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ABSTRACT. The authors oblain the domain of variability of the functional
[f(z1) | f(22)] as f(z) ranges over the set of all analytic functions f(z) =z + ...
that are typically-real in the unit disc for fixed z, and z, 0 <2 <z <L

1. At the Conference on Analytic Functions held in Lodz, Poland, in
1966, one of us posed the following related problems.

Problem A [1;p.316). Let & be a non-emply compact family
of fumctions f(z) =z + ... that ave analytic and univalent in the unit disc
A. For each pair of points z, and z, in A, there exisis a point § = {(zy, 225 f),
on the line segment joining z, and z, and a complex number X = Mzy, 2] N,
| Mer, 255 f)| < 1, such that

flzs) — flz) = M (Q(za — 2)
holds. Determine
(2, 22; &) = min [Mze 255 IS = F1

Problem B [2;p. 133]. For &, 2y, 2, in Problem A. determine the
set

Dizy, 255 F1= [(flz)) [ f(2) | f = F ]

In this note we offer a solution to both problems for the case that &
is the set § of all typically-real f(z) = z + ... and either z; or z, is real.
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Then we use that solution to find the formula for Iz, z,; f) when 0 <2z, <
< 2, << 1 holds.

2. If f(z) =24 ap® + ... is typically-real in the unit disc A, then
f(2) has the representation [4; p. 567]

1

_ 2dp(?)
(1) f(z) o S 1+ 22422
—1

where p(f) is a unit mass function on the interval — 1 <7 < 1. From (1)
we obtain

!
1Y (1 — 2% dp(t)
@) fe) = S (1 4 265 4 22

-1

which is valid in A.
Formulas (1) and (2) lead to our first result.

THEOREM 1. The domain of variability

' — [f=)
3 Dz, 7, F) =
®) 7y 72,8 [fl("z)

f=s).

where z, and v, are in A, v, veal, and wheve § 1s the set of all functions f(z) =
— 7+ ... that are analytic and typically-real in A, is the closed comvex hull

of the curve

£ (1 4 2t v, + 72)?

, —1 <<
(14 2tz + 2) 18

4) w = w(t) =

Proof. We shall use a clever device introduced by piraT for a similar
purpose [3; pp. 54—56].

Since f(z) is typically real in A, it follows from (2) that f'(z) # 0 for
z € A, z real. If we use the unit mass function defined by the formula

- 1 — 2
= 2 aw(t),
o) Sl ot et
along with (1) and (2), then we obtain
1
fla) % (1 4 2t 7, 4 #3)? ds(d).
(5) f’("z)_sl 1422+ 2 11, ()
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Now it is a fundamental result due to Pilat that the domain of variability
(8) can be found by considering the right-hand member of (5) as o(¢) ranges
over all unit mass functions on the interval — 1 < ¢ < 1. From this it
follows that the domain (3) is indeed the closed convex hull of the curve (4).

In a similar way we can show that the domain of variability of the
functional [7,f'(z)/f(rs)], as f ranges over &, where 2z, and 7, are in A, 7,
real, is the closed convex hull of the curve

0 = wy(t) = L= ADLE 2k r)
! (1 + 212, + 222

3. We now use Theorem 1 to obtain the solution to Problem A for
the special case that & is the set § of normalized typically-real functions
analytic in A and where 7, and 7, are real, 0 < 7, < 7,.

THEOREM 2. If 0 <7, <7, < 1, then
©) Ury 72, 8) = min (A 73 f)] 1 f = 97 = 200 2=
Pyoof. The transform of f(z),
8) = [[/[F12) = few) /0 — )]

1+ 7z

is typically-real in A whenever f(z) is typically-real. Elementary calculations
yield the relation

MNry 7y f) =20 ZI0) 0y <t <<,
) {r, — 1) f'(Q)
— (1 — 7} g{a) O0gx<a<l
(ra — ) (1 + r12)2 g’ (%)
where
— "N — L—n ,
(8) aul—'rlf'g’ % 1 —nt

If we now use Theorem 1, it follows that the domain of variability of
[g(a)/g'(x)] is the closed interval on the real axis given by (4) in the form

(9) 'lf)(t) — a (1 4 2ty + %)
(1 4 2ta + a?) (1 — 2%

—1<t<gl

From (7), (8) and (9) it follows that we wish to obtain the value ot

10 = min [tz 1 —1<tg < \]
10y ! mln[(y‘_yl)(1+,lx)zg(x,t) 1<t<1,0<x<a
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where
1 2 2)2
(11) O, t) = LA 2t &0y — p L
(1 — #%)(4 + 2¢) a
Since

@ 2(1+2m+x}[
ot (1 — (4 + 202

1+ 2x(4 +¢) — #2],

we consider three special cases.
@IHO<x<(A+1—J{dFI?_1), then %7 < 0 so that

m1n Q(x, 8) = Q(x, 1).

) If (4—1—,Jd—-1F—-1
mtin Q(x, t) = Q(x, —1).

) € x < a, then %20 so that

(@) If (A +1—JAF+ T —T<x<(d—1—d—12—1, then

Q(x, t) = Q(«, ty), where ¢4 is the unigue solution to the equation %? =
Here we note that —? is negative for t=—1and % > P50 is positive for

¢t = + 1, and hence Q(«, f) has its minimum at ¢ = ¢,,.

It now follows that in order to evaluate the formula in (10) we can
first find the minimum of the function

(12)

0w 1) =S 0<x <A+ 1—yAFIF— 1),
R(x) = { Q(x, t,) E‘}m—l—”—)(l:w‘)'( +1—JA@FIE=T) <x <
ol =+ S(A—I—J(A_.l)s__l}

M= g JA=TE=T) :
(1—ap(l+ )’ MA—-1—J@-TIF=T) <7 <q

Qx —1) =

and then multiply by the minimum of 1/(1 + 7,%)? for 0 < x < a.

Now for 0 < ) we find

2 <(A4+1—JdF1E-1

dR _ a2+ A2 — A
v (1+a2 (1 -

>0,
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[y}

so that R(x) is increasing on this interval. For (4 — 1 — /(4 — 1)2 — 1) <
< x € 4, we find

drR & 2(1 — ap?
dx _(l—a)z (1 4 )2

(—2—12) <0,

so that R(x) is a decreasing function on this interval. For the remaining

interval (A 4+ 1 —4/(d F 12— 1) < x < (4 — 1 — J{A—1)F—1) we find
Zf T [1—24x 4 422 — x2].
= _4 5 (1 — 21— 20 — 2 - 2 — 4)])

Now a study of the curves y = (1 — #)3(1 — 24 — #?) and y = (2 — A)x,

where A > 2, shows that Z—R vanishes exactly once in the interval 0 < » < 1.
X

But 2_’3 is positive for x = (A + 1 — /{d & 1)* — 1) and ’Z—R is wnegative
X X

for x= (A —1—4/(d—1?—1) Hence it follows that R(x) is a
strictly concave function (in the interval (4 — 1 — /(4 + 12— 1) <
<% <(Ad—1—4/(A—-1F=1). Hence the minimum value of R(x)
given by (12), that is

(13) min R(z) = min [R(0), R(e)] = Rla) = “=2.
O0<x<a a
If we combine (10) and (13) we obtain
1 a(l — a)

J

L= min [\, e )] 1S & 8] = 2=t

which, because of (8), yields (6).

The function k(z) = z/(1 — 2)? is typically-real, and achieves the value
given in (6), so that our result is sharp. Indeed, the minimum is achieved
by a univalent function !

4. The extension of (6) to the more general case when either #; and/or
7y is complex presents serious computational problems which we have not
been able to surmount. Even the case for — 1 <7, <0 and 0 <7, <1
has not yielded a precise answer to us, although Theorem 1 was still available
as a first step.
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