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1. Complex sum and generalized sum of intervals
In the set I of real closed intervals

A = [ay, a5, B = [b,, b,], ...

the complex sum (or simply: sum) of intervals [2] is defined as
A+B={u+vlu<sd&veB}=[a+0b, a+ by}

If a;, € R (a, is a real number) then it is customary to denote a, =
= [a,, @,], hence R CL

The pair (H, @) is called a generalized sum of intervals, if the follo-
wing conditions are satisfied:

S,) His a set of some ordered pairs of intervals.

S,) @ is a rule which associates with each ordered pair (4, By € H
an unique interval, denoted by A @ B.

Ss) If (4, B) e HN R (i.e. 4 and B are numbers and (4, B) € H),
then

A®B=A+B

We can give the following examples.
1) If H = I* and the rule is (4, B) = {u + 0|y = A &v = B}, then
we have the complex sum of intervals.



12 STEFAN N. BERTL 2

2) Let A be the width of 4 (ie. 4 =a, —a,). If &> 1/2 and
H— {4, B)|4 < B

then by the rule

’

(A, B) — [(al + ay -+ by + b))k — a; — b, {@y + @y + by + b}k — ay — bl]
2k — 1 2k—1

we have the k-quasisum of intervals [1]. The k-quasisum is denoted by
A®, B.

8) Tt f= (fu fo fo fs) is a system of 4 real numbers, then for
H = {(4, B)IA(fy —fs) + B(fs — fa) <O}
the rule
(A4, B) = [ay + by + Afy + Bfe ax + by + Afs + Bfi]

defines a generalized sum, denoted by A ®; B.

4) If u and v are functions of 4 real arguments, then for
H = {(4, B) | ulay, ay by, by) — u(ay, a1, by, )
0(ay, @ by, by) — v(ay, @y, by, 0y}
the rule

(A, B) = [ay + by + u(ay, as by, by) — u(ay, @y by, by),
ay + by + v(ay, @y by by) — v(ay, a1, by b1)]

defines a generalized sum denoted by A @,y B.

5) For the generalized sum we can give the following representation:
let « and B be functions of 4 real arguments such that for ay, b € R

it follows:
w(ay, ay, by, by) = B(ay ay, by, b)) = ay + by;
then for

H = {(4, B)| «(a, s b by) < Play, @y by, ba)}
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we have the generalized sum given by the mapping
(4, B) ~ [a(ay, a5 by, Do), Blas 4, by b))

In the present paper we shall give some results about the sums 2),
3) and 4).

2. On the quasisums of intervals

In connection with some interval-equations we have the so-called
quasioperations: if H <, fiH-1 giH->1I and for (4, B, X)
< H() R® the real equation f(4, B, X) = g(4, B, X) has the solution
X — A + B, then the interval solution of the interval equation

f(4, B, X) =g(4, B, X) (4, B, X, 1)

is called quasisum. It is immediate the generalization for a quasioperation
generated by a real binary or n-ary operation.
In the paper [1] is given the proof of the following theorem:
THEOREM 1. Let s, : 2 —»1 (k=1,2, 3, ...) the maps defined by

s:(4, By =A — B, s,(4, B) = 4 — (A — s;_1(4, B))(k =23, 4, ...)
where A — B = {u —v|u € A &v e B}. Theinterval equation s,(X, 4)=

= B has an interval-solution if and only” if A < B. The solution is deno-
ted by A ®, B and is equal with the interval

[(“1 kg + by bk —a —by (a4 a3+ b H bk —a,— by .
2r — 1 ’ 2k — 1

This is an interval also for real k> 1/2, hence we have the generalized
quasisum A ®, B (k-quasisum) for veal k> 1[2. If k = Bé(fi 4+ B) then
the k-quasisum is the complex sum A -+ B (defined for A < B).

We define for % = 1/2 and % = oo the asymptotic quasisums

A®p B=(—00, +00) and A@wBZMZb_H‘_”Z

where A @y B is the improper interval (the set of real numbers) and
A @, Bis a real number.
For the width of quasisum we have the formula

B4
B.-:; .
4 ®y 2 — 1
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In the case of complex operatious the inclusions

ACC and BCD (denoted (4, B) C (C, D))
imply that
AoB(C CoD,

i.e. the interval arithmetic is inclusion monotonic [2].
For the quasioperations the interval arithmetic is not inclusion momno-
tonic. First we give the following theorem.

rarorEM 2. If (4, B) C (C, D) and A < B, C <D, then we can
give the following parametrical forms for these intervals :

A= (a,a,+al, B=1[b,[by +a+0b], C=J[a,—(b+c+d)s, a, +a+
+ B+ o+ d)(1 — )8,
D=1(b—c b +a+bd+d]

where

a, by R, a, b, ¢, d= R* (i.e. are positive numbers) and 0 <<s, ¢ < L.
Proof. The above parametrical forms follow for A, B and C, hence
from

A < B and BC D.

E‘rom_A C C it follows: C = [a; — %, a; -+ @ + y] where x, y € RT. From
C << D we have the inequations

x <<b4c+ 4, y<b+cH+d—zx
which has the solution
¥ = (b + ¢+ ds, y= (b4 c+ d)(1 —s)¢

and the theorem is proved.

For the quasisum in the above hypothesis we have

THEOREM 3. If (A, B) C (C, D) and the intervals A ®, B, C @, D
exist, then for the parametrical form of intervals A, B, C, D given in
theorem 2, we have

_ (k — 1)b W]
A@kB_a+a1+b1+—_2k—1'a+a1+b1+2k—lJ
Bb—c+d) —b—d+ (b +c+d)(l— stk —shk+s)

C@D=V+%+h+ o

b—c+d)+c+ (b—]—c—i—d)((l—s)tk—sk—(l——s)t)]I

@+ ay + by + X .
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This form of quasisums follows immediately from the Theorem 1.
THROREM 4. For the quasisums given in theovem 3 we have:

A®,B=A+Beh=h =2T"
2a¢ + b

and

—C D b — _ a+b+c—|—_d ”
€& D TP ks 2a + b+ ¢+ d) — st + ¢ + d)

We denote s =1 —s and t =1 — 1.
Proof. We have (for the parametrical forms given in theorem 2)

A=a B=a+b C=a+b4c+d—stb+c+d), D=a+b+c+d,

therefore (theorem 1)

b — B :a—i-b and B, — D _ a+b4c+4d )
Y 44B et 2T LD 2atb4o+d—sibtotd

The theorem is proved.
THEOREM 5. For the quasisums given in theovem 3 we have

bla+ b4 c+d)

A®,B=A+B&C@®,D=C+ D) e st=
(4 T @ + D) s ba+btet d) + ale + d)

&k — 210,
2a 4+ b
The theorem is an immediately consequence of theorem 4.

THEOREM 6. The quasisums A @, B and C @, D are complex sums
for a common value of k, if and only if

of — ba+b+c¢c+a) ,
bla+b4+c+d)+ alc + 4)
i.e. for
s — bla + b + ¢ + 4) ,t:b(a+b+c—|-d)+a(o+d)s’
bla+b+c¢+d) + alc+ d)s ba-+b+c+d)+ ale+ 4

where 0 << s" < 1 is arbitrary.
The proof is immediately.
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Tor the following theorem we recall the definitions of some binary
relations in I (i.e. subsets of I?; see [1]): for the intervals 4 and B
we have
A<Bea,<b, 4 A Bea, <b <ay<<b, AC Beby<a;<ay,<by,
A>BsB<A, A-B< B4, AD B+« BCA.

rHEOREM 6. If p= {<, >, -, . C D} then in the hypothests of
theorems 2 and 3 it follows

(4 ©, B)o(C @, D) = [—b, O] plkp —b—d +gs, kp +o—a(l —s)t],
where
ped—ct@retd(l—s)t—s) and g=b+c+d
Proof. By addition to the endpoints of the intervals
[—b, 0) and [kp — b —d + g5, kp + ¢ — g1 — 9]

of the constant number kb, next by division with the positive number
9k — 1 and next by addition of the constant number @ + @, + b, we
obtain the endpoints of the quasisums 4 @ B and C ®, D. The theorem
is proved.

YHEOREM 7. With the notations of theorem 6 we have the following
equivalences :

A@,,B>C(—BkD¢>kp<g(1—s)t—b—c,

A@kBl—C@kD©

gl — s}t — c if (1——s)t+s<f—%—é

4
wsg(l—s)t—b—c<hp < ; - t ot d
— gs if ( —S)+S>b—m

A@kBCCEBkD@(l—s)t—l—s<-bj+id&q(1 — St —c<hkp<d—gs
- C

A@kBDC@kD©(1—s)t4-s>l)_jr*‘—Lz&d—gs < kp < gl —s)t—c,
13 .
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A®,B-4C®,De

if (1—s)t+s<g+d

then d — g¢s l

N <kp<b-td—gs
if (1—s)£+s>ﬁ—dtheng(1——s)t—-cl
q

We give only the proof of the equivalences relatedto 4 @, B C @, D.
The proofs of the other equivalences can be made similarly. We have
(from theorem 6) : 4 @, B—C@®,D< [—b0] [kp —b—a+gs kpt+
+c—c(1'—s)t]¢kj3~b——d+qs<—b<kp—{—c—c(1——s)t<0¢>
gl —s)t—b—c<kp<min(g(l—-s)i—ec d—gqs) < (gl —s)t —b—
—c < kp < q(l — S)t—c&ql —s)t—c<d—gs)V(gl—s)t—b—
—c<kp<d—gs&d—gs<g(l —s)t—c)

Since
9(1—8)t—0<d—q3©(1—-s)t_|_s<0+d ¢ +4d
q b+4+c¢c+a
and
1 — r — ad — 1 — sVt c-+d
Q( S) c > q\S‘@( s) +s>b+c+d

the equivalence follows.

In the end of this paragraph we give an example. We consider the
intervals
A = [ay, ay + 3], B = [a, + 6, a, + 10], c = [a, — 2, a; + 4],
D= [a,+5 a, + 114 u]

where a, € R and w< R¥. These intervals satisfy the conditions of theorems
2 and 3 with the parameters

a, b, a t s T

1
14 u

u

1+

14
3 +u

3+ u

a, |a, +6 3.1‘1 14w

In this way we have

A®, B— (4ay + 19)k — 20, — 10 (day + 19) b — 200 — 9
k 2k — 1 2% — 1
and
C®, B — (4ay, + 18 + b — 22, — 9 —u (4a1—l—18+u)k—2a1—-9:|
b 2% — 1 ’ 2% — 1 '
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Tor the comparison of the quasisums A®, B and C&®, D we have

hence for # = 2. We have the complex sum for the point P (With uw=2
the following equivalences:

u B e D and k=-§ (Fig. 1.). The monotonic law valid for P (interval arithmetic
A®,B<C®Deu>1%& k>ﬁc>(u, ) € Dy

i.e. complex sum) is valid also in a neighbourhood of P, namely in the
domain D,.

A®,BHC@® Desu>1& 1_<k<ui1@(u,k) e D,

A®,BCC®Dwu>1 &%<k<1¢>(u,k) < D,

3. Some considerations on the generalized sum 4 ®, B(§1; 3)
A®,BDCO®Deu<l & E<1l<e (wk) = Dy

1

1—u

A® BRC@®Deu<l & 1<k < (u,k) € D3 If f= (fu fo fo fo) is a system of 4 real numbers, then for

A(—BkB>C('BkD©%<1 & k>;ﬁ©(%k) € Ds. H = {(4, B) | A(f, — fs) + B(f — fa) <0}

In the figure 1 ate represented the domains Dy — Ds. we define the generalized sum 4 @; B as the interval

[a, + 01 +1‘If1 + sz: a; + b, ‘l‘fIfs -+ fo;]

THEOREM 8. For the genevalized sum A @; B we have one of the follo-
wing 3 formes :

U#ﬂhh+gﬂ+ﬁA%B<§;

%f=m+ﬁAﬁJH@LB>?;
| 3) f= (fl-' fz' f1 + 11 +g)»

where fi, fo € R and f, g € Rt ave arbitrar veal numbers. The quasisum
| A ®, B has the form 2), namely with

E—1 1 -
. 1 f1=f2: andf:g: , (E<A)
Observations. Only the points of the domain %>0&k>§ 9k — 1 2% — 1
define the quasisums A ®, B and C®, D.
e 1nf:rom ‘L'(}leorem 6 we have for 4 ®, B and C®, D the complex sum | therefore :

o |
for a common value of %, if:

14w u _ 6+u A®kB:A@(k h—1 k=1 & \B
34w 14+u 4384w lor—1 )

P ok—1" 2k =1’ 2k—1
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Proof. From the condition A(fy — fs) + B(f, — fs) <0 holds one of
the following possibilities :

fi—fi>0&fi—f<0 & B<A](rf3—ff1),

fo—fi<0 & fi—fa>0 &B>A(;‘-1:JJ:3)J
ot

fs—fHi>0 & fs—f: >0

and the parametrical forms given in theorem hold. An immediately proof
gives that the quasisum has the form 2.
rrrorEM 9. The generalized sum A @ B gives a quasisum if and only if

Adfa=fotfi= 1 and A(fs — f1) + B(fs — f2) > 0.

The proof is very simple.

4, An example related (o the generalized sum A4 &y, B (81, 4)

The above sum is not in the present paper in general. We give only
the following example.
If

w(ay, @y by by) = da@y + biby and v(ay, s, b, by) = (@ + b1)(@e + bs),

then
y: | ®u,u B

is the interval
lay + by + a142 4 byby — 0] — b2, ay + by + (a,+ by)(as + by) — (a; + b4)%1,
defined for

Ab, + Ba, < 0.

5. A historieal remark

The complex sums have been considered (in 1895) by 1.6. FROEBENIUS
(1849—1917) remarking that for complexes (subsets of a group) we
can define the group operation; namely if Qf and @ are subsets of
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a multiplicative group, then QP is the set of elements AB where A is
in Q[ and B in Q. The product is uniquely determined, but is not
uniquely inversable. See: Sitzungsberichte Preuss. Akad. Wiss. Berlin
1895, pp. 163—164.

The study of some aspects connected with inversability of complex
operations (in a particular case of intervals) is the scope of the investi-
gation about the quasisums, generalized sums and generally of the quasiop-
erations (see [1]).
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