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In [1] 6. 6. LORENTZ and K. I. ZELLER have studied the order of ap-
proximation of monotone functions by means of monotone polynomials in
the uniform metric. The purpose of this paper is to obtain the exact
order of monotone approximation in Hausdorff’s metric. From our results
and the relation between uniform and Hausdorff’s metric, the estimates,
obtained in [1], follow.

1.

Let us recall the main results from [1].

The 2r-periodic function f will be called bell-shaped if f is even and
if f decreases in [0, n]. The analogue to the approximation of monotone
functions by monotone polynomials in the 2n-periodic case is the approxi-
mation of bell-shaped functions by means of bell-shaped trigonometric
polynomials.

Let o(f, 8) be the modulus of continuity of the continuous 2r-periodic
function f:

o(f; 8) = max |fl¥) — fW); |» —y| < 3.

In [1] the following theorem is proved :

There exists a constant C with the following property : for each bell-
shaped function f one can find a bell-shaped trigonometric polynomial
T, of n-th order such that

(1) max |flx) — T,(x)| < co(f; 1/n).
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"Phis theorem shows that the order of approximation of bell-shaped
functions by means of bell-shaped trigonometric polynomials of #-th order
in general is the same as the order of approximation by means of arbitrary
trigonometric polynomials of #-th order (compare with the Jackson’s theo-
rem, for example [2]).

For the algebraical case in [1] the following result is obtained :

There exists a constant C, with the following property: if f is an
increasing function on [—1, 1], then there exists a sequence of polynomials
p, of n-th degree, increasing in [—1, 1], such that

(2) [f(x) — pal®)] < Coo(f; A(x)) for x € [—1, 1]

where A, (%) = max [\/1 — x2fm, 1/n2], n=1,2, 3, ...
In this paper we shall consider the Hausdorff distance between functions
(see [3], [4] and 2. for the definition). We shall prove the following.
rHEOREM 1. There exists a constant ¢ such that for every o> 0 and
for every bell-shaped function f there exists a sequence of bell-shaped trigo-
nometric polynomials {T}tn—1 (T, is of n-th order), which satisfy

. ) In el + anw(f; 1/n)
(3) /,.‘b_(a ’ f' T”) = Cm(f’ 1/%) 1+ ane(f; 1/n) ’

where v(o; f, T,) is the Hausdorff distance (with a parameter «) between
f and T,.
Since for f continuous

lim s(a; £, T,) =3(0; f, T,) = max |f(x) — T,(%)l,

a—0

from (3), letting o — 0, we obtain Lorentz and Zeller’s result (1).
On the other hand, setting @ = 1 we obtain the following estimate:

a(f, T,) =3(l; £ T,) = Ollnn/n),

which shows that the order of monotone Hausdorff approximation is the
same as the order of approximation by means of arbitrary trigonometric
polynomials in the Hausdorft metric (see [3]).

In the algebraic case we have

FHEOREM 2. Let f be an increasing function on [—1, 1]. There exists
a sequence of algebric polynomials (P =1(P, is of n-th degree and is increa-
sing in [—1, 1]), such that

(4) 1f(#) = Po(®)la < co(f; Bn(0)/(1 + aby (®)o(f; An(),

S—— —
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where A, (%) = \JT — xt/m + m~2, m= [n/ln e(1 + aMm?)], M = max |f(x)],
¢, 95 a constant and |f(x) - P,(x)|, is the Hausdorff difference wzlt% 3 para-

meter o between f and P, in the point x. (See 2. for the definition).
Since

lim | f(x) = P,(#)], = [f(%) = P,(#)lo = /(%) — P,(#)]

a—=0
for f continuous at the point , from (4), setting « -0, we obtain (2).
2.

Let us recall the definition of the Hausdorff distance with a parame-
ter « > 0 between two bounded functions f and g in the interval A,

Let f be the completed graph of the function f:
f=NG fCG G eF,,
where I, denotes the set of all point sets in the plane, convex with

respect to the y axis and the projection of which on the axis » coincides

with A, and f denotes the graph of the function f.

) The Hausdorff distance with parameter « between f and g is defined
y

(5) o(a; f, §) = max {max min max [«~x — E|, |y — 7|],
(zyyef (Eme=g

max rnin_ max [a~Yx — &, |y — 7|}
(zy)=g (Em)=f

If f and g are continuous functions, then (5) can be expressed as
follows |

(6) (o /o g) = max [ f(x) -~ g(#)l.

/%) = g(#)l, = max{min max [a~Hx — E|, |/(#) — (8],

(7) | min max [e~!r — &, |f(§) — g(x)|]}.

E=A

is the Hausdorff difference with a parameter « between f and g in the
point x.
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From (6) and (7) when f and g are continuous we obtain

(8) 1133 1f(x) = g(®)], = |f(%) — &),
©) lig}) w(o; £ g) =2(0; 1, 8 = max |f(%) — g(#)].

Let f be a 2rn-periodic integrable function and let m and ¢ be positive
.integers. Let us conmsider the trigonometric polynomial of order <<wmt:

k13

TMU;M=MMSfM+ﬂWAML

Yo <() = (sin(me/2) /Isin(t/z))zﬂ

whete W, is defined by

(10) Pome S q)m,'r(t)dt = L

—T

If f is a bell-shaped function, the polynomial T\, (f; ) may not be
a bell-shaped function in general. But if fis a bell-shaped step function
with jumps in the points Er/m, then, similarly as in [1], it is easy to see
that T,..(f; %) is also a bell-shaped function.

Let f be a bell-shaped step function with jumps ¢, in the poitns kwcfm,
=1 2,3 ..., m— L Then

m—1 krtjm
Tmﬁ (f: x) = Mmz Z Cp S kl"mn'(x — t) dt.
— kr/m

kr/m
The functions ,(%) = S doal — Odt, B =1,2, 8, ..., m—1 are
—kmfm
bell-shaped, because ¢,(x) are even and for x < [0, ©] @i(x)
with [1]):

A

0 (compare

or(%) = Ymalx + krjm) — b2 — frc[m) =
— sin® (mx/2 + knf2) [1/sin® ((x + krjm)[2) — 1[sin® ((x — krjm)[2] £ 0,
since
|sin ((x + krjm)[2)| 2 |sin (v — kn/m)[2) | for x € [0, =]
(sin (« + B) = |sin (« — B)] for 0<a B=r/2).
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Therefore we have the following

Lemma 1. Let f be a bell-shaped step function with j

3 ; the
points kx|m. Then, 1 L th jumps at
nomial ojl ovder < éTm and © are positive integers, the trigonometric poly-

Toolf5 %) = tme S flx -+ 1) [sin(mi/2) [sin(¢/2) 1> d

is a bell-shaped function.
3. Let f be a bell-shaped function and let us consider the function

F(10kn/m) for 10kn/m < x < 10m(k + 1)/m,

E=0,1,2 ..., %, kg =maxv, 10(v + 1) £ m,

m\X) =
fu() f(x) for 10wkofm = x £ =,
f— %) for —n 22 20,
Obviously
(11) ®(a; f f) < min [10nx/am, o(f; 107/m)].
+ We denote

%= (24 V5njm, i =1,2,3, ..., kg —1; 2,=0, %, =

If m = 10/, | — positive integer, then g i
function (lemma 1). From now o§ we suppiﬁéﬂg:}}%;‘é :2:1: IaOl bell-shaped
From the definition of the Hausdorff distance and fr(')m the fact
that f, and Tws (fn; %) are bell-shaped functions, it follows that in order
to estimate (o ; f,, Tu.(ts) it is sufficient to estimate

(12) |fm(x1) - Tm,r(fm; x,‘)l; i=0, 1, 2, e, ko.

Let us now estimate (11). From (10) we have

b /m
1 = ‘Lm,‘r S qv‘m'q;(i) dt _Z_ 2“’”1,1‘ S q)m',r(t) dt z
—_r 0
T/

z%wj«mmwmww=«wWWAwﬂ

or

0< Pme = (n/zm)21—1/4.
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Then we have

| Tone s %) — Su(®)] S tme S | S + 1) — f)] dme(t) 2 =

—T

ko

< Qpz 2 (f; 10km/m)

k=1

f Ynme(t) At <

Skrt/m

< [(mw)2m)>=" [(4v — 2)] % o(f; 10km/m) n2=(5km/m)~2+1 <

< n(r/10)2- o (f; 10m/m) (’g k—21+2)/(2¢ —1).

Let v 2 2. Since

SR < 22— 1), s 22
k=1

we obtain

(18)  |fu(#) — Tuelfurs 2:)| S 2n(m/10)%~a(f; 10m/m)/(2v — 1) =
< Ome—w(f; 10n/m)fz; i=0,1,2 ..., k.

Let 8 = In e3(1 + an o(f; 1/n)), setting in (13) = = [B], m = 10 [»/107]

we see that there exists an absolute constant C, such that

(14) VT fns %) — fu(®)] £ Colf; 1n)[(1 + ano(f; 1/n),
i=0,1,2 ... ke

and T,/ ; #) is a bell-shaped trigonometric polynomial of orfier at most #.
From (14) and the definition of Hausdorff distance it follows that

'6(05; Tm,r(fm)l fm) =
o(f; 1/n)
14 onw(f;1/n)

am w

(15) < max {c

) Ine(l + ano(f; 1/m)
£ Co(f; 1/n) 1 4+ an o(f; 1/n)

where C; is a constant.

. 10w . 10__1\' o(f; 1/n)
’ mln[—’ O)(f, )+C1—|—anm(fi1/n)

IS

=
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From (11) we obtain (m = 10[»#/10[B]], P = In e¥(1 + anw(f; 1/n))):

3(a; f; fu) < min {10x/om, o(f; Sujm)} < Cyo(f; 1/n) 2 i”(iin:’:;’ffl?llf””,
(16)

From (15) and (16) we obtain

. In e(1 -+ ano(f; 1/n))
; Tm'r m é ; 1 ’
3(a5 f, Tuslfl) S Colf; 1) 2Ll

where T, .(f,) is a bell-shaped trigonometric polynomial of #-th order
and C is an absolute constant. This proves Theorem 1.

As a corollary in the case o = 1 we obtain

THEOREM 3. There exists an absoluté constant ¢ with the properties:

Jor every bell-shaped function f there exists a bell-shaped trigonometric poly-
nomial T, of n-th ovder such that

o(f T,)=93(1;f T) =2 é(lnnM)n,
where M = sup |f(x)].

4.

Now we shall consider the algebraic case. Let f be an increasing func-

tion in [—1, 1]. We write g(x) = f(cosx). Then g(x) is a bell-shaped func-
tion.
Using the notation from 3., let us estimate

]gm(x‘i) - Tm.’r(gm; x')l! 1" = OJ 1) 2; sy ko-

‘We have

|Tm,'r(gm; xi) - gm(xl')l é P‘m,‘r S Igm(xi + t) - gm(xi)l q’m,f(t) dt =

(17) In
T —5mfm
= tmed § 18 ) — & NWmel) dt+ (gl ) = g(n") | hmsl) ]
5mt/m -7
where
& — x| < 10n/m; & — x;] < 10%/m ;
In" — x| £ 10njm; 7" — %] £ 10%/m.
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> 57:7‘:; us estimate |g(€' 4-¢) — g(£")|. It is easy to see that for ¢ 2

(18) g(&" + 0) — g(8")] = | flcos(’ + 1)) — f(cos &")| =
=o(f; lcos (8 + 1) — cosn"| < cuo(f; [¢] [sin x| + #)

where ¢, is an absolute constant,
We have also

(19) lg(n” +2) — g(n")] < coo(f; |#] Isin x| + #).
From (17), (18) and (19) we obtain for = = 2:

I Tome(@m s %) — Em(x:)| S 2y S o(f; [t |sin ;| 4 ) m<(t)dt S

Srefm

< Qpacso(f 5 57 [sin x,|/m + (Sn/m)?) (Snfsin xlfm + (Sr/m)h-1. X
X S (tlsin 2;| + ). (H)dt < ca(m/2m)2 =1(5x|sin x;|[m + (Sm/m?)~1 X
Smfm

X o(f; 5nlsin x| /m + (5re/m)®) > (|sin ;) (m[5m)2~2 /(27 — 2) +
+ (m[5m)%=2 (27 — 3)) < eoBre(m/10)2-1wo(f; Smisin x;|/m +
+ (5nfm))[(2v — 3) < Smese=*o(f; Srisin x;)/m + (5m/m?)/(26 — 3).
We have found that if © 2 2 then
(20) 1 Tomslgms %) — gn(%)| £ oo™l (f; Srfsin x| fm+(5m/m)?))/(2v — 3),

where ¢; is an absolute constant.
Let § =1Ine*(l 4 am?M); M =max|f(x)|. Setting t= [B] in (20) we
X

see that there exists an absolute constant ¢, such that

(21) \Tone(8m s %) — Eu(®)| S caos(f; Aplat)| (1 + am2M) %)

* Do) = A1 — wljm + m=2 = \[1 — costmsim 4 m—
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9
where T,,(g,) is a trigonometric polynomial of order £ m In &2 (1 4
+ amtM) and Tq(gm; %) is a bell-shaped function if m = 104, I — posi-
tive integer.

Let us denote
Foultt) =g,q(arccos u), w;=cos x;, =0, 1,2, ..., ky; P(u)=T,,-(gn arccos u),

P(u) is an increasing algebraic polynomial of degree

< m In e2(1 4 am?M).

We have

(22)  |cos(10kn/m) — cos(10m(k + 1)/m)| £ es(y/T — uifm + m=3).

Using the construction of g,, (22) and (7) we obtain
(23) | fultts) = flu)l, S min [egA,,(u5) [0, coo(f; Anlws) ]
(7), (21) and (23) give us
|P(;) = flusi)le S [P) = fu()le + | Fn(t) = Ftt:)lo
< c0(f; An())/(1 + am2M) 4 min[csA, ()], ceo(f5 Am(u))].

(24)

From (24) it is easy to obtain
@5)  |P(h) = flu)le S co(f; An(m)) /(1 + als ()olf 5 Aulm))),
where A,,(#;) = \/ 1 — u?m + m~% and ¢, is an absolute constant.
Tet u; £ ¥ < w;_;. From (7), (25) and the monotony of the functions
f and P it follows
|P(x) = f(#)l, < min [l — o;4l/0, o(f; | — )] +

P(Mi—l) loc] é
o(f 5 Am(i) <
14 b w)o(f 5 ()

(26) + max([lg(u;) = Plui)ly |f(4i-1) =

é min [CsAm(u’i)/o‘J "‘)(f; Am(ui))] + Cq

< co(f; An(®)/(1 + adn (Wo(f; ()

where ¢, is an absolute constant. Since P(x) is a monotone function of
degree = m In e2(1 4 am*M), (26) proves the Theorem 2.
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As a cotollary in the case « = 1 we obtain

crarorEM 4. There exists a constant ¢, such that for every function f
increasing n the interval [—1,1] there exists a sequence of algebraic poly-

nomials {P)7(P, is of n-th degree and increasing in [— 1,11) such that

(8) = P(3)le < &[22 YT 4 [(*222]).

n

where M = max |f(x)]

l#ls1

If we compare the last result with the onme in [5], it is seen that
in both cases the order of approximation is the same. .
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