REVUE D'ANALYSE NUMÉRIQUE ET DE LA THÉORIE DE L'APPROXIMATION, Tome 3, Nº 2, 1974, pp. 209-214

ON THE FUNCTIONAL $[f(z_1) \mid f'(z_2)]$, FOR TYPICALLY-REAL FUNCTIONS

bу

PETRU T. MOCANU, MAXWELL O. READE and ELIGIUSZ ZLOTKIEWICZ (Cluj) (Ann Arbor) (Lublin)

ABSTRACT. The authors obtain the domain of variability of the functional $[f(z_1) | f'(z_2)]$ as f(z) ranges over the set of all analytic functions $f(z) = z + \cdots$ that are typically-real in the unit disc for fixed z_1 and z_2 , $0 < z_1 < z_2 < 1$.

1. At the Conference on Analytic Functions held in Lodz, Poland, in 1966, one of us posed the following related problems.

Problem A [1; p. 316]. Let \mathcal{F} be a non-empty compact family of functions $f(z) = z + \ldots$ that are analytic and univalent in the unit disc Δ . For each pair of points z_1 and z_2 in Δ , there exists a point $\zeta \equiv \zeta(z_1, z_2; f)$, on the line segment joining z_1 and z_2 and a complex number $\lambda \equiv \lambda(z_1, z_2; f)$, $|\lambda(z_1, z_2; f)| \leq 1$, such that

$$f(z_2) - f(z_1) = \lambda f'(\zeta)(z_2 - z_1)$$

holds. Determine

$$||l(z_1, z_2; \mathcal{F}) \equiv \min [|\lambda(z_1, z_2; f)|| f \in \mathcal{F}].$$

Problem B [2; p. 133]. For \mathcal{F} , z_1 , z_2 in Problem A. determine the set

$$D[z_1, z_2; \mathcal{F}] \equiv [(f(z_1) / f'(z_2) | f \in \mathcal{F}].$$

In this note we offer a solution to both problems for the case that \mathcal{F} is the set \mathcal{F} of all typically-real $f(z)=z+\ldots$ and either z_1 or z_2 is real.

^{7 --} Revue d'analyse numérique et de la théorie de l'approximation, tome 3, 1974.

3

Then we use that solution to find the formula for $l(z_1, z_2; f)$ when $0 < z_1 < < z_2 < 1$ holds.

2. If $f(z) = z + a_2 z^2 + \dots$ is typically-real in the unit disc Δ , then f(z) has the representation [4; p. 567]

(1)
$$f(z) = \int_{-1}^{1} \frac{z d\mu(t)}{1 + 2tz + z^2},$$

where $\mu(t)$ is a unit mass function on the interval $-1 \le t \le 1$. From (1) we obtain

(2)
$$f'(z) = \int_{-1}^{1} \frac{(1-z^2) d\mu(t)}{(1+2tz+z^2)^2},$$

which is valid in Δ .

Formulas (1) and (2) lead to our first result.

THEOREM 1. The domain of variability

(3)
$$D[z_1, r_2, \mathcal{F}] \equiv \left[\frac{f(z_1)}{f'(r_2)}\middle| f \in \mathcal{F}\right],$$

where z_1 and r_2 are in Δ , r_2 real, and where \mathcal{F} is the set of all functions $f(z) = z + \ldots$ that are analytic and typically-real in Δ , is the closed convex hull of the curve

(4)
$$w = w(t) = \frac{z_1}{(1+2t\,z_1+z_1^2)} \frac{(1+2t\,r_2+r_2^2)^2}{1-r_2^2}, \quad -1 \leqslant t \leqslant 1.$$

Proof. We shall use a clever device introduced by PILAT for a similar purpose [3; pp. 54-56].

Since f(z) is typically real in Δ , it follows from (2) that $f'(z) \neq 0$ for $z \in \Delta$, z real. If we use the unit mass function defined by the formula

$$\sigma(t) = \int_{-1}^{1} \frac{1 - r_2^2}{(1 + 2tr_2 + r_2^2)^2 f'(r_2)} d\mu(t),$$

along with (1) and (2), then we obtain

(5)
$$\frac{f(z_1)}{f'(r_2)} = \int_{-1}^{1} \frac{z_1}{1 + 2t z_1 + z_1^2} \frac{(1 + 2t r_2 + r_2^2)^2}{1 - r_2} d\sigma(t).$$

Now it is a fundamental result due to Pilat that the domain of variability (3) can be found by considering the right-hand member of (5) as $\sigma(t)$ ranges over all unit mass functions on the interval $-1 \le t \le 1$. From this it follows that the domain (3) is indeed the closed convex hull of the curve (4).

On the functional $[f(z_1) \mid f'(z_2)]$ for typically-real functions

In a similar way we can show that the domain of variability of the functional $[r_2f'(z_1)|f(r_2)]$, as f ranges over \mathcal{S} , where z_1 and r_2 are in Δ , r_2 real, is the closed convex hull of the curve

$$w = w_1(t) = \frac{(1 - z_1^2)(1 + 2tr_2 + r_2^2)}{(1 + 2tz_1 + z_1^2)^2}.$$

3. We now use *Theorem* 1 to obtain the solution to *Problem A* for the special case that \mathcal{F} is the set \mathcal{F} of normalized typically-real functions analytic in Δ and where r_1 and r_2 are real, $0 < r_1 < r_2$.

THEOREM 2. If $0 < r_1 < r_2 < 1$, then

(6)
$$l(r_1, r_2, \mathcal{F}) \equiv \min \left[|\lambda(r_1, r_2; f)| \mid f \in \mathcal{F} \right] = \frac{(1 - r_1 r_2)(1 - r_2)}{(1 - r_1)^2 (1 + r_2)}$$

Proof. The transform of f(z),

$$g(z) \equiv \left[\left(f\left(\frac{z+r_1}{1+r_1z}\right) - f(r_1) \right) / (1-r_1^2) f'(r_1) \right]$$

is typically-real in Δ whenever f(z) is typically-real. Elementary calculations yield the relation

(7)
$$\lambda(r_1, r_2; f) = \frac{f(r_2) - f(r_1)}{(r_2 - r_1)f'(\zeta)}, \ 0 < r_1 \le \zeta \le r_2 < 1,$$

$$= \frac{(1 - r_1^2)g(a)}{(r_2 - r_1)(1 + r_1x)^2g'(x)}, \ 0 \le x \le a < 1$$

where

(8)
$$a \equiv \frac{r_2 - r_1}{1 - r_1 r_2}, \quad x = \frac{\zeta - r_1}{1 - r_1 \zeta}.$$

If we now use *Theorem* 1, it follows that the domain of variability of [g(a)/g'(x)] is the closed interval on the real axis given by (4) in the form

(9)
$$w(t) = \frac{a}{(1+2ta+a^2)} \frac{(1+2tx+x^2)^2}{(1-x^2)}, \quad -1 \leq t \leq 1.$$

From (7), (8) and (9) it follows that we wish to obtain the value of

$$(10) l = \min \left[\frac{1 - r_1^2}{(r_4 - r_1)} \frac{1}{(1 + r_1 x)^2} Q(x, t) \right| - 1 \le t \le 1, \ 0 \le x \le a \right]$$

5

where

(11)
$$Q(x,t) \equiv \frac{(1+2tx+x^2)^2}{(1-x^2)(A+2t)}, A \equiv a+\frac{1}{a}.$$

Since

$$\frac{\partial Q}{\partial t} = \frac{2(1+2tx+x^2)}{(1-x^2)(A+2t)^2} \left[-1+2x(A+t)-x^2\right],$$

we consider three special cases.

(i) If $0 \le x \le (A+1-\sqrt{(A+1)^2-1})$, then $\frac{\partial Q}{\partial t} \le 0$ so that $\min_{t} Q(x,t) = Q(x,1)$.

(ii) If $(A-1-\sqrt{(A-1)^2-1}) \le x \le a$, then $\frac{\partial Q}{\partial t} \ge 0$ so that $\min Q(x,t)=Q(x,-1)$.

(iii) If $(A+1-\sqrt{(A+1)^2-1} < x < (A-1-\sqrt{(A-1)^2-1})$, then $Q(x,t) \ge Q(x,t_0)$, where t_0 is the *unique* solution to the equation $\frac{\partial Q}{\partial t} = 0$. Here we note that $\frac{\partial Q}{\partial t}$ is negative for t=-1 and $\frac{\partial Q}{\partial t}>0$ is positive for t=+1, and hence Q(x,t) has its minimum at $t=t_0$.

It now follows that in order to evaluate the formula in (10) we can first find the minimum of the function

 $R(x) = \begin{cases} Q(x, 1) \equiv \frac{a(1+x)^3}{(1+a)^2(1-x)}, & 0 \leq x \leq (A+1-\sqrt{(A+1)^2-1}), \\ Q(x, t_0) \equiv \frac{4x(a-x)(1-ax)}{a(1-x^2)}, & (A+1-\sqrt{(A+1)^2-1}) \leq x \leq (A-1-\sqrt{(A-1)^2-1}), \\ Q(x, -1) \equiv \frac{a(1-x)^3}{(1-a)^2(1+x)}, & (A-1-\sqrt{(A-1)^2-1}) \leq x \leq a, \end{cases}$

and then multiply by the minimum of $1/(1+r_1x)^2$ for $0 \le x \le a$.

Now for $0 \le x \le (A+1-\sqrt{(A+1)^2-1})$ we find

$$\frac{dR}{dx} = \frac{a}{(1+a)^2} \frac{2(1+x)^3(2-x)}{(1-x)^2} > 0,$$

so that R(x) is increasing on this interval. For $(A-1-\sqrt{(A-1)^2-1}) \le x \le x \le a$, we find

ON THE FUNCTIONAL $[f(z_1) / f'(z_2)]$ FOR TYPICALLY-REAL FUNCTIONS

$$\frac{dR}{dx} = \frac{a}{(1-a)^2} \frac{2(1-x)^2}{(1+x)^2} (-2-x) < 0,$$

so that R(x) is a decreasing function on this interval. For the remaining interval $(A+1-\sqrt{(A+1)^2-1})< x<(A-1-\sqrt{(A-1)^2-1})$ we find

$$\frac{dR}{dx} = \frac{4}{(1-x^2)^2} \left[1 - 2Ax + 4x^2 - x^4 \right].$$

$$= \frac{4}{(1-x^2)^2} \left[(1-x)^2 (1-2x-x^2) + (2-A)x \right].$$

Now a study of the curves $y=(1-x)^2(1-2x-x^2)$ and y=(2-A)x, where A>2, shows that $\frac{dR}{dx}$ vanishes exactly once in the interval $0 \le x \le 1$. But $\frac{dR}{dx}$ is positive for $x=(A+1-\sqrt{(A+1)^2-1})$ and $\frac{dR}{dx}$ is negative for $x=(A-1-\sqrt{(A-1)^2-1})$. Hence it follows that R(x) is a strictly concave function in the interval $|(A-1-\sqrt{(A+1)^2-1})| \le x \le (A-1-\sqrt{(A-1)^2-1})$. Hence the minimum value of R(x) given by (12), that is

(13)
$$\min_{0 \le x \le a} R(x) = \min [R(0), R(a)] = R(a) = \frac{a(1-a)}{1+a}.$$

If we combine (10) and (13) we obtain

$$l \equiv \min \left[|\lambda(r_1, r_2; f)| \mid f \in \mathcal{F} \right] = \frac{1 - r_1^2}{(r_2 - r_1)} \frac{1}{(1 + ar_1)^2} \frac{a(1 - a)}{(1 + a)},$$

which, because of (8), yields (6).

The function $k(z) = z/(1-z)^2$ is typically-real, and achieves the value given in (6), so that our result is sharp. Indeed, the minimum is achieved by a univalent function!

4. The extension of (6) to the more general case when either r_1 and/or r_2 is complex presents serious computational problems which we have not been able to surmount. Even the case for $-1 < r_1 < 0$ and $0 < r_2 < 1$ has not yielded a precise answer to us, although Theorem 1 was still available as a first step.

REFERENCES

- [1] Mocanu, P. T., Problem I, Annales Polon. Math., 20, 316 (1968).
- [2] An extremal problem for univalent functions associated with the Darboux formula, Ann. Univ. M. Curie-Skłodowska, 22-24, 131-135 (1968-1970).
- [3] Piłat, Barbara, On typically-real functions with Montel's nemalization Ann. Univ. M. Curie-Skłodowska, 18, 53-72 (1964).
- [4] Robertson, M. S., On the coefficients of a typically-real function, Bull. Amer. Math. Soc., 41, 565-572 (1935).

Received 26. I. 1974.

The "Babeş-Bolyai" University
Cluj, Romania
The University of Michigan
Ann Arbor, Michigan 48104
Ul. Raabego 3/11
Lublin, Poland