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1. Introduction and results

Let f be a real-valued function defined on [a,b]. By [f(#y). ... f(x,)]
we mean the /-th divided difference of f:

(1) f(20), o f(0)] = 3, flo) i)

where a4 < %y << ... <%, <b and ofx)=(x— %) ... (x — %), I =
=012 ....

The function f is a convex function of order Z if [f(#,), .... f(x)] = 0
for every choice of @ < %y < ... < %, < b. The set of all continuous
convex functions of order [ on [a, b] will be denoted by K;[a, b]. When
convexity problems are discussed, it is customary to assume that [ > 2.
However, it will be convenient here to allow also the values I =1 and
] = 0. Consequently, K, [a, b] will be the set of all continuous, non-decreas-
ing functions on [a, 8] and K[a, b] will be the set of all continuous, non-
negative functions on [a, ].
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Our main result is a generalization of the following geometrically obvious
result : )

A contintious, non-decreasing function f on [a, 5] can be approximated
uniformly on [a, b] by functions of the' form

bul) = fla) + f(—”);ﬂ—)z (x — o)

where # > 2 and ckE(a,b),k=1,...,n——1, and

(x__c)0+={oifx<c

1if x > c.

More precisely, the points ¢,, k=1, ...,# — 1, can be chosen so that
bu(#) = f(%) < $(%) + (F(0) — fla))/n for every x € [a, D].

raEoREM 1. Every f < K,[a, b), I > 2, can be approximated uniformly
on [a, b] by spline functions of the form

1—1

™

(1.2) G, o( [, %) =

k=0 \k

(’) A} f(a)(x — a)*/(b — a)* +

"

#—1
+ AL (x — it (6 — a)

n
where C(f,m) 20, m >4, n 22 ¢, (@b, k=1 ...,n—1and

oif ¥ <¢
(x —c)-tif x >c

(& — o =

In view of the preceding remark, Theorem 1 is true also if /= 1.
The coefficient C(f, m) is defined by

and
k

Bif(x) = 2 (= D7) (3 4 7h).

r=0

As an application of this theorem we shall mention two results which
characterize convexity preserving continuous linear operators defined on
the space C[a, b] of continuous functions on [4, b], with values in Fla, b],
the space of bounded real-valued functions on [a, b] endowed with the
supremum normi.
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The first of these results gives necessary and sufficient conditions
for a continuous linear operator to transform every continuous convex
function of order ! > 2 into a convex function of order » > 0.

THEOREM 2. Let ¥': Cla, b] — Fla, b] be a conttnuous linear operator.
In ovder that for every f < K,[a, b], 1 > 2, we have ¥(f, ) € K,[a, b],
v 2 0, it is necessary and sufficient that

() V(P %), .., ¥(P, x,)] =0 for every polynomial P of degree
<! —1 and every set of v + 1 points x4 < ... < %, in [a, b].

(1) W((¢ — )L +) € K,[a, b] for every ¢ = (a, b).

Clearly, condition (i) means that for every polynomial P of degree

<!—1, W(P, -) should be identically zero if » = 0, or a polynomial of
degree <v—1ifr > 1.

The second result gives necessary and sufficient conditions for a con-
tinuous linear operator to transform a convex function which is in every

class K;{a, b],2=0,1, ..., 1 (! > 2) into an element of an arbitrary closed,
convex cone Mla, b] = Cla, b].

THEOREM 3. Let ¥': Cla, b] — Fla, b] be a continuous linear operator
and let Ma, b] be a cloeed convex cone in Cla, b]. In ovder that for every

fe (i] K;[a, b], 1 =2, we have W(f, -)  M[a, b], it is necessary and
suffi:;zfeont that

i) (¢t —a), -) = Ma, b] for every 0 <7 <1 —1

(i) V(¢ — c)i7L ) € M{a, b] for every ¢ < (a, b).

Theorems 2 and 3 are true also if / = 1if one assumes that ¥((¢ — ¢)?, )

has a meaning since (¢ — ¢)) = Y, w){f) is not continuous on [a, 6] if
c € (a, b).

Problems such as these have been studied by several authors. First

results of this type were obtained by 7. popoviciu [1]. He has studied
monotonicity preserving operators of the form

Oz 1) = 3 f(E) @ul)

=1
wherea < §;, < ... <&, <band ¢, ¢ =1, ..., n are differentiable func-
tions satisfying the condition

Zqﬁ(x) =1, x € [a, b].
=
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Under these hypotheses, in view of Theorem 92, a necessary and sufficient
condition for @ to transform a non-decreasing function into a non-decreasing
function is that for every ¢ € (a, b) the function

"

O((t — 0)% #) = 2 (& — )2 @i(#)

i=1
be a non-decreasing function on [a, b]. Since the functions ¢;, 1 =1, ..., 7
are differentiable functions, this will be true if

(@ — % 9’ =2 (& — A wils) >0,

which is equivalent to Popoviciu's condition

I
Coi(x) < lforj=1,...,n
=1

Similar results were obtained by J. A. RouraEr [2] for operators of
the form

Of, %) = |10 Kle o s

where K is a continuous function on [a, b]X [4, b]. He has proved that
@(f, +) is a non-negative increasing function on [a, &] for every continuous,
non-negative and increasing function f if and only if

b

Ot — )2, %) = SK(x, b) di

c

is non-negative and increasing for every ¢ < [a, b]. This result is clearly
a simple consequence of Theorem 3.

Using a more general definition of convexity and an essentiaily dif-
ferent approach, z. zIEGLER [3] and s KARLIN and Ww. J. STUDDEN
[4, Ch. 11] have developed a theory of generalized convex functions which
contains results similar to Theorems 1—3. Our proof of Theorem 1 is based
on the fact, observed first by 1. porovictu [5], that Bernstein polynomial
B,(f, -) of a convex function f of order I is also a convex function of
order I, and on the well-known fact that B,f, #) — f(#) uniformly as
m — o0. These two facts. for which, apparently, there is no obvious analogy
in the theory of generalized convex functions, make our proof of Theorem 1
very simple. Theorems 2 and 8 follow then easily from the Theorem 1.
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2. Proofs.

We shall, for simplicity, prove Theorem 1 only for the special interval
[0, 17; the general case then follows by simple substitutions. The proof
of Theorem 1 is based on the following lemma.

Lemma 1. Let g be l-times differentiable on [0, 1], I > 2, and let
g9=x) 2 0 for x = [0, 1]. Let

1—1

Tya(g %) = 3 2 gW(0)

k=0 k!
be the Taylor polynomial of g of degree < | — 1. Then for every n > 2 theve
exist points ¢, < ... < c,_1 wm (0, 1) such that

B £0-1(1) — g(-1(0) T~ _
8(0) = Tisfg, ) + £ BDOF (v — o)t + Ry(e, )

where
1

R (g, 1 (e
IR (g #)] < ——\gv0) at
0

Proof of Lemma 1. We have first

1

21 lx) = Tial #) + o=, [ (v — 20000 — gt-110)) as.

Since gf(x) > 0 on [0, 1], the function g!~"(x) — g¢~1(0) is non-negative,
pon—decreasmg and continuous on {0, 1]. Hence we can find ¢; << ... < ¢4—1
in (0, 1) such that

+
n k=1 #

|90 — g0 — L= LDOFS o] 62000 = 00
and it follows that, for every ¢ « [0, 1],

_ _ (t-1)(1) — gl-1(0) X<
22) g0 — gt-(0) — EREZRN (6 — )t + (e )

n

whete

1
4—1(1) — gli—
(2.3) le,(g, )] < é”_l_(_l)__n__g"_”ﬁ’l - S £ (w) du.
n
0
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The proof of Lemma 1 is finally completed by substituting (2.2) into (2.1)
and using inequality (2.3).

Proof of Theorem 1. Let B,(f. -) be the Bernstein polynomial of f
of degree m = [:

"

zMﬁmzaﬁgﬁpm—MW%

k=

Since

(2.4) m—1
BO(f, ) =mm — 1) ... (m —1+1) Z\ 1,.,,f(£i(mk_ l' xh(1 — x)ym—i-k

and since f = K,[0, 1], we see that B(l)(f %) >0 for » € [0,1]. By
Lemma 1 we can find points ¢; < ... < ¢,— in (0, 1) such that, for
every x < [0. 1],

n—1
(25) Bulf, 9) = Tia(Bulf)s #) + L2200 (6 — o)l + Ry(Bulf), #)
where

BSOS, 1) — B 0) 1

(26)  C(fm) =—

¢ —1)! R

S BU(f, ydt > 0

and, by Lemma 1,

(2.7) BBl 2| = 5 § B 9t = ctim
Let
(28) Y}y W) = Tia(Bolf), ) + L (6 — 0)

In view of (2.5) and (2.7) we have

IBm(f; x) - lJ.)m,n(f, x)l < (—:(—f;—)

n

and it follows that, for every x = [0, 1],

|£() = b ol s 9] < 1 f(%) = Bulfs 0)| + [Bulfs #) — dum.olfo #)]
< 2m,(ﬁ) Ly Chm,

n
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Hence, by choosing first m large enough so that /(1 /Jm) is small, and
then choosing # so large that C(f, m)/n is small, we see that any
f e K,[0,1], 7 > 2, can be approximated uniformly on [0, 1] by spline
functions Yy, ,(f, -). In order to complete the proof of Theorem 1 we
have only to observe that

1-1

T,-+(B,, (1A (0)) =

=
and that, by (2.6) and (2.4),

1

C(f, m) = mm —1) ... (m—141 ‘2 Alymf (% |m) (mk 'Stk(l — fym—i=kdi

(l—l) 5

Hn—

(_JZAWMM

It follows then from (2.8) that

—1

n—1
ool £ %) = 2 ( ) (A} f (O) a4 S >

k=0
where C(f, m) = 0 by (2.6).

Proof of Theorem 2. (Necessity) Suppose that ¥ transforms every
convex function of order I > 2 into a convex function of order » > 0.
Let P be a polynomial of degree <! — 1. Since P and — P are both
convex functions of order /, the functions W(+ P, -) are convex functions
of order 7 = 0. Hence

[W(L P, %), ..., P(+ P, %] >0

and (i) follows. The necessity of (ii) is obvious since (¥ — ¢)i=' € K[a, 0],
I = 2.

(Sufficiency) Let f € K,[a, b] and let W, ,(f, -) be a spline function
of the form (1.2). The proof of sufficiency of conditions (i) and (ii) of
Theorem 2 consists in showing that these conditions and C(f, m) > 0

imply
[lFm, n(q); xo); ey lFm,n(‘i’: x,)] =0

Using the fact that ¥ is a continuous linear operator and that the func-
tions ¢, .(f, ) approximate uniformly f on [a, 8], we obtain

Y(f, %)y - ¥ 2)] 20
and so W(f, 1) € K,[a, b].
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The proof of Theorem 3 is similar. Necessity of conditions (i) and (ii)
is obvious. To show that these conditions are sufficient, observe that the

!
hypothesis f € () K,[a, b] implies that all the coefficients of the function
=0

Y, u(f, +) in (1.2) are non-negative. Conditions (i) and (ii) of Theorem 3
imply then that W ({,, » -) € M[a, b] and the rest of the proof is completed
as before by observing that ¥ is a continuous linear operator and that
the functions U, .(f, +) approximate uniformly f on [a, b]. Since the cone
Mla, b] is closed,” by hypothesis, this implies that W(f, -) € M{a, b]
and Theorem 3 is proved.
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