ON THE DIVIDED DIFFERENCES AND FRÉCHET DERIVATIVES

bу

G. GOLDNER

(Cluj)

In this paper a connection between the divided differences and the Fréchet derivatives is given. Such connection appeared axiomatically in s. ULM's paper [5], but we can give a sufficient condition for the existence of Fréchet derivatives as the limit of the divided differences.

We recall the definition of the divided difference of a mapping P of the linear normed space X into linear normed space Y.

Definition: The linear and continuous mapping $P_{u,v}$ (i, e. $P_{u,v} \in \mathcal{L}(X, Y)$) defined on X with values in Y is a divided difference of P in the distinct points u, v of X, iff

(1)
$$P_{u,v}(u-v) = P(u) - P(v).$$

We note that the study of the divided differences is given in [3].

The fact that the divided differences are not in the strong relation with the Fréchet derivatives, was illustrated by the following example given by M. BALÁZS [1] at the suggestion of the author:

Example. Let be the identical mapping of the R^2 , with the usual norm, $h=(h^1, h^2)$ a point of the R^2 , $\emptyset=(0, 0)$ the origin of the R^2 , and $u=(u^1, u^1) \in R^2$

We have

$$I'(\emptyset) \cdot h = I \cdot h = h.$$

We consider the following divided difference of the mapping I in the different points u and \emptyset :

^{3 -} Revue d'analyse numérique et de la théorie de l'approximation, tome 3, no. 1, 1974

 $I_{u,\emptyset}h = \frac{h^1}{u^1}[I(u) - I(\emptyset)] = \frac{h^1}{u^1} \cdot u = \frac{h^1}{n^1}(u^1, u^1) = (h^1, h^1)$ $\lim_{u \to \emptyset} I_{u,\emptyset}h = \lim_{u \to \emptyset} (h^1, h^1) = (h^1, h^1) \neq I'(\emptyset) \cdot h.$

We give now a sufficient condition for the existence of the Fréchet derivatives, as the limit of divided differences.

Proposition 1. Let X be a real normed vector space, Y a real Banach space, and P a mapping of X into Y. If P has a divided difference $P_{u,v}$ with the property

$$(2) ||P_{u,x} - P_{v,x}|| \leq L||u - v||,$$

for every points u, v, x belonging to X, then:

(i) for every x_0 of X there exists $P'(x_0)$.

(ii)
$$\lim_{u \to x_0} P_{u,x_0} = P'(x_0)$$
.

Proof. Let $(u_n)_{n \in N}$ be a sequence of points of X, with $\lim u_n = x_0$, and we consider the sequence of the divided differences $(P_{u_n, x_0})_{n \in N}$. By using the condition (2), we have

(3)
$$||P_{u_m,x_0}x - P_{u_m,x_0}x|| \leq L ||u_n - u_m|| \cdot ||x||$$

for every x of X. Then for every fixed x of X, the sequence $(P_{u_n, x_0} x)_{n \in N}$ is a Cauchy sequence, and Y being a Banach space there exists $y = \lim_{n \to \infty} P_{u_n, x_0} x$. We define the mapping A of X into Y, puting for every x of X, Ax = y. We observe that the mapping A is well defined (i, e. for the other sequence v_n converging to x_0 , we obtain the same y). Indeed

$$||P_{u_n,x_0}x - P_{v_n,x_0}x|| \le L(||u_n - x_0|| + ||v_n - x_0||)||x||.$$

The linearity of A is evidently. From the condition (2) we obtain

$$\Big|\,||P_{u_n,\,x_0}-P_{u_m,\,x_0}||\,\Big|\,\leqslant\,\Big|\,||P_{u_m,\,x_0}-P_{u_n,\,x_0}||\,\Big|\leqslant L\,||u_m-u_n||,$$

hence the sequence P_{u_n, x_0} is a Cauchy sequence, which is bounded.

Then we have

$$||P_{u_n, x_0}|| \leqslant M \quad \text{hence} \quad ||P_{u_n, x_0} x|| \leqslant M \; ||x||$$

and for $n \to \infty$, we obtain the boundeness of the mapping A. We prove the equality

$$(4) A = P'(x_0).$$

For $m \to +\infty$, by the inequality (3) we obtain

$$||P_{u_n, x_0} x - Ax|| \le L||u_n - x_0|| \cdot ||x||.$$

Now we have

$$\begin{aligned} ||(P_{u,x_0} - A)x|| &\leq ||(P_{u,x_0} - P_{u_n,x_0})x|| + ||(P_{u_n,x_0} - A)x|| \leq \\ &\leq L(||u - x_0|| + 2||u_n - x_0||) \cdot ||x||, \end{aligned}$$

i.e.

3

$$||(P_{u,x_0}-A)x|| \leq L||u-x_0|| \cdot ||x||.$$

Hence we can write

$$\frac{||P(u) - P(x_0) - A(u - x_0)||}{||u - x_0||} = \frac{||(P_{u,x_0} - A)(u - x_0)||}{||u - x_0||} \leqslant L||u - x_0||.$$

By the unicity of the Fréchet derivative, we have (4). Then

$$||P_{u,x_0} - P'(x_0)|| = \sup_{\|x\| \le 1} ||(P_{u,x_0} - P'(x_0))x|| \le$$

$$\le L \sup_{\|x\| \le 1} \{||u - x_0|| \cdot ||x||\} = L||u - x_0||.$$

i.e. $\lim_{u \to x_0} P_{u,x_0} = P'(x_0)$.

On the other hand, it is possibly to put the problem of the existence of the divided difference which converges to the Fréchet derivative, in the hypothesis that P is derivable. We can give only a partial answer to this question.

Remark 1. For the real case, we obtain a consequence of the theorem of T. POPOVICIU [4].

Remark 2. If the condition (2) is satisfied in a closed ball of X, the Proposition is true in that ball.

Proposition 2. If the mapping P of the real normed space X in the space Y of the same type has the continuous Fréchet derivative in every point x of the X, then there exists a divided difference $P_{u,v}$ of the P, with

$$\lim_{u\to x} P_{u,x} = P'(x).$$

Proof. We consider the divided difference [2]:

$$P_{u,x} = \int_{0}^{1} P'(x + t(u - x)) dt.$$

The author wish to express his acknowledgement to Professor M.Balázs for useful discussions on the subject.

REFERENCES

[1] Balazs, M., On the divided difference (in this issue).

- [2] Belostotzki, A.I., Certain methods for solving the functional equations. (Russian). Usp. Mat. Nauk SSSR. 17, 192-193 (1962).
- [3] Balázs, M., Goldner, G., On existence of the divided difference in linear spaces, Rev. anal. num. teor. approx. (Cluj), 2, 5-9 (1973).
- [4] Popoviciu, T., Sur quelquess propriétés des fonctions d'une ou de deux variables réeles. Mathematica (Cluj), VIII, 1-85 (1934).
- [5] U1m, S., On generalized Divided Differences I-II. (Russian). Izv. Akad. Nauk ESSR, 16, 13-26; 146-155 (1967).

Received 29, XI, 1973.

Catedra de Analiză Matematică a Facultății de Matematică-Mecanică a Universității "Babeș-Bolyai" din Cluj