K_i \colon i \in I \}$$

is a family of independent compact sets.

Proof. The sets K_i are compact by the theorem of Mazur (see for instance [7], theorem 3.2.18). Suppose now that the family F_{conv} is not independent. Then there exist n+1 members of F_{conv} , say conv K_i , $i=1, 2, \ldots, n+1$, which are not independent. Let be H a hyperplane for which $H \cap \text{conv } K_i \neq \emptyset$, i = 1, 2, ..., n + 1. Let be $a_i \in H \cap \text{conv } K_{ir}$ $i=1, 2, \ldots, n+1$. Because K_i is convexly connected and a_i is in conv K, by the theorem of O. Hanner and H. Radström there are n points $a_1^{(i)}, a_2^{(i)}, \ldots, a_n^{(i)}$ in K_i such that

(1)
$$a_i \in \text{conv } \{a_j^{(i)} : j = 1, 2, ..., n\}.$$

We have also $a_i \in H$. Let us now suppose $H \cap K_i = \emptyset$. The hyperplane H determines in R^n two open halfspaces H' and H''. By (1) and by our supposition $H \cap K_i = \emptyset$ follows then $H' \cap K_i \neq \emptyset$ and $H'' \cap K_i \neq \emptyset$ $='\emptyset$.

This contradicts the property of K_i to be convexly connected. Therefore $H \cap K_i = \emptyset$, $i = 1, 2, \ldots, n + 1$. This is in contradiction with the independence of the family F. That completes the proof of our Theorem.

Remark. The hypothesis that the sets K_i are convexly connected is essential. Let be a_i , $i=1, 2, \ldots, n$, n linearly independent points in R^n and let be H the hyperplane determined by these n points. Choose 2 points b_1 and b_2 on opposite sides relative to H. Consider now $K_i = \{a_i\}, i = 1, 2, \dots$..., n and $K_{n+1} = \{b_1, b_2\}$. Of course $\{K_1, K_2, \ldots, K_{n+1}\}$ is a family of independent sets, but this cannot be said about the family $\{\text{conv } K_1, \ldots, K_n\}$ conv K_{n+1} .

In the proof of theorem 1 it is not necessary to use the theorem of Hanner-Radström. The proof can be made also with the well-known theorem of Caratheodory on the convex hull of a compact set (see [1]).

Lem ma 1. Let be $K_1, K_2, \ldots, K_{n+1}$ independent convex sets in R^n , and let be a_i , $b_i \in K_i$, $i = 1, 2, \ldots, n + 1$. Then conv $\{a_1, a_2, \ldots, a_{n+1}\} \cap \text{conv } \{b_1, b_2, \ldots, b_{n+1}\} \neq \emptyset.$ *Proof.* Let us suppose

conv
$$\{a_1, a_2, \ldots, a_{n+1}\} \cap \text{conv } \{b_1, b_2, \ldots, b_{n+1}\} = \emptyset.$$

By the theorem on the separation of polyhedra (see [7], p. 68 theorem 2.12.9) the two simplexes conv $\{a_1, a_2, \ldots, a_{n+1}\}$ and conv $\{b_1, b_2, \ldots, b_{n+1}\}$ can be separated by a hyperplane H. From the convexity of K_i , from $a_i, b_i \in K_i$ and from the fact that a_i and b_i are on opposite sides relative to H, follows $H \cap K_i = \emptyset$, in contradiction with the independence of the family $\{K_1, \ldots, K_{n+1}\}$ This completes the proof of the lemma.

Le m m a 2. Let be C_i , i = 1, 2, ..., n + 1 independent compact convexly connected sets in R^n . If a_i , $b_i \in \text{conv } C_i$, i = 1, 2, ..., n + 1 then:

 $\operatorname{conv}\left\{\tilde{a}_{1}, a_{2}, \ldots, a_{n+1}\right\} \cap \operatorname{conv}\left\{\tilde{b}_{1}, \tilde{b}_{2}, \ldots, b_{n+1}\right\} \neq \emptyset.$

By theorem 1 follows the independence of the sets conv C_i , $i = 1, 2, \ldots$

..., n + 1. Then lemma 2 follows immediately from lemma 1.

The following theorem was proved in [6] by H. KRAMER and A. B. NÉMETH:

THEOREM 2. Let be $K_1, K_2, \ldots, K_{n+1}$ independent convex and compact sets in Rⁿ. Then this family admits one and only one supporting sphere.

Let now E_1 , E_2 be two metric spaces with the distances d_1 , d_2 on E_1 respectively E_2 . In $E_1 \times E_2$ can be defined two distances d' and d'' in the following way: For any pair of points $x = (x_1, x_2)$, $y = (y_1, y_2)$ let:

$$d'(x, y) = d_1(x_1, y_1) + d_2(x_2, y_2)$$

and

$$d''(x, y) = ((d_1(x_1, y_1))^2 + (d_2(x_2, y_2))^2)^{1/2}.$$

Denote by E' respectively E'' the corresponding metric spaces.

THEOREM 3. Let $F_1 = \{A_i : i \in I\}$ and $F_2 = \{B_j : j \in J\}$ be families of compact sets in the metric space E1 respectively E2. The family of compact sets $F_{12} = \{A_i \times B_j : i \in I, j \in J\}$ in E' (respectively E'') has a supporting sphere if and only if the family F, has a supporting sphere in E, and the family F2 has a supporting sphere in E2.

Proof. We shall prove our theorem only in the case when F_{12} is considered as a family of compact sets in E''. The other case may be treated in the same way. The compactness of the members of F_{12} in E'' (respectively in E') follows from ([2] p. 72, theorem 3.20.16).

Necessity. Suppose that F_{12} has a supporting sphere in E'', i.e. there is a point (a_1, a_2) in $E_1 \times E_2$ such that

$$d''((a_1, a_2), A_i \times B_j) = d''((a_1, a_2), A_k \times B_h)$$

for each $i, k \in I$ and $j, h \in J$. We have then in particular

(2)
$$d''((a_1, a_2), A_i \times B_j) = d''((a_1, a_2), A_k \times B_j)$$

for a fixed j in J and for all i, k in I. As

$$\begin{split} d''((a_1,\ a_2),\ A_i\times B_j) &= \min\left\{d''((a_1,\ a_2),\ (x_1,\ x_2)): (x_1,\ x_2) \in A_i\times X_1 \times B_j\right\} \\ &= \min\left\{(d_1^2(a_1,\ x_1) + d_2^2(a_2,\ x_2))^{1/2}: (x_1,\ x_2) \in A_i\times B_j\right\} \\ &= ((\min\left\{d_1(a_1,\ x_1): x_1 \in A_i\right\})^2 + (\min\left\{d_2(a_2,\ x_2): \in B_j\right\})^2)^{1/2} = \\ &= (d_1^2(a_1,\ A_i) + d_2^2(a_2,\ B_j))^{1/2}. \end{split}$$

We can then write (2) under the form:

$$d_1^2(a_1, A_i) + d_2^2(a_2, B_j) = d_1^2(a_1, A_j) + d_2^2(a_2, B_j).$$

Hence $d_1(a_1, A_i) = d_1(a_1, A_k)$ for all i, k in I, i.e. the family F_1 has a supporting sphere with the center a_1 . The same reasoning can be applied to show the existence of a supporting sphere for the family F_2 with the center a_2 .

Sufficiency. Suppose that F_i has a supporting sphere in E_i with the center a_i , i = 1, 2. Then we have

$$d_1(a_1, A_i) = d_1(a_1, A_k)$$
 for all i , k in I

and

$$d_2(a_2, B_i) = d_2(a_2, B_i)$$
 for all j, h in J .

Hence $d''((a_1, a_2), A_i \times B_j) = d''((a_1, a_2), A_k \times B_k)$ for all i, k in I and j, k in J, i.e. the family F_{12} has a supporting sphere in E''.

THEOREM 4. Let $F_n = \{C_1, C_2, \ldots, C_{m+1}\}$ be a family of independent compact convexly connected sets in R^m and $F_n = \{D_1, D_2, \ldots, D_{n+1}\}$ a family of independent compact and convexly connected sets in R^n . Then the family

$$F = \{ \text{conv } C_i \times \text{conv } D_j : i = 1, 2, ..., m+1 ; j = 1, 2, ..., n+1 \}$$

has one and only one supporting sphere in R^{m+n} .

Proof. By theorem 1 follows the independence in the space R^m of the family $F_{m, \text{conv}} = \{\text{conv } C_i : i = 1, 2, \ldots, m+1\}$ and the independence in the space R^n of the family $F_{n, \text{conv}} = \{\text{conv } D_j : j = 1, \ldots, n+1\}$. By theorem 2 $F_{m, \text{conv}}$ has a unique supporting sphere in R^m and $F_{n, \text{conv}}$ has a unique supporting sphere in R^n . The existence and the unicity of a supporting sphere for the family F follows then from theorem 4.

REFERENCES

- [1] Caratheodory, C., Über den Variabilitätsbereich der Fourierschen Konstanten von positiven harmonischen Funktionen. Rendiconti del Circolo Matematico di Palermo 32. 193 (1911).
- [2] Dieudonné, J., Foundations of modern analysis, New York, Academic Press 1960.
 [3] Eckhoff, J., Der Satz von Radon in konvexen Produktstrukturen. I, Monatshefte für Mathematik 72, 303-314 (1968): II, ibid 73, 7-30 (1969).
- [4] Fenchel, W., Über Krümmung und Windung geschlossener Raumkurven. Mathematische Annalen 101, 238-252 (1929).
- [5] Hanner, O., Radström, H., A generalization of a theorem of Fenchel. Proc. Amer. Math. Soc. 2, 589-593 (1951).
- [6] Kramer, H., Németh, A. B., Supporting spheres for families of independent convex sets. Archiv der Mathematik 24, 91-96 (1973).
- [7] Stoer, J., Witzgall, Ch., Convexity and Optimization in finite Dimensions I, Springer Verlag, 1970.
- [8] Valentine, F. A., Konvexe Mengen. Bibliographisches Institut-Mannheim (1968).

Received 29. XI, 1972.

Institutul de calcul din Cluj al Academiei Republicii Socialiste Rom**â**nia