REVUE D’ANALYSE NUMERIQUE ET DE LA THEORIE
DE 1’APPROXIMATION, Tome 3, N° 1, pp. 1974, 93—111

SOME OBSERVATIONS CONCERNING THE APPLICATION
OF TREE THEORY TO THE SYSTEM GENERATOR
by
TEODOR RUS
(Cluj)

§. 1. Introduction

1t is well-known that a System .Generator is a software which has
the following task: given a software library (or a collection of software
libraries) for a computer, it must generate a software system correspon-
ding to both, a given configuration for that computer and the user op-
tions [1]. :

For this purpose it receives a series of infromations concerning the
computer configuration, the libraries which must be processed, and the
software components which must be included in the generated system.
One of its most difficult operations is connected with the analysis of the
components which must be included in the new software system. Generally,
the structures of these components are given in a tree-form, using the
program segmentation. At running-time the user must be free to choose
a software configuration corresponding to his necessities.

In order to be able to preform this, some structure transformations
of the trees representing the software components are required. So, the
System GCenerator also receives informations concerning the structure of
the components which must be included in the new software system.
Now, there is the problem of answering the following questions :

1). Are the structures communicated to the System Generator pro-
per to the functions which perform these components?

2) Are the structures communicated to the System Generator equi-
valent to those provided for by their constructor ?

This paper is devoted to describing some algorithms which allow to
answer these questions.

94 TEODOR RUS

2]

§. 2. The program segmentated struetures

The solving of any questions b ' o
; by means of a computer needs to appl
a determinated sequence of operations on the data of the questions. Ger%)elia}Z
lly, this sequence is called algorithm. Among these operations there are
%);n_e Whéih dec1det1_n Wh?t away the computing process will be continued

ring the execution of a subsequence of operati :
subsequence will have to wait. 1 Fo e, e i

For some large programs, the problem of i i
s, performing different sub-

?eq;encest oft I11;he same algorithm on the same memory p%ace arises Tliﬁs
eads us to the notion of segmentation. Formally, this ‘
program has a tree structure. i e ekl

The elements of this structure are the following :

1. There exists a sequence of a program called root, which also has
the task to manage the communication between other sequences of the pro-
gram. These sequences are_called ,,0f the first level”. If any such sequence
is performed in a given time, the others will wait for it.

2. Yach first level sequence can be a root.

3. In a given program (1)—(2) can only be repeated finitely.

From (1)—(3) we can easily represent a program as a tree structure
More precisely, we shall define the following correspondence : '
(a.1.) To every root in a program there corresponds a node in a tree.
(a.2.) To every first level of a program sequence there corresponds
—(— 111; a given order — one node, connected with arrow to the root form
a.l.}).

(a.3.)(a.1.)—(a.2.) is repeated until (1)—(3) ar i
iy (1)—(3) are exhausted for a given

In this way, for an application of (al)—(a2), we obtain
_ , 1 : : a structure
like the one of fig. 1, where R 1s a symbol noting the root, and N1
N2, ..., Nk are the symbols noting the first level sequence of the pro:
gram.

R

NI N2... Nk

Fig. 1, Tree structure with one level

Now, if we are to repeat (al)—(a2) we will obtain the t

like that described in [3].(e | e e
Definition 2.L: For a given program P we shall call the pro-

gram tree, the tree which is generated by the correspondence (al)—(a3).
¥n the next part of the paper the symbols noting the nodes of a

program tree will be called segments and the arrows will be called edges.

THE APPLICATION OF TREE THEORY 95

For a faithful representation of a program, using the tree structures,
we shall do the following transformation 7" of a program tree:

(T1) Transformation T transforms every node of the program tree
into a segment, noted with symbol noting that node.

(12) Transformation 7 transforms every edge .of the program tree
into a node attached to that segment which corresponds to the node from

which this edge starts.
In this way, the tree of fig.. 1 is transformed into the tree of fig. 2.

‘ R

1N1 |N2 NE

Fig. 2. Program structure

The obtained tree of a given program tree using transformation 7 will
be called program structure.

Now we are going to define the notion of the execution of a program
structure.

Definition 2.2.: By the execution of a program P we mean the
following process :

FO. The execution starts with the rum of the sequence corresponding
to the voot of the program Sstructure.

1. The root of the program structure can call every segment belonging
to il. "

F2. The first level segments of a given program structure are performed
in the following way:

¥2.1. The root of the program structure can call every sequence coryes-
ponding to the first level segment of this yoot.

F.2.2. Any N, segment alveady called can call every N; 1 # j of the
same level, and N; will be covered by Nj.

¥2.3. The communication between the N; segments is made by means
of their rool.

F.2.4, The process starts with F2.1.

F3. The processes FO—F2 are the same for every subtree of a given’
program structure.

Now, we shall define some useful notions in the following :

Definition 2.3.: (a) The path of a program will be called a seque-
nce of the segments corresponding lo a path of the tree.

(b) A level of a program will be called the collection of all the segments
corresponding to a level of the tree.

(c) A covering shall be a path beqinning with the root of the structure
and ending with a segment covvesponding to an extremety of the program
structure.

If we note the length of a segment with LS, which is measured by
the number of memory words needed for its loading, we get: the length

96 TEODOR RUS 4

of a path is the amount of the segment-lengths belonging to it. The length
of the program is the length of the greatest covering of the program. Then,
we suppose that every level of a program is labelled by the greatest of the
paths beginning with the root of the structure and ending on this level.

§. 3. The reprezentation of the program struetures

. The segmentated structures described in Section 1 are the elements
which must be deplt with by both, the prograhmmer and the System Gene-
rator,

Generally, the programmers deal with these structures in the from of

paranthesed expressions, and the System Generator deals with these struc-

tures in the form of lists.

- The formal definition of a tree expression using BNE notations is as
ollows :

(SEGMENTS : : = SYMBOL|SYMBOIL, EXPRESSION
(SEGMENTS LIST) : := (SEGMENTY(SEGMENTS LIST), (SEGMENT

TREE :: = (SECMENT(TREEY|((SEGMENTS LIST))|
(TREES(TREES IISTS)
(IREES LIST):: = (TREEM(TREES LIST), ¢(IREE)

Examples:

1. A
2. ALPHA (BETA, GAMMA, Pl)
3. P1(P2(P3(P31, P32, P33), P4), P5)

' f.'l‘hg corresponding structures for the given examples are represented
in fig. 3.

‘Pl
P2 ‘PS
IALPHA ‘ps lP4
A ; T —
|BETA ‘GAMA ‘Pl lP31 ipsz P33
(1) (2) (3)

Fig, 3. Examples of program structures

R —

5 THE APPLICATION OF TREE THEORY 97

Observation 3.1.: The notions of the symbol and those of sym-
bol expression are the same as the notions of name or identifier and name
expression, which are defined in programming languages.

Here the symbol expression is used for the structures which are conne-
cted with each other like both, that of the program segment and its corres-
ponding data segment, and that of the segment and its corresponding
common segments etc,

The lists corresponding to the tree expressions are defined according
to the matricial representation of the trees [2]. In this way, to every program
structure we attach a matrix with three columns, or equivalently with
three ordered lists.

The first one of them is called NAME list.

The second list is called ADDRESS list and the third one is called
CONNECTION .list.

The construction of these listst is made recursively. Now, we shall
give the algorithms for the construction of these lists, having the tree
expressions as data:

(1) The first step of the algorithm is to build the NAME list. For this
purpose the algorithm works as follows:

N.1. Let an order be given for the program structure. In this order
the first segment is to be the root of the structure. Then, the algorithm
will put the sequence of the segments in a memory list in the given order,
each being a record.

(2) The ADDRESS list is built in the following way :

A.1. The first record of the ADDRESS list will correspond to the root
of the structure. It will be set on zero.

A.2. The order in this list is the same as in the NAME list. The seg-
ments on the first level of the structure have as records in the ADDRESS
list the length of their root.

A.3. Let the records for all the segments on a given level be allready
built. The greatest length of the paths, beginning with the root and ending
on this level, is chosen as record for the next level.

(3) The CONNECTION list will be built in the following way :

Let A,, A4, ..., A, be all the coverings of the structure. The order
defined in the NAME list will induce an order in the set of coverings.
For this purpose let 4; < 4, < ... < 4,, each 4; being

A; = {Si Sia -+ s Sin}

where all S;; are the segments, and S;; < S; < ... < S, in the NAME

list order. Now, we get: [) 4; # @ because each A4, begins with the root.
i=1

A record of the CONNECTION list consists of two elements. The
first one is the order number of the NAME list to which the element corres-
ponding to the current element of the CONNECTION list is connected.

7 — Revue d'analyse numérique et de la théorie de l'approximation, tome 3, no. 1, 1974

98 TEODOR RUS 6

The second element of the record depends on symbol expressions, if such
a segment belongs to a symbol expression. Otherwise it is set on zero.

The order in this list is the same as that of the NAME list. The algo-
rithm for the construction of this list is the following:

C.1. Oue builds the record for A, - If A; = {Sy;, Sy ..., Si,,} then
the record for A; will have 0, 1, 2, ..., #,—1 as first elements.

C2. Let S, & Ay () A, where Sy, is the first segment in the given
order of A,\ A, A,. Then, the first corresponding element of its record
will be #,, ie. the same as that corresponding to element S, on the
same level, such as Sy; € AN\ 4, 4, is the first element in the given
order, and Sy, & A N 4,

TFor Son41, ..., Sgi, the first element of the tecords will be the
next natural numbers.

C.3. Let there exist a CONNECTION list for 4,, 4, ..., 4,. then,
for A;;; we shall proceed asin C.2., where instead of A, we shall take
A; and insted of A4, we shall take A,;.

C.4.C.3. will be repeated for 7 =1, 2, ..., n.

Example 1.: Let us take structure (3) of fig. 3. Then the NAME
list, ADDRESS list, and CONNECTION list for this structure are represen-
ted in fig. 4.

Order I Pointer 1. Order | Pointer 2. Orderl Pointer 3.
1 P1 1 Ll =0 1 0 0
2 P2 2 12 = I(P1) 2 10
3 P3 3 L3 = 1(P1)+- 3 2 0
4 P31 1(P2) 4 3 0
5 |1 P32 ! Lﬂf};ﬁ” + 5 3 0
6 P33 1(P3) 6 3 0
7 P4 5 Lo =l 7 2 0
8 P5 6 L6 = L4 8 3. .0

7 L7 = L3
8 L8 = 12

Fig. 4. The list vepresentation of program stvucture 3, fig. 3.

Here we have used the order: Pl << P2 < P3 < P31 < P32 <
<< P33 << P4 < P5, and the coverings are:
A, = {P1, P2, P3, P31}
P1, P2, P3, P32}
P1, P2, P3, P33}
Ay, = {P1, P2, P4}
A4; = {P1, P5}
where 4, < A, < Ay < 4, < A4,

7 THE APPLICATION OF TREE THEORY 99

The symbols POINTER 1, POINTER 2 and POINTER 3 are the
adress pointers for the connection between the lists, and 1(P) is the length
of program P.

§. 4. The equivalence transformations of the program sirueture

With a view to the purpose of modifying the run speed and memory
allocation of a progtam we shall consider four types of transformations
of the program structures.

The first one of them is the permutation operation of the subtree
of a given tree on a given level. The second one is the dilatation operation
of the program coverings. The third one of them is a condensation ope-
ration of program coverings, and the fourth one of them is the section
operation of a subtree and its attaching to another subtree.

These operations will be noted by 2, @, €, § respectively, each of
them being defined on a level i of the program structure.

Peymutation operation: Let P be a given program structure. If
Sy Sa ..., S, are its first level subtrees [3), then, according to the
definition of tree expression

P =So(Sp, Sa ..., Sp)

Now let ® = (®,, @y, ..., ®,) be a permutation of sequence (1, 2, ..., p).
Then, by definition we get:

2&P; 1, Sy, O) = S4(SO,, SO, ..., SD,)

If we consider the notion of execution defined by Definition 2.2., then,
from this point of view we get:

P~a(P; 1, S, @

Operation € can be defined recursively on each level of program struc
ture P.
As an example of applying this operation we have

So So
e(P; 1, S, @)

©=(3,1,2,4)
Sy S, Ss S, Ss S, S Sy

100 TEODOR RUS 8

Dilatation operation: Let us again consider the structure P =
= So(Sp, Ss ..., Sp), and let us suppose that for a given 4, 1 < ¢ < p
the subtree S; can be represented by S;(Siu, - S; i) Then, by definition
on the first level subtree we get:

@(P; 11 Si) = SO(Si(SIJ es ey Si—l) Si,: vy Sip'-l Si+ll “ ey sp))
i.e. a structure of the form:

So

Sllo' ’Siu . .

S

‘s,-l ‘s,-ﬂ. 5 "

after operation ®(P; 1, S;) has been transformed into:

So

S;

Speo. |Sia Sio St |Sh

ipi

~ Condensation operation : This operation is, in a way, an inverse opera-
tion of ®. Using the same notations for one Sy, 1<y, by definition we
get .

@(P, 1, S,‘j) = SO(Slt eey Sij, S,-(Sil, b S S

1'J+1, . 'S':Pt)' . .Sp)

i1’
Relation P ~ @(P; 1, Sy) is true only if the following two conditions
hold :
(i) S; does not transmit informations to S, for the segments S,
Siv v ves Si;_p Sijpp +e 0 Sig
(i) S;; does mnot call any of the structures
Sip Sip -os S S . g, m.57

tj—1 “iipr ipg

As an example for operation € we take:

P = Sy(Si(Su Sar -+ or Sic1Si41Si v Sipy Sivs oos Sp))

i’

9 THE APPLICATION OF TREE THEORY 101

and
e(P; 1, S)) = So(Sv SiSa - - - Sic1,SiSip - os SippSigts o Sp))
or graphically

)
SO @(P; 1: Sl) SO
S; }51 .Si
Sl Sz...]si*1 |S¢1... S'.M Si—H—-- Sp 52...‘51'_1]54;1-.. SiP;Si+1"' Sp

The condensation operation can be applied to any level of a given
structure P if the following conditions hold:

— if the operation is of the form €(P; 7, S,)
and

if kB is the level of S,, then:

(1) i # 0

@) i<k : }

Section operation: This is an operation for covering dilatation. It is
denoted by 8(P; i, S; S,) and it means that subtree S, on level i will
be sectioned and attached as first level structure to S; on the same level i.
If i = 1, as an example we get:

P = SofSu -+ Si(Siw Siv 0s Siyg)s s S - o5 Sp)

"M)'

S(P; 1, S S)) = SolSu « s SilSis Siw <+ SiypSi)s s Sa)

ip¢’

or graphically: For P _ So(sl(sll, 812' 513),52(521), 53(531, Saz))

$(P; 1, S, S
Sp ——-—-'———(- 2)> So
Sl Sz 53 Sl. SS
| Ss
Su [Su |Sw [Su [Sn [m sy (S |Swig (Su |

| S21

Now, we shall explain more precisely the semnification of operation
©. For this purpose let Q= {2, 9 €, §}.

For a given structure P and for the given elements such as S. S,
(subtrees of P) on level 4, and for a given permutation o, cach @, D, €, §

102 TEODOR RUS 10

will determine a concrete operation of the tpyes 2, 9, €, 8. So, €, 9, @
8 will be called operation schemes or operation typss. 0, € Q is meant
to be an operation of a given type.

Definition 4.1.: The composition of O, O, € Q is defined in
the following way. One applies O, to a structure P. Let Pl be the resulting
structure. Then, one applies O, to this structurve, and let P2 be the vesulting
structure. P2 is called the structure obtained as a transformation of P by
the operatione Oy 0 Oy, and O, 0 O, arve called the composition of O, and O,.

Now let Py = Sy(Sy, ..., Sp) and

P=9(Py; 1, S); P=So(SiSu - Sicts Siyov s Sipp Sivts o+ s S))

Then we get:
e(P; 1, 54) = Py

@(POL} 1, S;) = Py,

C(Pyi_s; 1, S _1) = Poi
@(Poi—ll 11 Si—f—l) e POi

C(Pop-1; 1, Sp) = Poyp

Now, there exists a permutation ® = (®1, ®2, ..., ®,), such that
2(Pyy; 1, Sy O) = P, | 1

In qther words, i.f P is obtained from a dilatation operation, then,
theﬁe eﬁns’c the operations O, O,, ..:, Op_; of type €, and O, of type 2
such that :

0,00, 10 ...00(P) =P, P=0(P,)

where O is of type 9.

Definition 42:: Two program structures Pl and P2 are called
equivalent according to Q, if theve exist operations Oy O, ..., 0, of Q
and O,L o Ou—l O ... © Ol(Pl) = P2,

If two program structures P1, P2 are equivalent according to €,
then, we note that Pl ~ P2 (Q).

Proposition 4.1.: 0215 an equivalent relation.
~ Proof: 1. P1 oe P2(Q) = P20« P (Q). This follows from the proper-
ties of the inversability of € and 9. i

2. Pl ~ P2(Q) and P2~ P3(Q) = Pl ~2 P3 (Q) obviously.

3. P o P (Q), if we consider the empty set of operations.

11 THE APPLICATION OF TREE THEORY 103

§. 5. An algorithm for the decidability of the equivalence structures

Supposing that P1, P2 are two program structures, the algorithm
for the decidability, if either they are equivalent or not, tries to transform
a structure, for istance, Pl into structure P2, using operations of the
&, @, € § types. For this purpose we shall use two notions of equality
of two program structures.

Pherefore, let NAME1, ADDRESSI, CONNECTIONI1, respectively
NAME2, ADDRESS2, CONNECTIONZ2 characterize P1 and P2, and
1(NAMEi), I(ADDRESSI), 1(CONNECTIONi), ¢ =1, 2 their lengths.
By ¢(NAME1), c(ADDRESSI), c(CONNECTIONi), ¢=1, 2 we shall
note the content of the lists.

Definition 5.1.: Two program structures Pl and P2 are called
equal if :

(i) 1(NAME]) = 1(NAME2)

1(ADDRESS1) = 1(ADDRESS2)
1(CONNECTIONI) = 1(CONNECTIONZ)

(i) ¢(NAMEI]) = ¢(NAMEZ2)

c(ADDRESS1) = ¢(ADDRESS2)
¢(CONNECTION1) = ¢(CONNECTIONZ)
and arve noted by Pl = P2.

Definition 5.2.: Two structures Pl and P2 are called weakly
equal if

(¢') the conditions of (i) hold

(i) c(ADDRESSI) = ¢(ADDRESS2)

¢(CONNECTIONI1) = c(CONNECTION2)
and ave moted by Pl = P2.

These two definitions are similar to that of [3].

Definition 5.8.: Two structures Pl and P2 arc equal (weakly
equal) wntil level i if the obtained program structures, by erasing the levels
=i+ 1,142 ..., are equal (wea ly equal), and are noted by

p1ip2, (P1=P2)

In the following we shall use the notion of equality until level i.

Tt is obvious that if P1, P2 are two program structures, and if their
level numbers are N1, N2, then, they are equal (weakly equal) if they
are equal (weakly equal) until level i, for ¢=0, 1, ..., N, werhere
N = N1 = N2.

The algorithm will be described on the levels in the following way:

Let PI and P2 be two program structures, where P2 is considered
to be an unchangable structure and P1 is transformed by the algorithm.

STEP 1: Let ¢: = 0 be the level number. One verifies if the struc-
tures are equal until i, i.e. if they have the same root. If they are equal,

104 TEODOR RUS 12

then, the algorithm will continue with STEP 2; otherwise, they ate not
equivalent.,

STEP 2: ¢: =1+ 1, gnd one verifies if P1 2= P2. In order to be
able to decide whether P1 =~ P2 we shall take all subtrees on level ¢ for
the structures P1 and P2. Let k1 and 22 be the numbers of these subtrees
Only one of the following conditions holds :

i) £kl =42

(i) 2l < k2

(ii1) A1 > k2 _

(i) If &1 = k2, then, P1= P2

Iet S5, S, ..., S}, and S?, S% ..., Sf,, these subtrees having as
roots S respectively S%, 1 =1, 2, ..., ?.

It {S. Sz ..., Spp={S} S5 ..., Si}

in the sense of set theory, then, there exists a permutation
Q= (D, Dy, ..., D) of (1,2, ...,)

such that Sei=5Shi=12 ..., ¢

and we get (P1; i, S§, ®) = P,, where S! is the root of the first level
structures S}, SI, ..., S},.

Observation 5.1.: If Si, S5, ..., S} belongs to more than one
root, then, there exist the segments Si*, Si*, ..., S/, which are roots for
S, oSh ..., S},. Then, operation € will be applied for corresponding per-
mutations @, @2, ..., @7, In this case we will get:

E:=1
—%(P1; i, S, @°)
k:i=Fk 41

YES p gj@_,

noted by []1%(P1; 1, S @
k=1
an algorithm which gives

[12(R1; i Si, @) = P2

k=1
If {SL Si ..., Sy} #{Sh S5 ..., s}

in the sense of set theory, we can apply an equalizer procedure. This proce
dure is represented in Appendix A.

13 THE APPLICATION OF TREE THEORY 105

(ii) If 21 << A2 we shall look for a condensation operation on level ¢,
because this operation will increase number k1. The operation will be
determined in the following way :

Let 8, ={S1, Si, ..., Sk}, &, ={S., S5, ..., St}

(ii), If o, & &, then, the algorithm will be completed with the
answer ,,nonequivalent structures’’.

(ii), If O, C 81}, then, the algorithms look for an operation of type
€. This operation is built in the following way :

(il); One verifies if | 975 | =] 91},.

If so, the algorithm will continue with STEP 2. Let S% be the first
element of &%, such that S2 g &,. One looks for S among the first
level structures of S, S5, ..., Si. If SZis found, then, the algorithm will
continue, Otherwise, it will be completed with the answer ,,nonequivalent
structures’’,

Let S? be among the first level structures of S}, ie. Sj = S}(Sh, .
S% ..., Ski). Then, the operation which will be applied is €(P1; 4, S).
In this way we shall get 95 = 9, | {S2} and the algorithm will continue
with (ii),.

(ii1) If A1 < k2, the algorithm will look for an operation of dilatation
or section on structure P1, because these operations decrease number %1.
For determining this operation one again takes 9 and Sj,.

If &, ¢) the algorithm will be completed with the answer
,nonequivalent structures”.

If 9, C 9}y, then, we may obtain:

(iii),; #, > 2, k, = 1. This case determines a dilatation operation. For
this purpose let us suppose that %, = {S}} and &%, ={SL, Si, ..., Sk},
then, we must get S7 = S; for one ¢ & {1, 2, ..., k}. The operation wlli
be @(P1; 4, Si), and the algorithm will continue with STEP 2.

(iii), %, > 1, then, the algorithm looks for an operation of section,
For this purpose it will proceed as follows:

(iil)y One verifies if |}, | = |8k, |. If so, the algorithm will continue
with STEP 2. Otherwise, the algorithm will continue with (¢47),.

(iil), Let S; be the first element of ;, with S, & 9, In this case we
may obtain the following:

(iii)s. Si is a first level subtree of ome of Si, S3, ..., Sk Let S/ be
this subtree. Then we shall apply 8(P1; ¢, S, Si), and the algorithm
will continue with (iii)s.

(iii)g S; is not among the first level subtree of Si, Si, ..., Si. Then,
let S; be the first subtree of 95, equal to the first subtree S; of 9.
One applies @(P1; 4, S;) and 7: = — 1. The algorithm will continue
with STEP 2.

106 TEODOR RUS 14

This algorithm will be repeated for 1 =0, 1, ..., N2, If from PI
we have obtained a structure for ¢ = N2, which is equal to P2, then,
we get '

P1 o P2 (Q)

otherwise, Pl is not equivalent with P2,

Observation 5.2.: For the System Generator P2 represents the
structute which is communicated by the user, and P1 represents the struc-
ture defined in the system. In this way the System Generator will only
include the software component P2 in the new software system if it is
equivalent to P1.

Observation 53.: The algorithm described above will work on
the lists NAME, ADDRESS and CONNECTION. For this purpose it
will be accompanied by an initial step, STEP 0, which transforms a tree
expression in the NAME list, ADDRESS list, and CONNECTION list.

§. 6. Application

In this section we will deal with an example concerning the application
of the algorithm, in order to make it easier for us to understand the latter.
We shall apply the algorithm graphically and in the form of lists of the
program structures.,

“For this purpose let a software component be of the form:

So
P1 = S1 52 Ssz
S11 S12 513 521 531 Saz

A software system must be generated, where this component has the
structure SO(S2(S1(S3(S11, (S12, S13, S21, S31, S32)))) or, in other words,
a program structure of the form:

P, = =

S11 S12 S13 531 532

15 THE APPLICATION OF TREE THEORY 107

The list structures for these two structures will be represented in a
short form as follows:

For the first structure we have:

| SO Sl 511 512 513 52 SB $31 532

Sa
T N T

and for the second one we have:

SO 52 Sl Sa Sll S12 S13 SZI S31

T [T 4 7T 1 & .4 J &

For applying the algorithm we have
N(Pl) =38, N(P2) =4

For i: =0, P1==P2 because Se 1s the common root

For i =i+ 1 one applies step (i) of the algorithm, and we obtain
ky =3, By = 1, and the next step of the algorithm is (iii), because &; <
<< Ry, By = 1. Therefore,

é‘)l;,‘ = {51: Sy Sa}: G%L = {Sz}' gcjl’ﬂ C 8"6;,1
S, e m}w S: & glzlw

S;is not a first level subtree of S,. A dilatation operation will be applied,
according to (iii),.

d(P1; 1, S2) = P}
Se L s,
S, S S S
Su [Sis | St _521 5—31 ‘532 ‘51 .sm S
Su [Sis | Su S S

108 TEODOR RUS 16

_Per_forming t:=1— 1 we again get ¢ = 0, and the algorithm will
continue from (7). Now ¢:=1¢ 4 1, respectively ¢=1, and the new
structure of the lists is:

Sa

S L R

O
A4

| SO SI1 Sll S12 513 521 SS Sal 532

So, we have @ (P1; 1,S,) = P2, and for { = ¢ 4 1, ¢ = 2, according
to the algorithm, a new dilatation operation will be applied.

So S
Se 9(P1;2, S = P S
> _
Sl S21
| = a
S IS -
11 r 12 S ‘531 Ss | Su | Sz | Sis Sn Sy

532

and @ (P%; 2, S,) = P2.

Being the same case, & <k, Ak, =1 : . \
will be applied : ! 2 R =1, a new dilatation operation

_so uso

"52 hsl

Sy @ Pi; 3 Py) =D} _sz

’sn Sie | Sy ’ Ssy | Ss ’ "53
S |Sw | Sy . Suo ‘ Sws | Su . Ser |Sea

17 THE APPLICATION OF TREE THEORY 109

And we can see now that ®(P%; 3, S;) = P2, ie. Pl = P2 (Q).

The successive structures of lists are:

|so s | s | su] Sie | Sis | Su | S ‘sal Sua

o I1r i e 4 3 & 7.l |

R ERENEY ’ S | Ses

E
il gt it i F L 1 1 1

Example 2: Let us consider a case, where a section operation
is applied, such as:

s, | s, ‘ S,

s, | S
p1=‘ Gh S, S, Py=|S Ss
S | 5w 1S | S |Sa | Sae ’su Se | S | S. ’531 s,
. -

The algorithm works like above, but in case (iii) we shall apply a
section operation, because &, > &,

S, el sl S6
‘ S, S, ‘53 S, ’53
’su S | Sis _521 ‘sm Sas iSu 512 S | S | Sex | Swo
L .

Observation 6.1.;: The operations of the types ® and & are
not independent. It is easy to show that any operation of type 8 can
be expressed by a composition of an operation of the types @ and €.

110 TEODOR RUS 18

Any operation of type @ can be expressed by a composition of an ope-
ration of the types 8§ and €, too.

They both have been considered in order to simplify the algorithm,

Observation 6.2.: Having in view the order supplied by the

list representation of the structures, the commection in the lists can easiy
be established by a function on the sublrees of a given tree. Considering the
qm’ew modtfzcation. determined by the operation of the types %, @, @, 8,
15 easy lo determine the transformation from one structure of lists to the
next ome corresponding fto the respective operations.

§.7. Appendix A. Equalizer proecedure

In f:his section we shall give an equalizer procedure for case ky = k,.
For this purpose let &5 ={S}, Sk, ..., St} Np,={ST, SZ, ..., sz}

If p M p, = &, then the algorithm is completed with the ans-
wer ,,nonequivalent structure’’.

I N, M) Np, # @, then let &ip,p, — b () Mo, Np p o G. The
equalizer procedure will apply the section operations for all the subtrees
of 3‘{'.;:1 \ ‘9{;’, Py

'.[‘11115_We go on to case ky <k, and the algorithm will apply the
condensation operation for again having k&, = k,.

In order to clarify this, we shall consider an example :

P1 s So (51 (511: 512); 52(521); 53(531; Saz))

Pz = SO(SI (511: S12 (52(521)))» 53(531): 532)
or graphically:

So So
Py = S, Sa Ss P, = S: Sy IS”
S [Si|Se [Sa |Ss Su |Sw ;31
}2 L
Sn

NOW} é)z}’l i {S;IJ 52; Sa}; &z}’g = {51, Sa, 532}1 m-})u P, = gl;’x m gz’-lpa’ <9Z"11’11 P, =
. {SIJ Sa}, 8Zpl \ gthn P, = {Sz}

19 THE APPLICATION OF TREE THEORY 111

The section operation will be §(P1; 1, Sy, S,), and the structure
obtained is:

5

Pl: S]_ ‘53

Sy

Sas

Sar

‘ S11 S12 o
521

Now, according to the algorithm, for &, << &, we shall apply €(P;;
1, S;p), and the new structure is:

So
Sl 53 532
Sll 512 S21 S31

Sy

and we get: k; = k, on the first level of the given structures. In this
way the algorithm can continue. o

Observation 7.1.: The equalizer procedure can be applied iff in
the segmentation of the program the conditions (i) and (ii) of the defimition
of condensation have been vespected. This observation holds for every case,
where a condensation operation is applied. The condensation operation can
only be applied without anmy vestrictions if an opevation of dilatation ov
section on the same level on the same segment has been applied.

REFERENCES

[11 Générateur de Systéme. Manuel de Presentation, CII, Paris (1970).

[2] Rus, T., On the matricial vepresentation of the trees. Mathematica, G (29), 2, 327334
(1964). ' '

[8] Rus, T., Some observations concerning the application of the electronic computers in ovder
to solve nonarithmetical problems. Mathematica, 9 (32), 2, 334—360 (1967).

Received 12. IV, 1973
Institutul de tehnicd de
Calcul — Cluj.

