REVUE D'ANALYSE NUMÉRIQUE ET DE LA THÉORIE DE L'APPROXIMATION, Tome 3, N° 1, 1974, pp. 47-61

SOME PROPERTIES OF THE LINEAR POSITIVE OPERATORS (III)

by
ALEXANDRU LUPAS
(Cluj)

1. Introduction

There are many approximation processes constructed by means of linear positive operators which enable us to approximate from a qualitative point of view. This means that the operators preserve the shape of the elements from the domain. Likewise, for some concrete operators the remainder-term on the class of non-concave functions has a constant sign. With such remarkable properties, we note the operators that are attributed to BERNSTEIN, SZÁSZ-MIRAKVAN, MEYER-KÖNIG and ZELLER. The case of one variable was treated by many authors [2]—[6], [8]—[9], [13]. It is natural to ask what happens in the case of many variables.

The aim of this paper is to give a partial answer. Firstly we prove that if $L: C(K) \to C(K)$, K being a compact convex set from \mathbf{R}^m , is a linear positive operator which reproduces the affine functions, then $f - Lf \leq 0$ for every non-concave function f on K. The case of one variable was treated by the author in [4]. Further, some properties of the sequence of Bernstein operators are investigated. It is shown that, in the case of two variables, this sequence is non-increasing on the class of non-concave functions. Finally, we prove that the Bernstein operators defined on a simplex preserve the S-convexity (in the sense of I.Schur). The proofs are made for the two-dimensional case.

At the end of this paper we get an example of polynomial operator which interpolates at the vertices of a convex polygon and is positive in its interior.

2. The sign of the remainder-term

We use the following notations and terminology: K is a compact, convex set in \mathbb{R}^m , $m \ge 1$;

$$c = (c_1, c_2, \ldots, c_m), x = (x_1, x_2, \ldots, x_m), t = (t_1, \ldots, t_k, \ldots, t_m)$$

$$e_0(t) = 1$$
, $e_{1,k}(t) = t_k$, $\langle c, x \rangle = \sum_{k=1}^m c_k x_k$;

If $f: K \to \mathbb{R}$, then the epigraph of f is

48

$$\mathrm{Epi}(f) = \{(x, y) | x \in K, y \in \mathbf{R}, y \geq f(x)\}.$$

A function $f: K \to \mathbb{R}$ is called non-concave on K iff for every $y_i \in K$, $j=1, 2, \ldots, p, p \geqslant 2.$

$$f\left(\sum_{j=1}^{p} a_j y_j\right) \leqslant \sum_{j=1}^{p} a_j f(y_j)$$

whenever $a_j \in [0, 1]$, $j = 1, 2, \ldots, p$, $a_1 + a_2 + \ldots + a_p = 1$.

By B(K) resp. C(K) we denote the linear normed space of all functions $K \to \mathbf{R}$ which are bounded, respectively continuous on K. They are normed by means of uniform norm.

An affine function on K is defined as

$$e(x) = \langle c, x \rangle + r, \quad x \in K,$$

where r is a real number. Let & be the collection of all such affine functions. A linear operator $L: B(K) \to B(K)$ preserves the affine functions iff

(1)
$$Le = e$$
 for every $e \in \mathcal{E}$.

It is clear that (1) is equivalent with

$$Le_0 = e_0$$
, $Le_{1,k} = e_{1,k}$, $k = 1, 2, \ldots, m$.

THEOREM 1. If $L: C(K) \to C(K)$ is a linear positive operator which preserves the affine functions, then

$$f(x) \leq (Lf)(x), \qquad x \in K$$

for every $f \in C(K)$ which is non-concave on K.

Proof. The continuity and non-concavity of f imply that Epi(f) is a convex body in \mathbb{R}^{m+1} . Let

$$H = \{(x, y) | x \in \mathbb{R}^m, y \in \mathbb{R}, \langle c, x \rangle + c_{n+1}y + c_{n+2} = 0\}$$

be an arbitrary closed hyperplane in \mathbb{R}^{m+1} which bounds Epi(f), say

$$\langle c, x \rangle + c_{n+1}y + c_{n+2} \geqslant 0 \text{ for } (x, y) \in \text{Epi}(f).$$

Because for each $t \in K$ the point (t, f(t)) belongs to Epi(f), we may write

$$\langle c, t \rangle + c_{n+1} f(t) + c_{n+2} \ge 0.$$

By means of the monotonicity property of L

(2)
$$\langle c, x \rangle + c_{n+1}(Lf)(x) + c_{n+2} \geqslant 0, \quad x \in K.$$

In conclusion, if Epi(f) lies on one side of an arbitrary closed hyperplane, then $\{(x, (Lf)(x))\}\$ lies on the same side. If we assume

$$\{(x, (Lf)(x))\} \cap \operatorname{Epi}(f) = \emptyset,$$

then, according to the second separation theorem of convex sets (see [1] p. 58 or [12] p. 65), there exists a closed hyperplane H_1 in \mathbb{R}^{m+1} strictly separating $\{(x, (Lf)(x))\}\$ and Epi(f). Thus for

$$H_1 = \{(x, y) | x \in \mathbf{R}^m, y \in \mathbf{R}, \langle \overline{c}, x \rangle + \overline{c}_{n+1}y + \overline{c}_{n+2} = 0\}$$

one has

$$\langle \overline{c}, x \rangle + \overline{c}_{n+1}y + \overline{c}_{n+2} > 0 \text{ for } (x, y) \in \text{Epi}(f)$$

and

2

3

$$\langle \bar{c}, x \rangle + \bar{c}_{n+1}(Lf)(x) + \bar{c}_{n+2} < 0.$$

But this contradicts (2) and the proof is complete.

As an application of the above theorem we may prove the following two-dimensional variant of a well known result by T. POPOVICIU [9]. Though this result was established by v. I. VOLKOV [14] we present a new, shorter proof.

⁻ Revue d'analyse numérique et de la théorie de l'approximation, tome 3, no 1, 1974

THEOREM 2. Let K be a compact, convex set in \mathbb{R}^2 and $L_n: C(K) \to C(K)$, $n=1, 2, \ldots$, be a sequence of linear positive operators which preserve the affine functions. If $\Omega \in C(K)$ is defined as

$$\Omega(x, y) = x^2 + y^2$$

and

$$\lim_{n\to\infty}||\Omega-L_n\Omega||=0,$$

then

$$\lim_{n\to\infty} ||f - L_n f|| = 0 \quad \text{for every} \quad f \in C(K).$$

Proof. Let $C^{(2)}(K)$ be the subspace of C(K) formed with all functions which have continuous partial derivatives of the second order on K. For $f \in C^{(2)}(\zeta)$ let us denote

$$\delta_f^+ = rac{1}{2} \left[f_{x^2}^{||} + f_{y^2}^{||} + \sqrt{(f_{x^2}^{||} - f_{y^2}^{||})^2 + 4f_{xy}^{||^2}} \right]$$

$$\delta_f^- = rac{1}{2} \left[f_{x^2}^{||} + f_{y^2}^{||} - \sqrt{(f_{x^2}^{||} - f_{y^2}^{||})^2 + 4f_{xy}^{||^2}} \right]$$

as well as

(3)
$$m_f = \min_{(x,y) \in K} \delta_f^-(x, y), \qquad M_f = \max_{(x,y) \in K} \delta_f^+(x, y)$$

For (x, y) arbitrary in K put

$$\varphi[\lambda; (x, y)] = \lambda^{2} - \lambda [f_{x^{2}}^{\parallel}(x, y) + f_{y^{2}}^{\parallel}(x, y)] + f_{x^{2}}^{\parallel}(x, y) f_{y^{2}}^{\parallel}(x, y) - [f_{xy}(x, y)]^{2}.$$

It may be seen that

$$\varphi[m_f; (x, y)] \ge 0, \qquad \varphi[M_f; (x, y)] \ge 0$$

$$\varphi[f_{x^2}^{11}(x, y); (x, y)] \le 0.$$

An element g from $C^{(2)}(K)$ is non-concave if its Hessian matrix

$$\begin{vmatrix}
g_{x^2}^{\parallel} & g_{xy}^{\parallel} \\
g_{xy}^{\parallel} & g_{y^2}^{\parallel}
\end{vmatrix}$$

is positive semi-definite for every $(x, y) \in K$ (see [11], p. 27). Let $f \in C^{(2)}(X)$ and

$$g = \frac{1}{2} M_f \cdot \Omega - f$$
, $g = f - \frac{1}{2} m_f \cdot \Omega$.

According to (3)-(4) one observes that g, h are non-concave on K. For instance, this may be motivated by the equalities

$$g_{x^2}^{||} = M_f - f_{x^2}^{||} \geqslant 0$$

$$g_{x^2}^{\parallel} \cdot g_{y^2}^{\parallel} - g_{xy}^{\parallel^2} = \varphi[M_f; \cdot] \geqslant 0.$$

Therefore, theorem 1 implies

$$g \leqslant L_n g$$

$$h \leqslant L_n h$$
 on K ,

which are of course equivalent with

(5)
$$\frac{1}{2} m_f [L_n \Omega - \Omega] \leq L_n f - f \leq \frac{1}{2} M_f [L_n \Omega - \Omega], n = 1, 2, \dots$$

If the hypothesis is verified, then (5) furnishes

$$\lim_{n\to\infty}||f-L_nf||=0\quad\text{ for every }\quad f\in C^{(2)}(K).$$

Finally, the fact that $C^{(2)}(K)$ is dense in C(K) and $||L_n|| = 1$, $n = 1, 2, \ldots$, proves our theorem.

Another consequence of theorem 1 is the following representation of the remainder-term in the approximation by means of the operators $L_n: C[a, b] \to C[a, b]$, $n = 1, 2, \ldots$ Some similar ideas were exposed by the present author in [4].

An operator $L: C[a, b] \to C[a, b]$ is called *strictly positive* relative to $K_1 \subseteq [a, b]$, iff

$$f \in C[a, b], \quad f \geqslant 0, f \neq 0$$
 on $[a, b]$

implies

$$Lf \geqslant 0$$
 on $[a, b]$, $Lf > 0$ on K_1 .

From the proof of the theorem 1 we see that for such an operator $L:C[a,b] \to C[a, b]$ which is moreover linear and preserves the linear functions one has

$$Lh-h>0$$
 on K_1

whenever h is a convex function on [a, b], i.e., $[x_1, x_2, x_3; h] > 0$ x_1, x_2, x_3 being arbitrary distinct points on [a, b]. For $x_0 \in K_1$ let $F_{x_0}: C[a, b] \to \mathbf{R}$ be defined as

$$F_{x_0}(f) = (Lf)(x_0) - f(x_0)$$

Then

$$F_{x_0}(h) > 0$$

for any convex function $h \in C[a, b]$. An earlier result of T. POPOVICIU [10] asserts that there exist three distinct points ξ_i from [a, b] so that

$$F_{x_0}(f) = F_{x_0}(e_2)[\xi_1, \xi_2, \xi_3; f], e_2(t) = t^2.$$

In this way we have proved

THEOREM 3. If $L: C[a, b] \to C[a, b]$ is a linear, strictly positive operator relative to $K_1 \subseteq [a, b]$, and

$$Le_k = e_k, \quad k = 0, 1, \quad e_i(t) = t^i,$$

then to each function $f \in C[a, b]$ corresponds a system ξ_1 , ξ_2 , ξ_3 of distinct points from [a, b] such that

$$(Lf)(x_0) - f(x_0) = [(Le_2)(x_0) - e_2(x_0)] \cdot [\xi_1, \xi_2, \xi_3; f], x_0 \in K_1.$$

By $[\xi_1, \xi_2, \xi_3; f]$ we have denoted the divided difference of the second order at the knots ξ_1, ξ_2, ξ_3 . In this way we see that the remainder-term, in the approximation by means of linear strictly-positive operators which preserve the linear functions, has a *simple from*.

3. The behaviour of Bernstein's operators on the class of non-concave functions of two variables

Let us denote

(6)
$$K_{1} = \{(x, y) \in \mathbb{R}^{2} \mid x \in [0, 1], y \in [0, 1]\}$$

$$K_{2} = \{(x, y) \in \mathbb{R}^{2} \mid x \geq 0, y \geq 0, x + y \leq 1\}.$$

$$b_{n,j}(t) = {n \choose j} t^{j} (1 - t)^{n-j}$$

$$p_{n,k,i}(x, y) = {n \choose k} {n-k \choose i} x^{k} y^{i} (1 - x - y)^{n-k-i}.$$

The Bernstein operators $B_{n,m} \colon B(K_1) \to B(K_1)$, $n, m = 1, 2, \ldots, B_n \colon B(K_2) \to B(K_2)$, $n = 1, 2, \ldots$, are defined respectively by

(8)
$$(B_{n,m}f)(x, y) = \sum_{k=0}^{n} \sum_{i=0}^{m} b_{n,k}(x) b_{m,i}(y) f\left(\frac{k}{n}, \frac{i}{m}\right), \qquad (x, y) \in K_1,$$

(9)
$$(B_n f)(x, y) = \sum_{k=0}^n \sum_{i=0}^{n-k} p_{n,k,i}(x, y) f\left(\frac{k}{n}, \frac{i}{n}\right), \qquad (x, y) \in K_2.$$

THEOREM 4. If $f \in B(K_1)$ is a non-concave function on K_1 , then for every $(x, y) \in K_1$

$$(B_{n,m}f)(x, y) \ge (B_{n+1, m+1}f)(x, y), n, m = 1, 2, \ldots$$

Proof. We have

$$(B_{n,m}f)(x, y) = \sum_{k=0}^{n} \sum_{i=0}^{m} b_{n,k}(x) b_{m,i}(y) [(1-x)(1-y) + y(1-x) + x(1-y) + xy] f(\frac{k}{n}, \frac{i}{m}) =$$

$$= \sum_{k=0}^{n} \sum_{i=0}^{m} b_{n+1,k}(x) b_{m+1,i}(y) \frac{(n-k+1)(m-i+1)}{(n+1)(m+1)} f(\frac{k}{n}, \frac{i}{m}) +$$

$$+ \sum_{k=0}^{n} \sum_{i=1}^{m+1} b_{n+1,k}(x) b_{m+1,i}(y) \frac{i(n-k+1)}{(n+1)(m+1)} f(\frac{k}{n}, \frac{i-1}{m}) +$$

$$+ \sum_{k=1}^{n+1} \sum_{i=0}^{m} b_{n+1,k}(x) b_{m+1,i}(y) \frac{k(m-i+1)}{(n+1)(m+1)} f(\frac{k-1}{n}, \frac{i}{m}) +$$

$$+ \sum_{k=1}^{n+1} \sum_{i=1}^{m+1} b_{n+1,k}(x) b_{m+1,i}(y) \frac{ki}{(n+1)(m+1)} f(\frac{k-1}{n}, \frac{i-1}{m}).$$

Let us denote

$$\alpha_{ik}^{(1)} = \frac{(n-k+1)(m-i+1)}{(n+1)(m+1)}, \qquad \alpha_{ik}^{(2)} = \frac{i(n-k+1)}{(n+1)(m+1)}$$

$$\alpha_{ik}^{(3)} = \frac{k(m-i+1)}{(n+1)(m+1)}, \qquad \alpha_{ik}^{(4)} = \frac{ki}{(n+1)(m+1)}$$

$$z_{ik}^{(1)} = \left(\frac{h}{n}, \frac{i}{m}\right), z_{ik}^{(2)} = \left(\frac{h}{n}, \frac{i-1}{m}\right), z_{ik}^{(3)} = \left(\frac{k-1}{n}, \frac{i}{m}\right)$$

$$z_{ik}^{(4)} = \left(\frac{k-1}{n}, \frac{i-1}{m}\right), z_{ik} = \left(\frac{h}{n+1}, \frac{i}{m+1}\right)$$

$$D_{ik}(f) = \alpha_{ik}^{(1)} f(z_{ik}^{(1)}) + \alpha_{ik}^{(2)} f(z_{ik}^{(2)}) + \alpha_{ik}^{(3)} f(z_{ik}^{(3)}) + \alpha_{ik}^{(4)} f(z_{ik}^{(4)}) - f(z_{ik})$$

$$i, k = 1, 2, \dots, n.$$

Since

$$\alpha_{ik}^{(1)} + \alpha_{ik}^{(2)} + \alpha_{ik}^{(3)} + \alpha_{ik}^{(4)} + \alpha_{ik}^{(4)} = 1,$$
 $i, k = 0, 1, ..., n + 1,$

we write

$$D_{00}(f) = 0, \ D_{0k}(f) = \frac{n-k+1}{n+1} f\left(\frac{k}{n}, \ 0\right) + \frac{k}{n+1} f\left(\frac{k-1}{n}, \ 0\right) - f\left(\frac{k}{n+1}, \ 0\right)$$

$$k = 1, 2, \dots, n+1$$

and similarly

$$D_{io}(f) = \frac{m-i+1}{m+1} f\left(0, \frac{i}{m}\right) + \frac{i}{m+1} f\left(0, \frac{i-1}{m}\right) - f\left(0, \frac{i}{m+1}\right)$$

$$i = 1, 2, \dots, m+1$$

$$D_{m+1, n+1}(f) = 0$$

$$D_{i, n+1}(f) = \frac{m-i+1}{m+1} f\left(1, \frac{i}{m}\right) + \frac{i}{m+1} f\left(1, \frac{i-1}{m}\right) - f\left(1, \frac{i}{m+1}\right)$$

$$i = 1, 2, \dots, m$$

$$D_{m+1, k}(f) = \frac{n-k+1}{n+1} f\left(\frac{k}{n}, 1\right) + \frac{k}{n+1} f\left(\frac{k-1}{n}, 1\right) - f\left(\frac{k}{n+1}, 1\right)$$

$$k = 1, 2, \dots, n.$$

In the same time, for i = 0, 1, ..., m + 1, k = 0, 1, ..., n + 1

$$\alpha_{ik}^{(1)} z_{ik}^{(1)} + \alpha_{ik}^{(2)} z_{ik}^{(2)} + \alpha_{ik}^{(3)} z_{ik}^{(3)} + \alpha_{ik}^{(4)} z_{ik}^{(4)} = z_{ik}.$$

If $f: K_1 \to \mathbb{R}$ is non-concave on its domain, then

(10)
$$D_{ik}(f) \ge 0 \qquad \begin{cases} i = 0, 1, \dots, m+1 \\ k = 0, 1, \dots, n+1 \end{cases}$$

But from the above equalities and taking into account (10)

$$(B_{n,m}f)(x, y) - (B_{n+1, m+1} f)(x, y) =$$

$$= \sum_{k=0}^{n+1} \sum_{i=0}^{m+1} b_{n+1, k}(x) b_{m+1, i}(y) D_{ik}(f) \ge 0.$$

A similar result may be established for the sequence of operators whose images are defined in (9).

THEOREM 5. For an arbitrary $f \in B(K_2)$ which is non-concave on K_2

$$(B_n f)(x, y) \ge (B_{n+1} f)(x, y),$$
 $(x, y) \in K_2, n = 1, 2, \dots$

Proof. One introduces the numbers

$$\Delta_{ki}(f) = \frac{i}{n+1} f\left(\frac{k}{n}, \frac{i-1}{n}\right) + \frac{k}{n+1} f\left(\frac{k-1}{n}, \frac{i}{n}\right) + \frac{n-k-i+1}{n+1} f\left(\frac{k}{n}, \frac{i}{n}\right) - f\left(\frac{k}{n+1}, \frac{i}{n+1}\right)$$

where for instance we have tacitly assumed that

for
$$k = 0$$
, $\frac{k}{n+1} f\left(\frac{k-1}{n}, \frac{i}{n}\right) = 0$, $i = 0, 1, \ldots, n$,

and

$$\Delta_{00}(f) = \Delta_{0, n+1}(f) = 0, \ldots$$

We have

We have
$$(B_{n}f)(x, y) = \sum_{k=0}^{n} \sum_{i=0}^{n-k} p_{n,k,i}(x, y) [(1 - x - y) + x + y] f\left(\frac{k}{n}, \frac{i}{n}\right) =$$

$$= \sum_{k=1}^{n} \sum_{i=0}^{n+1-k} \frac{n-k-i+1}{n-1} f\left(\frac{k}{n}, \frac{i}{n}\right) p_{n+1, k, i}(x, y) +$$

$$+ \sum_{i=0}^{n} \frac{n-i+1}{n+1} f\left(0, \frac{i}{n}\right) p_{n+1, 0, i}(x, y) +$$

$$+ \sum_{k=1}^{n} \sum_{i=0}^{n+1-k} \frac{k}{n+1} f\left(\frac{k-1}{n}, \frac{i}{n}\right) p_{n+1, k, i}(x, y) +$$

$$+ p_{n+1, n+1, 0}(x, y) f(1, 0) +$$

$$+ \sum_{i=1}^{n} \frac{i}{n+1} f\left(0, \frac{i-1}{n}\right) p_{n+1, 0, i}(x, y) +$$

$$+ \sum_{k=1}^{n} \sum_{i=0}^{n+1-k} \frac{i}{n+1} f\left(\frac{k}{n}, \frac{i-1}{n}\right) p_{n+1, k, i}(x, y) =$$

$$= \sum_{k=1}^{n} \sum_{i=0}^{n+1-k} \Delta_{k, i}(f) p_{n+1, k, i}(x, y) + (B_{n+1}f)(x, y) +$$

$$+ \sum_{i=0}^{n+1} \Delta_{0i}(f) p_{n+1, 0, i}(x, y).$$

In other words

$$(B_n f)(x, y) - (B_{n+1} f)(x, y) = \sum_{k=0}^n \sum_{i=0}^{n+1-k} \Delta_{ki}(f) p_{n+1, k, i}(x, y).$$

But $f \in B(K_2)$, f non-concave on K_2 , assures the validity of the inequalities

$$\Delta_{ki}(f) \geq 0,$$
 $\binom{k = 0, 1, \ldots, n}{i = 0, 1, \ldots, n + 1 - k}.$

Taking into account that $p_{n+1, k, i}(x, y) \ge 0$, $(x, y) \in K_2$, the proof is complete.

Remark. Any non-concave function from $C(K_1)$ or from $C(K_2)$ may be uniform approximated by a non-increasing sequence of polynomials.

4. The Bernstein operators and (S)-convexity

Let $S = ||s_{ik}|| i$, $k = 1, 2, \ldots, m$, be a doubly-stochastic matrix, i.e.

$$s_{ik} \ge 0, \sum_{i=1}^{m} s_{ik} = \sum_{k=1}^{m} s_{ik} = 1,$$
 $i, k = 1, 2, \ldots, m.$

If $x = (x_1, x_2, \ldots, x_m) \in \mathbb{R}^m$ then the Schur-transform of x is the poin

$$y = Sx = (y_1, y_2, \ldots, y_m)$$

where

$$y_i = \sum_{k=1}^m s_{ik} x_k, \qquad i = 1, 2, \ldots, m.$$

A subset D from \mathbb{R}^m is called an admissible domain iff it verifies:

i) $x = (x_1, x_2, \ldots, x_m) \in D$ implies $x_{\pi} = (x_{\pi(1)}, x_{\pi(2)}, \ldots, x_{\pi(m)}) \in D$, π being an arbitrary permutation of $\{1, 2, \ldots, m\}$.

ii) for every matrix S and any point $x \in D$, the Schur-transform Sx belongs likewise to D. Examples of such admissible domains in \mathbb{R}^2 are the sets K_1 , K_2 defined by (6).

According to A. OSTROWSKI [7] a function $f: D \to \mathbb{R}$, D being an admissible domain in \mathbb{R}^m , $m \ge 2$, is called S-convex (in the sense of I. Schur) if for every matrix S and any point $x \in D$

$$f(Sx) \leq f(x).$$

PROPERTIES OF THE POSITIVE OPERATORS

He notes that a S-convex function must be symmetric on its domain. Also, if $f: D \to \mathbf{R}$ has on D continuous partial derivatives of the first order, then a sufficient condition for S-convexity is

(11)
$$(x_i - x_j) \left(\frac{\partial f}{\partial x_i} - \frac{\partial f}{\partial x_j} \right) \ge 0 \text{ on } D.$$

If D is open then (11) is also a necessary condition.

Lemma The Bernstein operator $B_n: B(K_2) \to B(K_2)$ preserves the symmetry, that is

$$f \in B(K_2), \quad f(x, y) = f(y, x)$$

implies

11

$$(B_n f)(x, y) = (B_n f)(y, x), (x, y) \in K_2,$$

Proof. From

$$\sum_{k=0}^{n} \sum_{i=0}^{n-k} A_{ik} = \sum_{k=0}^{n} \sum_{i=0}^{n-k} A_{ki}, \qquad \binom{n}{k} \binom{n-k}{i} = \binom{n}{i} \binom{n-i}{k}$$

we get

$$(B_n f)(y, x) = \sum_{k=0}^n \sum_{i=0}^{n-k} \binom{n}{i} \binom{n-i}{k} y^k x^i (1-x-y)^{n-k-i} f\left(\frac{k}{n}, \frac{i}{n}\right) =$$

$$= \sum_{k=0}^n \sum_{i=0}^{n-k} p_{n,k,i}(x, y) f\left(\frac{i}{n}, \frac{k}{n}\right) = (B_n f)(x, y)$$

where $p_{n,k,i}$ was defined as in (7).

Further we show that the Schur-convexity remains invariant under B_n . In the case of one variable such preserving properties for positive linear operators were exposed in [2]-[6], [8]. It is worth mentioning that the convexity-preserving property for the usual BERNSTEIN operator (see [8]) was used in statistics by w. WEGMÜLLER [15].

THEOREM 6. Let $f \in B(K_2)$ be a symmetric function which is S-convex on K_2 . Then $B_n f$, $n = 1, 2, \ldots$, are likewise S-convex functions on K_2 .

Proof. We find

$$\frac{\partial B_n f}{\partial x} = n \sum_{k=0}^{n-1} \sum_{i=0}^{n-1-k} p_{n-1,k,i} \left[f\left(\frac{k+1}{n}, \frac{i}{n}\right) - f\left(\frac{k}{n}, \frac{i}{n}\right) \right]$$

$$\frac{\partial B_n f}{\partial y} = n \sum_{k=0}^{n-1} \sum_{i=0}^{n-1-k} p_{n-1,k,i} \left[f\left(\frac{k}{n}, \frac{i+1}{n}\right) - f\left(\frac{k}{n}, \frac{i}{n}\right) \right].$$

12

On account of the above lemma we shall use (11). Put

$$D(B_n f, (x, y)) = \frac{1}{n} (x - y) \left(\frac{\partial B_n f}{\partial x} - \frac{\partial B_n f}{\partial y} \right)$$

and

$$\Delta f(\alpha, x, y) = f(x, y) - f[\alpha x + (1 - \alpha)y, (1 - \alpha)x + \alpha y].$$

It is easy to see that $f: K_2 \to \mathbb{R}$ is S-convex on K_2 if and only if

$$\Delta f(\alpha, x, y) \ge 0$$
 for every $(x, y) \in K_2$, $\alpha \in [0, 1]$.

For n fixed let us denote

$$q_{i,k}(x,y) = \binom{n-1}{i} \binom{n-1-i}{k-i} x^{i} y^{i} (1-x-y)^{n-k-1} (x-y) (x^{k-2i}-y^{k-2i}),$$

$$(x,y) \in K_{2}$$

These functions have the properties

$$(12) \begin{cases} q_{i,k}(x, y) \geq 0, & (x, y) \in K_2 \\ (x - y) [p_{n-1, 2k-i, i}(x, y) - p_{n-1, i, 2k-i}(x, y)] = q_{i, 2k}(x, y) \\ (i = 0, 1, ..., k - 1, k = 1, 2, ..., \left[\frac{n-1}{2}\right]) \\ (x - y) [p_{n-1, 2k+1-i}(x, y) - p_{n-1, i, 2k-i+1}(x, y)] = q_{i, 2k+1}(x, y) \\ (i = 0, 1, ..., k, k = 0, 1, ..., \left[\frac{n-2}{2}\right]) \end{cases}$$

By means of the summation-trick

$$\sum_{k=0}^{n-1} \sum_{i=0}^{n-1-k} A_{ik} = \sum_{i=0}^{\left[\frac{n-1}{2}\right]} A_{ii} + \sum_{k=1}^{\left[\frac{n-1}{2}\right]} \sum_{i=0}^{k-1} (A_{i,2k-i} + A_{2k-i,i}) + \sum_{k=0}^{\left[\frac{n-2}{2}\right]} \sum_{i=0}^{k} (A_{i,2k+1-i} + A_{2k+1-i,i})$$

we get succesively

$$D(B_{n}f,(x, y)) = (x - y) \sum_{k=0}^{n-1} \sum_{i=0}^{n-1-k} p_{n-1,k,i}(x, y) \left[f\left(\frac{k+1}{n}, \frac{i}{n}\right) - f\left(\frac{k}{n}, \frac{i+1}{n}\right) \right] =$$

$$= \sum_{k=1}^{\left[\frac{n-1}{2}\right]} \sum_{i=0}^{k-1} q_{i,2k}(x, y) \left[f\left(\frac{2k-i+1}{n}, \frac{i}{n}\right) - f\left(\frac{2k-i}{n}, \frac{i+1}{n}\right) \right] +$$

$$+ \sum_{k=0}^{\left[\frac{n-2}{2}\right]} \sum_{i=0}^{k} q_{i,2k+1}(x, y) \left[f\left(\frac{2k-i+2}{n}, \frac{i}{n}\right) - f\left(\frac{2k-i+1}{n}, \frac{i+1}{n}\right) \right] =$$

$$= \sum_{k=1}^{\left[\frac{n-1}{2}\right]} \sum_{i=0}^{k-1} q_{i,2k}(x, y) \Delta f\left(\frac{2k-2i}{2k-2i+1}, \frac{2k-i+1}{n}, \frac{i}{n}\right) +$$

$$+ \sum_{k=0}^{\left[\frac{n-2}{2}\right]} \sum_{i=0}^{k} q_{i,2k+1}(x, y) \Delta f\left(\frac{2k-2i+1}{2k-2i+2}, \frac{2k-i+2}{n}, \frac{i}{n}\right).$$

Therefore

(13)
$$D(B_n f, \cdot) = \sum_{k=1}^{n-1} \sum_{i=0}^{\left[\frac{k-1}{2}\right]} q_{i,k}(\cdot) \cdot \Delta f\left(\frac{k-2i}{k-2i+1}, \frac{k-i+1}{n}, \frac{i}{n}\right).$$

Now the S-convexity of f enables us to write

$$k = 1, 2, ..., n - 1$$

$$\Delta f\left(\frac{k-2i}{k-2i+1}, \frac{k-i+1}{n}, \frac{i}{n}\right) \ge 0, \qquad i = 0, 1, ..., \left[\frac{k-1}{2}\right].$$

Combining these inequalities with (12)-(13) we conclude with

$$D(B_n f_{\bullet}, \cdot) \ge 0$$
 on K_2

and (11) finishes the proof.

5. A method of positive interpolation

Let P_1, P_2, \ldots, P_n be the successive vertices of a convex polygon $C_n \subset \mathbb{R}^2$ with n sides. If $f \colon C_n \to \mathbb{R}$ then we may formulate the following interpolation problem: "to find a linear operator $L_{n-2} \colon B(C_n) \to B(C_n)$ with the properties

- 1) $(L_{n-2}f)(P_k) = f(P_k), k = 1, 2, \ldots, n,$
- 2) $(L_{n-2}f)(x, y)$ is a polynomial of degree n-2 in x and y.
- 3) if $f \ge 0$ in C_n then $L_{n-2}f \ge 0$ on the same set." A method for constructing such an interpolation operator is as follows: let $d_i(x, y) = a_i x + b_i y + c_i$, $i = 1, 2, \ldots, n$, such that $d_i(x, y) = 0$ is the equation of the hyperplane $(P_i P_{i+1})$, $i = 1, 2, \ldots, n$, $(P_n P_{n+1}) = (P_n P_1)$. Putting

$$l_{nk}(x, y) = \prod_{\substack{i=1\\i\neq k, k-1}}^{n} \frac{d_i(x, y)}{d_i(x_k, y_k)}, \ P_k = (x_k, y_k), \ k = 1, 2, \ldots, n.$$

we have

$$l_{nk}(P) \geqslant 0$$
 for $P = (x, y) \in C_n$

$$l_{nk}(P_j) = \begin{cases} 1 & \text{for } j = k \\ 0 & \text{for } j \neq k, \end{cases}$$

and if we define $L_{n-2}: B(C_n) \to B(C_n)$ as

(14)
$$L_{n-2}f = L_{n-2}[C_n; f, \cdot] = \sum_{k=1}^n f(P_k)l_{nk}(\cdot), n = 3, 4, \dots,$$

the problem is solved. We want to use this operator in the following approximation problem, which is yet unsolved: let $K = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 \le 1\}$ and $Bd \cdot K = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 = 1\}$. To find, if it is possible, a "dense" system of distinct points P_{1n} , P_{2n} , ..., P_{nn} on $Bd \cdot K$, such that

$$\lim_{n\to\infty} L_{n-2}[P_{1n}, P_{2n}, \ldots, P_{nn}; f, (x, y)] = f(x, y), \quad (x, y) \in Bd \cdot K,$$

whenever $f \in C(K)$.

REFERENCES

- [1] Fan Ky, Convex sets and their applications. Argonne National Laboratory, 1959.
- [2] Lupas, A., Some properties of the linear positive operators (I). Mathematica (Cluj) 9 (32), 1, 77-83 (1967).
- [3] Lupas, A., Some properties of the linear positive operators (II). Mathematica (Cluj) 9 (32), 2, 295-298 (1967).
- [4] Lupaş, A., Die Folge der Betaoperatoren. Dissertation, Stuttgart 1972.
- [5] Meyer-König, W., Zeller, K., Bernsteinsche Potenzreihen. Studia Math., 19, 89-94 (1960).
- [6] Müller, M. W., Approximation durch lineare positive Operatoren bei gemischter Norm. Habilitationsschrift, Stuttgart 1970.
- [7] Ostrowski, A., Sur quelques applications des fonctions convexes et concaves au sens de I. Schur. J. Math. Pures Appl., 31, 253-291 (1952).
- [8] Popoviciu, T., Sur l'approximation des fonctions convexes d'ordre supérieur. Mathematica (Cluj) 10, 49-54 (1935).
- [9] Popoviciu, T., Asupra demonstrației teoremei lui Weierstrass cu ajutorul polinoamelor de interpolare. Lucrările Sesiunii Generale Științifice Acad. RPR., 1664-1667 (1950).
- [10] Popoviciu, T., Sur le reste dans certaines formules linéaires d'approximation de l'analyse. Mathematica (Cluj) 1 (24), 1, 95-143 (1959).
- [11] Rockafellar, R. T., Convex analysis. Princeton Univ. Press, 1970.
- [12] Schaefer, H. H., Topological vector spaces. Springer-Verlag, 1971.
- [13] Temple, W.B., Stieltjes integral representation of convex functions. Duke Math. J., 21, 527-531 (1954).
- [14] Volkov, V. I., Convergence of sequences of linear positive operators in the space of continuous functions of two variables. (Russian) Dokl. Akad. Nauk 115, 17-19 (1957).
- [15] Wegmüller, W., Ausgleichung durch Bernstein-Polynome. Mitt. Verein. Schweiz. Versich.-Math., 36, 15-59 (1938).

Received 10. XII. 1973.

Institutul de calcul din Cluj al Academiei Republicii Socialiste România