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1, Introduction

In a recent paper [4]ruprAs proved that the Hirschman-Widder ope-
rators and the generalized Bernstein power series preserve starshaped
functions. In [5] ROULIER and in [1] ROULIER and BoJANIC [obtain theorems
about bounded linear operators in general which preserve convexity. Many
other results have appeared on this latter subject; see [2] and [3]. It
is the task of this note to obtain criteria to recognize starshapedness
preserving operators. The method used and the results obtained are the
same type as in [1]. We first show that each continuous starshaped func-
tion can be uniformly approximated by positive linear combinations of
., basic starshaped functions”. It then follows from the linearity and boun-
dedness of the operators that if it sends each ,,basic starshaped function”
into a continuous, starshaped function, then it does it for all continuous
starshaped functions.

2. The main theorems

Iet B[O, 1] be the class of bounded functions on [0, 1], and let
C[0, 1] be the continuous functions on [0, 1].

Definition. Let f: [0, 1] - R. f is starshaped on [0, 1].4f for
every a € [0, 1] and every x = [0, 1] we have

flax) < af(x).
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We define S[0, 1] to be the class of starshaped functions on [0, 1]
which satisfy

(1) f(0) =0
(2) f(x) =0 on [0, 1].

We define S[0, 1] to be all functions in S0, 1] which satisfy also
(3) feCo, 1]
For each b € [0, 1] we define the basic starshaped. functions

x<b

0 for 0 <
bgsx <1,

Dylx) = [x for
With these definitions, we have the following

raEoREM 1. Let fie S[0, 1]. f may be approximated wwiformly on
[0, 1] by functions g of the from

olx) = 2 D, ()

where 0 < b, < ... <b, <1 and a; 20 for j=12, ..., n

rarorEM 2. Let T be a bounded linear operator mapping B[O, 1]
into B[O, 1]. If for each b < [0, 1] we have T(®,, -) = S[0, 1], then
T:S[0, 1] - S[0, 1].

The proof of the theorem is made easier by a few preliminary lemmas.

Lemma 1. If f < S[0, 1] and g = S[0, 1] then f4+g f-g and
af (for a = 0) are ail in S[0, 1]. Also, f is increasing on [0, 1].

Proof. Elementary a

Lemma 2. For eachb e [0, 1]®,  S[0, 1].

Proof. We only have to show that @, is starshaped on [0, 1] since
(1) and (2) are obvious. Let a = [0, 1]. If ax < b then ®,(ax) =0,
Thus ®,(ax) < a®,(x). If ax = b then ®y(ax) = ax. But x = ax = b implies
that ®,(x) = x. Thus a®,(¥) = ax = ©,(ax). Hence ®, is starshaped on
0, 1].
: 'I],emma 3. Let f= S[0, 1] and let b < (0, 1]. Choose ¢ so that

c®, () = f(b). (That is, let ¢ =%”’) Then forb < x < 1 we have c®,(x) <
< fl%).

Proof. We may write b = ax for some a < (0, 1]. Thus flax) < af().
Also, flax) = f(b) = ¢b = cax = ca®,(x). Hence c®,(x) < flx).

3 A ON STARSHAPEDNESS PRESERVING OPERATORS 91

‘ Lemma 4 If {h}a-o is a sequence of functions which converges
}mtf(g"%lyl]to fon [0, 1] and if b, = S[0, 1] for n=0, 1, 2, ... then
e .

Proof. (1), (2), and (3) are clear. To show that f is starshaped on
[0, 1] let @ = [0, 1] and assume that for some x = [0, 1] we have

flax) > af(x).

Let & = flax) — af(x) > 0. But lim (%,(ax) — ah,(x)) = flax) — af(x) = 3.

This is impossible since for eac’lTO;L, h,(ax) — ah,(x) <O.
PROOF OF THEOREMS. Let f = S[0, 11. We will construct a sequence
of functions {g,}n-2 for which

(4) f(%) —f%) < g (%) <flw) for n=2,3, ... and 0 € ¥ < 1.

Moreover, we will write

gn(x) = kE—Z a’kq)bk(x) where

O<by<... <b, <1 and
a5 ..., a4, are non-negative.

(5)

Choose b, > 0 so that f(b,) =10 and choose a, so that ayb, = f(b,).
»
b
Thus a, = ]:(b—z) > 0. Now choose b, > b, so that f(b;) = Zfﬂ, and choose
n

@y 50 that agdy + ayby = f(by). Thus ay — fl”_)-b:ﬂ But f(by) — ash =4

= f(bs) — a,®s,(05) > 0 by lemma 3 since a, :ﬂlf—z). Hence, @, > 0. Procee-
ding inductively we choose &; > b,_, so that f(§;) = G =D ap4 we choose
a; so that "
ﬂjbj + a]-_lb,- -[— . —l— dzbj =f(b]).
Thus
f(&) — Kbj |
bj

where K = @y 4 ... +a;_y. But Kb,y = aybj 1 + ...+ a;—1b;_y = f(b;_1).
AlSO ij—l — K(Dbj—l(bj—lj)- SO by lern]ma 2 er]ha].'ve §—1V5—1 i—1

ij = KcDbj_..l (bj) < f(bj)

ﬂj=
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Thus a; > 0. We now write g.(x) = > @D, (%). If b; < x <bjy1 we have
k=2

-

i
also g,(b;) = b; ak) ={(b;). Thus by lemma 3, g (%) < f(x) for b < x < bjya.
t

=2
Notice if 0 < % < b, that g,(¥) = 0 and thatif b, < ¥ < 1 we have g,(0,) =
= f(b,) and g,(x) < f(x). Thus g,(x) < f(x) for all x in [0, 1], and g,(0) =
—f(0) and g,(&) = f(b;) for 7= 2.3, ..., m If b < x < by notice

that
Ax) =10 < fby,) — 19 = fb) = 2.0 < 8-

This also follows if b, < ¥ < 1 and if 0 < x <b, Thus we have (4)

and (5). Hence g, — f uniformly on [0, 1]. Thus T(g. -) = T -)

uniformly on [0, 1]. But T(g,, ) = 3 % T(®,,, ). By hypothesis T'(®y,, e
=2

—

k&
e S[0, 1] and by lemma 1, T(g,, -) € S[0, 1] since a, > 0 for & = 2,..., %
Thus by lemma 4 T(f, -) € S[0, 11.

3. Remarks

Obviously Theorem 2 has an analogous statement if T maps each
@, into any given convex set M.

The two theorems in Tupas$ [4] may be proven using Theorem 2
although it is not much easier to do so.

Theorem 2 holds true if we replace B[0, 1] by any subspace contai-
ning all the appropriate functions.
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