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1. The following problem posed by r1.J. rRiviaN [4] is well-known :
Let @ be the normed linear space of continuous real valued functions
on the interval [0, 1], endowed with the uniform norm. Characterize those
n-tuples of algebraic polynomials (p,, p1, ..., p,—1) such that the degree
of p;is 4, 1 =0, 1, ..., » — 1, for which there exists a function f = @
so that the polynomial of best approximation of degree ¢ to f in the sense
of Chebyshev is p for each ¢ =0, 1, ..., n — 1.

The anologous problem for n-tuples of elements from nonlinear unisol-
vent families [3] or [8], was stated in [1], where the necessary condition
of Rivlin for polynomials was obtained. Moreover, it was shown for this
more general problem that in the case of a pair (¢,, @,) of elements
o; € F,, F; a nonlinear unisolvent family of degree ¢, ¢ =1, 2, Riv-
lin’s condition is also sufficient. Particular cases of Rivlin’s problem were
studied in [2], [5]. [6] and [7]._

The purpose of this note is to prove the following :

THEOREM. Given the families G and 76, where € 1s unisolvent of degree
Lon [0, 1] and F6 is unisolvent of degree kb on [0, 1with 1 <<l <k, gC
and the elements @, § such that ¢ € g, $ € I and § & G, then there
exists a function f = C which satisfies:

Ilf — ¢ll = inf [If — g]
gs

-_—
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and

1f — ¢Il = inf {If — Al
he%

if and omly if the function § — ¢ changes sign at (at least) 1 distinct points
w [0, 1]. :

For polynomials this theorem was proved by D. Sprecher [5] and the
nonlinear case for I = 1, & = 2 is found in [1].

2. Before giving the proof of the theorem, we introduce some notation
and make some observations.

Let ¢ and ¢ be the functions given in the hypothesis of the theorem.
Then y = ¢ — ¢ changes sign at least / times in [0, 1], i.e. there exists
the points :

(1) 0< oy < % < ... <x,<l,
such that
xx) =0fore=1,2 ..., l
and sgn y (¥ — ¢) = —sgny(% + ¢ for i=1, ..., 1 and all e>0
sufficiently small. Letting xy =0 and #;, ; = 1, we set:
m; = max {[y(x)], x € [#;, %)}, ¢=0 1, ..., I
m=min {m;, 1 =0, 1, ..., §}
=
=5

By continuity of the function y we can choose the point sets:

T=1{, ty ..., 0 and Z ={z, 25, ..., %}

such that:
0 <t < <z <<, i=12 ...,
Zi<t,’+1, 1 = 1, 2, .y —1
x(t:) = — x(z) = <p, 1=1 2, ..., e= 341
and

=max {y(x), ¥ € [t u]l, =12 ..., 1]}

Let E=TUZ.
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Definition 1. A point e € E is a minus point of x if x(e) =
= —op and a plus point if x(e) = ».
If M = |ly||, let u be a real number such that p > M.
Lemma I If a(x) = max {$(x) — . o(x) — @ — ¢} x = [0, 1]
and
B(x) = min {$(x) + p, o(*) + v+ e} x < [0, 1]
then
B(x) — a(x) > M for «x<=[0, 1]
Proof : First we observe that the functions $(x) + p and o(x) + @ +
+ p coincide at the plus points of y from the set E while the functions

¢(x) — p and @(#) — ¢ — p coincide at the minus points of y from the

set E. _
Now we distinguish the following cases:

(i) for x between two minus points we have:
Bx) — a(r) =x(*) +2u+e22u—u+e>M
in the case when %(x) + p < 0 and
B(%) — alx) = 2u > M,

in the case when y(x) + ¢ = 0;
(ii) for x between two plus points we have

B#) — a(x) = —x(®) + 2+ o >2u—pt+e>M
in the case when y(x) — p > 0 and
Bx) — a(x) =2u>M

in the case when (%) — p < 0;
(iii) for x between a plus point and a minus point or between a minus

point and a plus point we get
B(x) — alx) = 2u> M;

(iv) for x = [0, ¢;] or for x = [z, 1] where ¢, and z, are minus points
we have:

Bx) — a(x) =x(») + 2 +p 22 —pt+e>M
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in the case when y(x) + ¢ < 0 and
BlY) — () = 20> M

in the case when y(x) + p >
(v) for x € [0, ¢,] or for x e [z, 1] where ¢, and z, are plus points
we have:

B#) —a(x) = —x(¥) +2u+e>2u—p+e>M
in the case when y(x) — p > 0 and

B(x) — a(x) = 2u > M,

in the case when y(x) — p < 0.
Thus B(x) — a(x) > M for each x = [0, 1].

We finish this section with:

Definition 2. The function g = @ is said to alternate n times
if theve exists an n + 1 point set {xg, %1, ..., %}, 0 < %o < % < ... <
< %, < 1 such that, for 1 =0, 1, ..., n:

lg(x:)] = ligll and g(x;)) = (—1)" &(#)-
The set {xg, %y, ..., %, 1S called an alternate of g of length n |- 1.

3. In this section we give the proof of the theorem from first section.

The necessity of the condition in the theorem was proved in [1].

To verify the sufficiency of the condition, let us consider the elements
¢ and ¢ as in the previous section and fix a point x;, 1 < ¢ </ in the
set (1) such that ¢; is a minus point of y and z; is a plus pomt of y.
In the case ! = 1, a point with these properties may not exist, but the
same arguments apply to the case that #; is a plus point and z; is a
minus point.

Let p =k — 1 >1. First we consider the case where p even i.e.
p = 27, Then in the interval (4, z;) we choose the points:

(2) Y1 <Y < oo <Y1 <DYa
and from the set E we choose a subset of points
(3) 611 62) ey Gi—1, t1:l 2i, ei+11 ey 61

where ¢; =f4; or 2z, j=1,2, ..., i—1 i+4+1, . I so that (3) be-
comes a sequence of points with alternating sign accordmg to the defini-
tion 1.

5 ON RIVLIN'S CONJECTURE 31

Now in the plane we consider the points

Pi(v, wp), =12 ...,k+1

where
(i) for v; = ¢;, ¢; from the set (3), we put w; = B(g;) = P(¢;) + p. if
¢; is a plus point of y and w; = a(e;) = Y(¢;) — w it ¢; is a minus point ;
@) for vy =9, j=1,2, ..., 2r, we put: w; = B(y;) = ¢(y;) + p

if 4 is odd and w; = a(y;) = Lp(yj) — @ if 7 is even:

(iii) for v;=1¢; and v; = 2z; we put w; = ¢(¢;) — . and w; = P(z;) + p
respectively.

Finally, form Po(0, 3) and P.s(1, 3), two additional points in the
plane with § a real number ; let A(x) be the piecewise linear function with
vertices P;, j =0, 1, ..., &4 2.

In the case p odd. i.e. p = 27 + 1 we construct similarly a piecewise
linear function A(x) by first choosing a point y,,4.1 < (2, #;41) and then
choosing the set:

(4) 61; 621 s ey gi—-l; ti; zi: y2V—|—1; 61:+1J RN e[

_Where eg=1¢t or 2, =12, ...,+—1, 441, ..., 7 such that (4)
is a sequence of points with alternating sign, and the point y,,, is consi-
dered a minus point of y. In this case the vertex of the function A(x)
with the abscissa y,,.1 will have the ordinate ¢(yz41) — .

Define a function f by:

(B it A > B
fa) =Fal) i A < alx)

A(x) otherwise

This function is defined and continuous on the interval [0, 1] and
is simultaneously approximated best by ¢ in the family % and by ¢
in the family of &. This follows from the corollary 1 [8].

Indeed, by T.emma 1 we have:

lf—oll=w+4+pe and [|f—4[l=yp

In the case p even the union of the point sets (2) and (3) is an alternant
for f — ¢ of length % -+ 1 while the set (3) is an alternant for f — ¢ of
length 7 4 1.

The same conclusion in the case p is odd follows in a similar manner.
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