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SUPPORTING SPHERES FOR FAMILIES
OF SETS IN PRODUCT SPACES

by
HORST KRAMER

(Cluj)

Tet M be a given set in the n-dimensional Fuclidean space R". We
shall denote by conv M the convex hull of M, i.e. the intersection of all
convex sets in K" which contain the set M. In the following we need the
notion of convexly connected sets introduced by o. HANNER and H. RAD-
STROM in [5].

Definition 1. A set M in R" is called convexly connected, if there
is no hyperplane H such that H (N M =& and M contains points in both
the open halfspaces determined by H.

Remark, The notion of convexly connected sets is used in [8] also with
an other meaning.

It is easy to verify that a connected set is also convexly connected and
that the union of convexly connected sets having a point in common is
convexly connected.

Definition. 2. Let M be a set in R". A maximal convexly connec-
ted subset of M will be called a convexly comnected component of M.

O. Hanner and H. Radstrom have shown that there is a unique de-
composition of a set M into convexly connected components. They have
also proved the following result ([5], corollary 1): If M C R" is compact
and has almost # convexly connected compomnents, then for each point
$ in conv M there exist n (or fewer) points a4, a,, ..., a, of M such that p
belongs to conv {a,, a,, ... a,}.

o, KRAMER and A, B. NEMETH have given in [6] the following two
definitions :

Definition 3. There will be said that the fawily I of sels in a
metric space E has a supporting spheve, if there is a sphere S in I having

4 — Revue d'analyse numérique et de la théorie de lapproximalion, tome 2, 1973.



50 HORST KRAMER 2

common points with each member of the family F and the interior of S com-
tains no point of any member of F.

Definition 4. A family F of sets in R* is said to be independent
if for any n + 1 pairwise distinct members Ky, Ky, ..., Ky of F any set

of points Py, pa, - oy Puir, where p; S K, 1 =1, 2, ..., n 1, determines
a simplex of dimension n, or equivalenily the vectors p, — Py, ps— P1, « -+
Puir — Py are linearly independent. An equivalent condition 15 : Py, ps, . .., Pt

are in general position (see [3], p. 12 definition 5).

A family F of sets is independent if and only if there is no hyperplane
which intersects # -+ 1 (or more) members of F.

TaEOREM 1. Let F = {K;:1 & I} be a family of independent compact
convexly connected sets in R". Then

Fconv . {COHV I(i: = I}

is a famaly of independent compact sets.

Proof. The sets K, are compact by the theorem of Mazur (see for
instance [7], theorem 3.2.18). Suppose now that the family Feony is not
independent. Then there exist # 4 1 members of Feuy, say conv K,

i=1,2, ..., »-+ 1, which are not independent. Let be H a hyperplane
for which HNconv K, =@, 1= 1,2, ..., n+ 1. Let be a; &€ H() conv K,
i—=1,2, ..., n-+ 1 Because K; is convexly connected and a; is in conv

K,, by the theorem of O. Hanner and H. Radstrém there are » points

a", g - a? in K, such that

(1) a; & conv {a,(-“ =12, ..., n}

We have also a; & H. Let us now suppose H () K; = . The hyperplane
H determines in R" two open halfspaces H' and H". By (1) and by
our supposition H (N K; = @ follows then H' N K, =@ and H" N K, =*
= .

This contradicts the property of K; to be convexly connected.
Therefore HN K;=+@, ¢ =1, 2, ..., n+ 1. This is in contradiction:
with the independence of the family F. That completes the proof of our
Theorem.

Remark. The hypothesis that the sets K; are convexly connected is
essential. Tet be a;, ¢ =1, 2, ..., », n linearly independent points in R”*
and let be H the hyperplane determined by these n points. Choose 2 points
by and b, on opposite sides relative to H. Consider now K; = {a;}, =12, ...

oy oand Ky = {0y, by} Of course {K,, K,, ..
independent sets, but this cannot be said about the family {conv K, ...~
conv K, 1}

In the proof of theorem 1 it is not necessary to use the theorem of
Hanner-Radstrom. The proof can be made also with the well-known theo~
rem of Caratheodory on the convex hull of a compact set (see [1]).

., K1} is a family of
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Lemma 1. Let be Ky, K,, ..., K, tndependent convex sets in
R, and let be a, b, s K, +=1,2, ..., n+ 1. Then

conv {a;, @y, ..., a1} () conv {b;, by, ..., b, # .
Proof. Let us suppose T -
conv {ay, @, ..., @y1} () conv {by, by, ..., byy1} =@

By the theorem on the separation of polyhedra (see [7], p. 68 theorem
2.12.9) the two simplexes conv {a,, 4,, ..., @,,:} and conv {by, g, .., bugr}
can be separated by a hyperplane H. From the convexity of K, from
a;, b; & K; and from the fact that a; and b, are on opposite sides relative
to H, follows I (" K, =*, in contradiction with the independence of the
family {K;, ..., K, 1} This completes the proof of the lemma.

Lemma 2. Let be C,, v =1, 2, ..., n+ 1 independent compact
convexly conmected sets in R*. Ifa;, b, Sconv C,,i=1,2 ...,n 4 1 then:
conv {ay, @y, ..., @y} () conv{by, by, ..., 0,01} =0.

By theorem 1 follows the independence of the sets conv C;, i = 1,2, ...
..., #n 4+ 1. Then lemma 2 follows immediately from lemma 1.

The following theorem was proved in [6] by u. KRAMER and A. B,
NEMETH :

THEOREM 2. Let be Ky, K, ..., K, independent convex and compact
sets in R". Then this family admits one and only one supporting spheve.

Let now E,, E, be two metric spaces with the distances d,, d, on E,
respectively E,. In E; X E, can be defined two distances @' and 4"’ in the
following way : For any pair of points x = (x, %,), ¥ = (y1, ¥,) let:

a'(x, y) = di(x, y,) -+ do(%5, V)

and

a"(x, ) = (dalx1, ¥1))* + (do(35, 3))9)"*.

Denote by E’ respectively E’ the corresponding metric spaces.

THEOREM 3. Let Fy, = {A;:i &I} and Fy = {B;:j & J} be families
of compact sets in the metric space Ey respectively E,. The family of compact
sels Fry ={4; X Bj:i &1, & J} in E' (respectively E"') has a suppor-
ting spheve if and only if the family F, has a supporting sphere in E | and
the family F, has a supporting sphere in E,.

Proof. We shall prove our theorem only in the case when F,, is consi-
dered as a family of compact sets in E”’. The other case may be treated in
the same way, The compactness of the members of Fy, in E" (respectively
in E’) follows from ([2] p. 72, theorem 3.20.16).

. Necessity. Suppose that I}, has a supporting sphere in E”, i.e. there
1s a point (a, a,) in E, X E,such that

d”(((llr 42)» A4, X Bj) = du((“l: az); Ak. X Bh)
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for each 4, k & I and j, # & J. We have then in particular
(2) d"((ar, az), 4; X Bj) = d"((ar, as), 4, X Bj)
for a fixed jin J and for all 4, kin I. As

a"((ay, ay), A, X B;) = min {d""((ay, a,), (%1, %)) (%, #4,) & 4; X
X B;} = min {(d}(a;, %) + d%(a,, %)) (x,, x,) & A; X By} =
= ((min {dy(ay, %,): % € A})* + (min {dy(a,, %,): & B;})})? =

= (d}(ay, 4;) + d3(as, By))'~.

We can then write (2) under the form:
di{an, A) + di(as, Bj) = di(ay, Ay) + di(ay, Bj).

Hence dy(a,, A;) = dy(ay, A,) for all 4, Zin I, i.e. the family F; has a suppor-
ting sphere with the center a,. The same reasoning can be applied to show
the existence of a supporting sphere for the family F, with the center a,.

Sufficiency. Suppose that Ff; has a supporting sphere in F; with the
center a;, ¢ = 1, 2. Then we have

dy(a,, 4;) = d(a,, 4,) forall ¢, kin I
and

do(as, Bj) = dy(as, B)) for all 4, & in J.
Hence d"'((ay, a,), A; X By) = d"'((ay, a,), 4, X B,) for all 4, kin I and
4, hin J, i.e. the family F;, has a supporting sphere in E”.

THEOREM 4. Let F,, = {C,, Cy, ..., Cpy1} be a family of independent
compact convexly comnected sets tnw R™ and I', = {Dy, D,, ..., Dyia} a fa-
mily of independent compact and convexly conmected sets in R*. Then the

famaly
F={convC, XconvD;:i=12 ..., m+1;7=12,...,n}1}

has one and only one supporiing spheve in R™+7,

Proof. By theorem 1 follows the independence in the space R” of the
family F, cow = {conv C;:4 =1, 2, ..., m -+ 1} and the independence
in the space K* of the family I, couy == {conv D;:7 =1, ..., n + 1}.
By theorem 2 F,, cony has a unique supporting sphere in R” and I, conv
has a unique supporting sphere in R”. The existence and the unicity of a
supporting sphere for the family F follows then from theorem 4.
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