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OPERATORS (III)

by
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1. Introduection

There are many approximation Processes constructed by means of
linear positive operators which enable us to approximate from a qualitative
point of view. This means that the operators presetve the shape of the
elements from the domain. Likewise, for some concrete operators the
remainder-term on the class of non-concave functions has a constant sign.
With such remarkable properties, we note the operators that are attribu-
ted to BERNSTEIN, SZASZ -MIRAKVAN, MEYER-KONIG and ZELLER. The
case of one variable was treated by many authors [2]—[6], [8]—19],
[13]. It is natural to ask what happens in the case of many variables.

The aim of this paper is to give a partial answer. Firstly we prove
that if L : C(K) — C(K), K being a compact convex set from R™, is a linear
positive operator which reproduces the affine functions, then f— Lf <0
for every mnon-concave function f on K. The case of one variable was
treated by the author in [4]. Further, some properties of the sequence
of Bernstein operators are investigated. It is shown that, in the case of
two variables, this sequence is non-increasing on the class of non-concave
functions. Finally, we prove that the Bernstein operators defined on a
simplex preserve the S-convexity (in the sense of L.Schur). The proofs
are made for the two-dimensional case.

At the end of this paper we get an example of polynomial operator
which interpolates at the vertices of a convex polygon and is positive in
its interior.
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2. The sign of the remainder-term

We use the following notations and terminology :
K is a compact, convex set in R”, m > 1;

c=(Cp Car «vvs Cm)s %= (%1, %o -+ 1, Xp)y £ = (b oo Bo o nes i)

eot) = 1, ennlt) =4 <6 B :;:21 Ch%y ;
If f: K - R, then the epigraph of [ is
Epi(f) = {( ¥ S K, y <R, y > flx)}.
A function f: K — R is called non-concave on K iff for every y; < K,
i=12 ..., 5 P22
?

? i
f (,; a;y;) < 21 af(3;)

whenever a; € [0, 1], 7=12, ..., p, a; +a,+ ... +ay=1

By B(K) resp. C(K) we denote the linear normed space of all functions
K — B which are bounded, respectively continuous on K. They are
normed by means of uniform norm.

An affine function on K is defined as

‘ e(x) =< #) + 7,

where # is a real number. Let & be the collection of all such affine
| functions. A linear operator L: B(K) — B(K) preserves the affine functions
iff

(1 Le=c¢

x € K,

for every ¢ € 8.
It is clear that (1) is equivalent with
Ley = ¢y, Leyy = €1, k=12, ..., m.

ragorEM 1. If L: C(K) » C(K) is a linear positive operator which
preserves the affine fumctions, then

fx) < (LA)(#),

for every f = C(K) which is non-concave on K.

xe K
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Proof. The continuity and non-concavity of f imply that Epi(f) i
convex body in R”*1, Let y of f imply that Epi(f) is a

H={x yx R y R L& %)+ ¢1y + 62 = 0}
be an arbitrary closed hyperplane in R”*! which bounds Epi(f), say
6 %) + 61y + ¢up2 2 0 for (%, y) = Epi()).
Because for each ¢ « K the point (¢, f(t)) belongs to Epi(f), we may write
<6 B+ 6aflt) + cura > 0.
By means of the monotonicity property of L

(2) e, %)+ cyalLf)(#) + ¢4 20, x € K.

In conclusion, if Epi(f) lies on one side of an arbitrary cl
, { y closed hyperplane,
then {(x, (Lf)(x))} lies on the same side. If we assume g’ g

{(x TN} N Epi(f) = 0,

then, according to the second separation theorem of convex sets (see [1
p. 58 or [12] p. 65), there exists a closed hyperplane H, in R’”+1(stric£:1}]r
separating {(x, (Lf)(»))} and Epi(f). Thus for

Hy={(x y)x esR" y €R, & % + 5,41y + 2 = 0}

one has

€, %) + 41y + Cppa > 0 for (v, y) = Epi(f)
and

<E‘ x> + En+1(Lf)(x) + 5n+2 < 0.

But this contradicts (2) and the proof is complete.

As an application of the above theorem we may prove the following
two-dimensional variant of a well known result by T. popoviciu [9].

Though this result was established by v. 1. vorxov [14] we present a
new, shorter proof,

4 - Revue d’analyse numérique et de la théorie de l’approximation, tome 3, no 1, 1974



;

50 ALEXANDRU LUPAS 4

’ 9. Let K be a compact, convex set in R? and L,: C(K) = C(K),
n:ﬁf{%OREM be a sequence of linear positive operators which preserve
the affine functions. If Q € C(K) 1s defined as

Qx, y) = »* + »*

and
lim ||Q — L,Q| =0,
then
lim ||f — L,fll =0 for every f e C(K).

71— 00

i 11 functions
Proof. Let C®(K) be the subspace of C (K) formed with a
which hﬁve contir(mo)us partial derivatives of the second order on K.
For f = C®( () let us denote

3 = LUk et V= F3F 415

y=§W+ﬂ—Wﬂ—ww4%
as well as

— 1 o = 3 * X,
) M ek o b 9) M orex (. 3)

For (v, y) arbitrary in K put
oln; (% 3)] = 2 — ALfA(x ») -+l )]+
i ) S 9) = [fale 9)1
It may be seen that
olms; (v M1 20, oMy (% )] 20

) oLfl(% ) (% )] <O

An element g from C®(K) is non-concave if its Hessian matrix
glylﬂ ngy
gl, &

is positive semi-definite for every (x, y) = K (see [11], p. 27).
Let f = C®(X) and

1 e il s B
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According to (3)—(4) one observes that g, 4 are mnon-concave on K.
For instance, this may be motivated by the equalities

glo=M;—fl.20
gl gl — gl =o(My; -] 20.
Therefore, theorem 1 implies
g <L,

h <L on K,

which are of course equivalent with
(5) %mf[L,,g QI <L,f—f< éMf[L”Q — QL =12 ....

If the hypothesis is verified, then (5) furnishes

lim ||f— L,f]l =0 for every f e CO(K).

#— 00

Finally, the fact that C®(K) is densein C(K) and || L,|| =1, n =1, 2,
proves our theorem.

Another consequence of theorem 1 is the following representation of
the remainder-term in the approximation by means of the operators
L,:Cla, b] - Cla, ], n=1,2, .... Some similar ideas were exposed
by the present author in [4].

An operator L: Cla, b] = C[a, b] is called strictly positive telative
to K, < [a, b], iff

Y]

feCla b], f20 f#0 on [a b]
implies

Lf >0 on [a, 0], Lf >0 on K;.

From the proof of the theorem 1 we see that for such an operator L :C(a,0]

— C[a, b] which is moreover linear and preserves the linear functions one
has

Lh—72>0 on K,
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whenever % is a convex function on [a, &), ie, [#;, %, %3; 2] >0
%1, %y, %3 being arbitrary distinct points on [4, 8]. For x, = K, let
F,: Cla, b] > R be defined as

I, (f) = (Lf)(x0) — f(%o)

Then
E,(h) >0

for any convex function 2 & Cla, b]. An earlier result of . rorovICIU
[10] asserts that there exist three distinct points &; from [a, b] so that

Fo(f) = Fules) (B &a & 1 () = 2

In this way we have proved

THEOREM 3. If L:Cla, b] — Cla, b] is a linear, strictly positive ope-
rator rvelative to K, < [a, b), and

Ley=¢, k=01 ¢@) =1,

then to each function f € Cla, b] corvesponds a system &, &, E; of dis-
tinct points from [a, b] such that

(Lif(xo) — flwo) = [(Leo)(%0) — ea(x0)] + [E1s o &35 [l %o € K.

By [&,, &, Es;f] we have denoted the divided difference of the second
order at the knots £, £, £, In this way we see that the remainder-
term, in the approximtaion by means of linear strictly-positive operators
which preserve the linear functions, has a simple from.

3. The bchaviour of Bernstein’s operaters on the elass of non-concave
functions of two variables

Let us denote
Ki={xy) esR|x <=0 1], y [0, 1]}
(6) Ky={lx, ) =Rz >0,y >0 »+y <1}

baslt) = )¢ (1 — 9

(7) porili 9) = )" F) o (L= 2 = g)rmi
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The Bernstein operators B,,: B(

K,) - B(K,),

n, m=1 2,

B,:. B(K,) - B(K,), n=1, 2, ..., are defined respectively by

8)  (Buanf) (5 3) = 332 bua(2) by (2

=01i=0

n n—k

k=01¢=0

_— -

n

(9) ( nf X, y Ezﬁnktx y ‘—’ '_)

%
’
m

(%,

y) = KI'

(%, ¥) € K,.
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THEOREM 4. If fe B(K,) is a non-concave function on K,, then for

cery (v, 9) < K,

(Bunf)(x, y) = (Buys, w1 )& ), #, m = %, 2,

Proof. We have

" m

(B"mf x y Ezbnk

+ (1 =) + 2yl f| 2 L) =

5 mb., by () P Do =i 1) b
;2 +1, #(%) b, i(y) ot Dem ¥ 1) f( m)-l—

n m+1

+ kE:O ;;, bn+1,k(x) bm+1’i(y) im—Fk41) f

nt+1l m

+ kgl 2 bui1, 1(®) bumer, (y)
#n41m+1

+ 2 buia, 1(%) bura,i(y)

k=1

I

I

Let us denote
o) — n—k+N)m—i4+1)
1k —
(n + 1)(m 4 1)
(3 _ km—1i41)
oy — ———————,
(n + D)m + 1)

»

NIA — %1 —y) + (1 —x) +

k

i—1

(n 4+ 1)(m

k(m—i+1)f

+ 1) (

—_

|+

m

E—1 ¢

(n + Dim

ki

m + 1) (

”

)+

m

(0 + 1)(m + 1)

o

Ky =

D _(h i\ @ (B i—1
) = (—' —), 2y = (_, ) z
n m

n

4 E—1 2-—1
Zu(k)=( ’ ),kaZ(
n m n

Dy(f) = aff (%) + «p f(2) + O(g)f(zf'i)

1, k=1, 2

m

.« ey

{2)

(3)
ik

k
+
)

n.

n

m

f()'e—lJ i——l)_

i — k1)

(n + 1)(m + 1)

ki

j— k_
&

i
1 m+1
+ afd f(

1

(4)

ik

(m+ Dim + 1)

g
;-
m

) — flzin)
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Since A similar result may be established for the sequence of operators whose
) images are defined in (9).

(1) 2 (3) (4 .
wp + oo ooy 4w =1, 6, k=0,1,...,n+ 1, _ o
! + THEOREM 5. For an arbitrary f € B(K,) which is non-concave on K,

we write (B, f)(% ¥) = (Baz1S)(® ¥). (%, 9) € Ky n=1,2,
Doo(f) = 0, Du(f) =" ;f_—: lf(f' 0) —I—ni lf(’%l O) f(ni - 0) Proof. One introduces the numbers
. i E)i—l k k—l,i n—Fk—1i+1 Lk_,f__
k=1, 2, ..;,1’1;—}-1 Aki(f)_n+1f(n n )+n+1f( [ n)—l_ 7+ 1 f(n n)
and similarly —f(n 1 n_: 1]
m— 1 41 i i g -1 i
Dul(f) = m+ 1 f(O' ;) + m + If(O, " J —f(O, ot 1) where for instance we have tacitly assumed that
i=12 ..., m+1 for 'k =0, ——-f(k_l i):o, i=0,1 ..., n
n
Dyir,wii(f) =0 [ and
_; Nt sy i - Bool ) = Bowsalf) = O,
D; , =m__’_+.l( i) 4 ( L 1)_( i ) 00 , et
>+1(f) m -+ 1 fl'm +m4+1f 1_, ” f11m+1 We have )
. w n— k .
i=12 ... om (B ) 9) = 2 3 popile 9)I(1 — % —9) + & +y1f (20 ~) =
D,, ='n—‘k+l (E,l) k k—1 1)_ ( k ,1) n n41 h—ia1
+1'k(f) n+ 1 fn +n—|—1f( ” fn+1 | =k—1 ; ”——n——l—l_—f(n )jbn+1kz(x _')’>—|—
k=12 ..., n n%_H_l p
-|-' - ( s ;)Pn-m, 0% ¥) +
In the same time, for ¢ =0, 1, ..., m+ 1, k=0, 1, ..., n+ 1 .
n n+l—Fk .
k R—1 4
off) 2% 4+ o 2+ o« 2+ o) A = za. ‘ +k2=l ¢Z='\6 %+ 1f( w ;)pnﬁ'k’i(x) )+
#? " 1;
If f: K; — R is non-concave on its domain, then t Putinino (% 9) AL 0) +
n+
—1
10 D ) (i:O, 1,...,m—|—1) ( % )Pwm(x ¥+
) > )
( ) 1k(f) k= O, 1_, v, B —|— 1 n nt+l—"k i A i—1
+E E - ( g )Pn+1,k,¢(% y) =
But from the above equalities and taking into account (10) =l (SOatilili E 2
n ntl
nm )( ( w41, m+1 f)(x' y) = - k=1 ;0 pn-ll & 1(x y) + (Bn+1 f)(x’ y) +
w41 m41 n4-1
=L 4y bytt, 1(%) Oyr,iy) Dan(f) = 0. + 2 Aoi(f) Put1,0,i (%, 9).
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In other words

"

#wt+i1—Fk
(B, f)(% ¥) — (Bus1 f)(%, 9) = k;o ’;0 Api(f) Pt i (5 9)-

But f € B(K,), f non-concave on K,, assures the validity of the inequali-

ties
k=01, ..., »n
Aki(f)?o; (1«20, 1,...,1’l/+1—k.

Taking into account that puyisi(% %) =0, (% y) € K, the proof is
complete.

Remark. Any non-concave function from C(K,) or from C(K,) may
be uniform approximated by a non-increasing sequence of polynomials.

4. The Bernstein operators and (S)-convexity

TetS = |lsylle, =12, ..., m, bea doubly-stochastic matrix, i.e.
. 25
s;kzo,zs;kzz__,s,-k=1, i, k=12, ..., m.
i=1 k=1
¥ %= (%, % ..., %,) = R™ then the Schur-transform of x is the poin

y=S8x= (Y Yo -+ Im)
where

"
Vi = D Sy i=12 ..., m
k=1

A subset D from R™is called an admissible domasin iff it verifies
1) X = (xl, Xy v es xm) D 1mp11es X = (xn(,), K@) » o xﬂ(m)) < D,

w being an arbitrary permutation of {1, 2, ..., m}.

ii) for every matrix S and any point x = D, the Schur-transform Sx
belongs likewise to D. Examples of such admissible domains in R? are
the sets K,, K, defined by (6).

According to A. osTrRowskl [7] a function f:D —R, D being an
admissible domain in R™, m > 2, is called S-convex (in the sense of I. Schur)
if for every matrix S and any point ¥ € D

f(5%) < f(#)-
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He notes that a S-convex function must be symmetric on its domain.
Also, if f: D - R has on D continuous partial derivatives of the first
order, then a sufficient condition for S-convexity is

(11) (x: — x5) (ﬁ — ﬂ) =0 9n D.

0%; 0xj
If D is open then (11) is also a necessary condition.

Lemma The Bernstein operator B,: B(K,) — B(K,) preserves the
symmetry, that is
f e BK,), flxy) =My %
implies '
(B.N)(#% y) = (B,)(y. %), (% 9) € Ky,

Proof. From

SR a=sEa (7))

B =3 S (" o x— s (2, £) =

k

n

= , pn,k,i(xJ y)f(%»

k=0 1=0

| = B.f) 9)

where p,; was defined as in (7).

Further we show that the Schur-convexity remains invariant under
B,. In the case of ome variable such preserving properties for positive
linear operators were exposed in [2]—[6], [8]. It is worth mentioning that
the convexity-preserving property for the wusual BERNSTEIN operator
(see [8]) was used in statistics by w. wEeMULLER [15].

THEOREM 6. Let f < B(K,) be a symmetric function which is S-convex
on K, Then B,f n=1,2, ..., are likewise S-convex functions on K,.

Proof. We find

OB n—1 n—1—% A 1 R k .
B B e 2 )
ox k=0 i=0 n n "o on

OB n—1 p—1-% B , 1 B ,
9Buf _ E Pu—1hi [f(—; s J —-f(—, i)]
dy F=0 =0 % n n %
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On account-of the above lemma we shall use (11). Put

DB, (5 ) =~ (x — 9) (52— 2]

ox oy
and

th%m=ﬂ%w—Jhx+U—wwwl—@x+@&

Tt is easy to see that f: K, >R is S-convex on K, if and only if

Af(a, %, y) = 0 for every (2, ) € Ko, « <= [0, 1].

For »n fixed let us denote

12

Qi.,k(x; y) tn : 1)(% —1 - 1) x’ (1 oy — y),, —k— 1(x _ )(xk—zi L | yk—m‘)l

kE—i

(%, ) € K,

These functions have the properties

[ gin(® ) 20, (% 9) = K
( )[j)n 1, 2k— w( ) pn 1,4, 2k— 1«(x y)] - %21;(95: y)
n— 1
U%<V:Q1' Lk —1, k:LZ,.”[ U

— Pu—tigi—itr(® Y] = Gignr1(% ¥

)

(x —9) [Puet,2041—il% )
kV=Q1,”uh E=0,1,

By means of the summation-trick

o, b el
; p=2y Aat kz;

(]
- (Aiory1—i T Agpr1-iz)

0 i=

n—

k-1
}__/:) (Aj on—i + Aop—i,i) +

o1

w\|
)a

-
i
)
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we get succesively

DB ) =l =) 5 33 Becaaites 9], 1) — g (&, 2

»n n n

R |
= k;l ; ize (%, Y) [f (M

(] &

& ’;) Z_\éqi,ZkH(xl y)[f(z—h;n“r—z: in’ —f

2] o

4 st L]y

(2k—z‘+1 i—|—1) B

» n

ok — % 2k — i+ 1 i
== 1 ) A » P
I; ¢=20q’2k(x ) f(Zk—2i+1 % n]+
2],
E 29%1 f(2k—2i—|-1 2% — i+ 2 i")
~ = 1 oh —2 + 2 w " n
Therefote
k—1
”1[ ] E—2%  k—di+1 i
(18 DB )= 2wl Mo L2
=1 B— 2441 7 ”n
Now the S-convexity of f enables us to write
E=12 ..., —1
Af( R=%  hoifl i) >0, i=0,1, [k_‘__l]
ER—2¢ 41 ” n 2

Combining these inequalities with (12)—(13) we conclude with

D(B,f, :) 20 on K,

and (11) finishes the proof.

-
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5. A method of positive interpolation

Let P,, P, ..., P, be the successive vertices of a convex polygon
C, C R? with » sides. If f: C, - R then we may formulate the following
interpolation problem: ,to find a linear operator L,_,: B(C,) — B(C,)
with the properties

1) Lueof)(Py) =f(Py), k=12, ..., 7

2) (L,_sf)(x, ) is a polynomial of degree #n — 2 in x and y.

3)if f>0in C, then L, ,f >0 on the same set.” A method for
constructing such an interpolation operator is as follows : let d;(x, y)=
=aqx+by+c i=12 ...mn such that d,(x, y) =0 is the equa-
tion of the hyperplane (P;P;), =12, ..., n, (P,P,s1) = (P,Py).
Putting

Ly(x, y) = Il M:Pk:(xk:j’k)'kzl;zl---,%-
" oL 1d;(xk.yk)

we have

and if we define L,_,: B(C,) = B(C,) as

(14) Ln—2f= Ln—2[cn; fl ] = f(Pk)lnk(')' n = 3} 4, Py

k=1

the problem is solved. We want to use this operator in the following
approximation problem, which is yet unsolved: let K = {(x, y) = R*|#*+4
+32 <1} and Bd-K = {(, y) s R*|&* + 3" = 1}. To find, if it is possi-
ble, a ,,dense’” system of distinct points Py, Pa, .-, P,, on Bd-K,
such that

im L,_y[Pyy Pow --or Puns [, (5 91 =S5, 3), (% y) = Ba-K,

#— 00

whenever f € C(K).
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