REVUE D’ANALYSE NUMERIQUE ET DE LA THEORIE
DE I’APPROXIMATION, Tome 3, N° 2, 1974, pp. 173—180

A NEW METHOD FOR THE COMPUTATION
OF SQUARE ROOT, EXPONENTIAL AND LOGARITHMIC
FUNCTIONS THROUGH HYPERBOLIC CORDIC

by
SIN HITOTUMATU
(Kyoto)

§ 1. Introduection

Walther [1] proposed a unified algorithm for elementary functions
due to coordinate transformation. In a previous paper [2], the author
has discussed mainly the circular case (m = -+ 1) and its application to
complex arithmetic.

In the present paper, the author would like to discuss the hyperbolic
case (m = — 1), in order to give a modified alogrithm for the computation
of square root, exponential and logarithmic functions.

§ 2. The prineiple of CORDIC in the hyperbolic case

In order to make the paper self-contained, we shall begin with the
principle of corpic in the hyperbolic case.

Let x, v be the real numbers satisfying x > |y |. The hyperbolic coor-
dinates (R, A) of a point P = (x, y) is defined by

R = (x* — 9312, A = arctanh(y/x); x = RcoshA, y = RsinhA.
It is well-known that R24/2 is the area of the domain surrounded by the

x-axis, radius vector OP and the hyperbola #* — 3% = ¢ passing through
P (see Fig. 1).

174 SIN HITOTUMATU 9

Now taking a constant §,(| §, | < 1),
we shall apply the linear transformation
T(8,) : (% ¥4) = (¥a41, Y211) by

Xpy1 = %, + 3,9,

(1) 7(3,)
yk+1 - yk —|‘ Skxk

which yields in the hyperbolic coordi-
nates

RY

Ry = R, X K,, K, = (1— LHEE
Ak+1 = Ak —|— Oy, O = arctanhSk.

2

We ir}‘cro.duce a third variable z and trans-
form is simultaneously with (1) as

Fig. 1

(3) 1 = &, — 0.

We take a sequence §,, and repeat the transformation 7°(8
T(8,_1) with (3) starting from the values (v, v, 2) u P T,
) %1, Y1, & til
(%, ¥, %,). The final values are given by U 90 22) ntil we arrve at

%, = K(x, cosha 4 y, sinha)
(4) ¥, = K(x; sinhe, + 9, cosha)

By =24 — &

n—1 n—1

(5) K=T1I0—28m" «=T] arctanhe,.
k=1

k=1

In the practical application, we select one of the following two goals:
I. y or 4 is forced to be 0.
II. z is forced to be O.

If the goal was reached at the steps v, in the case I, we have

(6) %, = K(x} — y3)'?%, z, = 2, -+ arctanh 2! = z, | 1 logZa—22,
% 2 Tu—y
Simiarly, if the goal was reached at the step z, in the case 11, we have
@) %, = K(%, coshz, + v, sinhz,),
¥Y» = K(xy sinhz; + y, coshz,).

3 THE COMPUTATION OF SQUARE ROOF 175

Therefore, we may compute square root, exponential and logarithmic
functions by the above process.

If there remains very small residues e at the final step, it is easy to
see that the relative errors in (6) or (7) are of order e, provided that
the rounding errors are negligeable. Remark that for x, in (6), the trun-
cation error is less than ¢2/2x%, which is of higher order than e.

§ 3. Practice and convergence of CORDIC

In the binary arithmetic, the transformation 7(3,) is most easily
performed, if we take §, = + 27*, where (1) is computed only by addition,
subtraction and shifting without actual multiplication.

For convenience, we put

8) g, = 27", B, = arctanh g,
and select suitably the signature §, = -+ ¢,. Precisely we take the algorithm

Lif y, 2 0 then §,: = — ¢, else 3,: =¢g,;"
in the case I, and

Lif 2, < 0 then §, 1 = — ¢, else §,: =¢g,;

in the case II.
Unfortunately, the constants Bis do no? satisfy the convergence cri-

terion of warTHER [1]:

n—1
) By — S B S B (=12 .., n—2)

j=k+1
In fact, B,’s satisfy an inequality of opposite direction in (9): However,
as mentioned in [1] and proved in [2], the inequality (9) is frue if we
add the correction term — B, 1 < 3k -+ 1 in the left hand side of (9).
Therefore it is enough to add some modification in order to guarantee
the convergence. Probably the simplest way is to repeat the process once
more with the same values of ¢, and B, at the k-th step (¢ = 1), where

ko=1, k =38k_-+1(E=21), de, k=4, 13, 40, 121, ...

For the usual accuracy less than 11 decimals, it is enough to repeat at
k = 4 and 13 only. Precisely speaking, we should write

’2"‘ for 1<k =< 4
g, = iz*“‘"” for 52k <14
2 %2 for 156 £ k £ 42

and so on, but we continue use the notation (8).

176 SIN HITOTUMATU 4

An alternate modification will be to insert &’ = % g, and the corres-

ponding value e; = arctanh g; at all or necessary steps. We prefer the
former one because of the simplicity.

The convergence region in the case II is

(10) 121|§B=’;Bk+64+613+...=1.117...

and that in the case I is
(11) V| yl%,| £ tanh B = 0.806 ...,

The values of $,’s should be preassigned. Remark that B3, may be
replaced by ¢, if & is negligeable, and by ¢, + %s;’; if ¢} is negligeable,

so that we need rather few constants in the algorithm.

§ 4. Application to square root

It is easy to see that %, =¢ 4+ ¢, ¥, = ¢ — ¢ gives

%, = K(a2 —)12 = (2K\[0) /£

in (6). Hence taking \/c = 1/2K, we have x, = J t in (6). Remark that
if we need no logarithmic function simultaneously, the variable z and
the constants B,’s are ummecessary. Further, by the remark at the end
of § 2, we have only to repeat the process with repetetion at 2 =4, 13, ...,
unttl B = n/2, provided that accuracy of # bits is necessary. The process
is as in the flow chart shown in Fig. 2.

The constants are

(120 K=Tl@a—2%uwx TI (1-—2%w 1/K = 1.2074970806

k=1 k=4,13,...
and

¢ = 1/4K? = 0.36451229219. ..
The convergence region is

(13) 0.1068... = e~%8 S #c < €28 = 9.348. ..

which is surely implies the interval {1/4 £ ¢ < 1} or {1/16 =¢ £ 1}.

= THE COMPUTATION OF SQUARE ROOT 177

YES No
yz20
X ¢« X £y X € X * gy
Yy «y £X y « ¥ + &x

- Repeat the process for k=1,2,..., n/2, and at k=4 and 13
repeat twice with same ¢ The a2ssignement for x and vy
must be performed simultaneousty

Fig. 2

In the practical program, it will be better to determined the constant
¢ in such a manner that the residué becomes smallest for various va;ues
of ¢ in the interval {1/4 < ¢ < 1} or {1/16 £¢ < 1}. For rosmaC ~3400
in our Imstitute which has 37 bits in mantissa, the optimal value of ¢ is
0.36451229226.

In the practice, it will be better to normalize ¢ in {1/8 < ¢ < 1/2}
in order to avoid overflow in the fix point arithmetic. For that case, there
is a modified procedure. Start from k& = 2 (¢, = 1/4) with ¢ = 0.27233292991
(approximately 3/4 of the previous ¢), and repeat twice with same e at & = 7
(=2 x 34 1) instead of 4 and 13. The convergence region is 0.33 ==
e B < |tlc| S e¥ <=3, B'= B — B, which surely covers the interval
{1/8 = ¢ = 1/2}.

5 - Revue d'enalyse numérique et de la théorie de l'approximation, tome 3, 1974,

178 ' SIN HITOTUMATU 6

According to the results of the numerical experiments, it seems inte-
resting that the repetition up to the final bit (until % = 38) gives worse
results than to stop at k = 20; the maximal relative error in the first
case is mnearly 3 times bigger than that in the leatter case.

§ 5. A new algorithm for exponential function

Since ¢* = sinha -+ cosha, it will be natural to try to compute e*
by corpic case II, starting from x, = y; = 1/k, 2y = a; in fact it surely
gives x, = ¢% provided that z; = « lies within the convergence region
(10). However, in the above:discussion, we have always assumed that
%, > |y, |, which does nof imply the limiting case x, = y,. Hence we
give an alternate proof to guarantee the result.

If %, = v, at the initial step, we have always %, = y, under the trans-
formation (1), so that the variable y is unnecessary. The transformation
is replaced by %541 = %,(1 + 8,). Since we have put 3, tath «, we see

Zpp1 = %,(1 + tanhe,) = x, secha, expa, = x,(1 — 85)'/7 expa,,

which gives

n—1
%, =% 1] (1 — 832 exp (a,) = Kxe”.

#
k=1

Indeed, we can prove that the final result (4) under corpic case I is
true without the festriction %, << |y, |, while in the case I, the restriction.
(11) is indispensable. . 5) Pl

The actual algorithm to compute ¢ for real argument ¢ is as follows :

1°. Put ¢-log, e = m -} s; m: integer, — 1 <s =0

2°. Put z; = slog, 2, x = 1/K

where log, 2 = 0.69314718056 and 1/K is given in (12).
3°. Repeat the procedure
Lif 2 < 0 then begin x: = %(1 —¢); 2: =24 § end
else begin x:=x(1 +¢); 2: =2—f end;

where € = 2-% & = arctanh2™ ¥,

for k =1,2, 38, ... with repetition at 2 = 4 and 13.

7 THE COMPUTATION OF SQUARE ROOT 179

Remark that in the above scaling 1°, s is always negative, so that
at the first step, we have always z £ Q. Hence it will be better to start
with

2y = s-log 2 -+ arctanh(1/2), x, = 12K, e =277, k=2,38, ...
In the computation of complex exponential function
lexp (x 4 4y) = ¢*(cos y + ¢ sin y),

we combine with corpic in circular case for the trigonometric functions.
In that case it will be better to start with x; = 1/KK, = 0.36662806930 .. .,
where

K, = 35 (1 4 2-my12
k=0

§ 6. Computation of logarithmie function

Logarithmic function log ¢ will be computed by the inverse process
as in the previous paragraph. However, to avoid actual division, we prefer
the following algorithms :

Assume first that the argument ¢ is sufficiently near 1 (precise bound
will given later in (15)).

1°. Put
xy = 1/K, = /32K = 1.045723138, y =1, z, = 0.
Here K, = K/|(1—27%)12
2°. Repeat the following process:
Lif x>y then begin x: = (1 —e)x; 2: =24 § end
else begin x:= (1 +e)x; 2: =2— B end;”
where ¢ = 27%, B = arctanhe,

for k=2,3, ..., and at 2 = 4 and 13 repeating twice with same ¢.
The repetition is completely similar to the one in § 5 except only
the branching condition is replaced by x>y instead of z << 0. The
process brings x as close as y. Finally if ¥ =y, then we have
X = (KI/‘KI) 6“ e t,

which gives 2 = « == log ¢.

180 SIN HITOTUMATU 8

Here we start from k2 =2, since (1 —27Y) = 1/2 is too small to
recover later by other products. Hence the convergence region is restricted in

|2, £ B— 8, =B'==
(15) 057... =e% < |t]| < ¢¥ = 1.76. ..

For other values of #, we make scaling ¢ = 2" . y (m being integer),
and set z; = m - log, 2 in (14) instead of 0. Here we cannot take 1/2 £
Sy<lorl <y £2 but we must choose the mantissa y in

(16) 3/4 <y £3/2 or 14/2 =y =42

But this restriction is not serious in the actual programming.

Finally remark that this algorithm is not suitable for the computation
of log ¢ when the argument ¢ is quite close to 1. In such a case we should
replace the function by log (1 4 s) computed by the Taylor series

52 58
log(l—l—s)_s—g—l—g——...,

or by other approximation formulas.

Added in Proof:

After I have finished to prepare the presemt paper I found that the
pa;bers [3], [4] and [5] ave closely connecied with the method proposed
heve. The author would like to discuss the relations and their evaluations in
a separate paper.

REFERENCES

[11 Walther, J. S. A wunified algovithm for elementary fumctions, Spring Joint Com-
puter Conference 379—385, 1971.

[2] Hitotumatu S., Complex arithmetic through CORDIC, R.LM.S. Prepriut 138 (1973) ;
will appear in Kodai Math. Sem. Report.

[8] Meggitt, J. E. Pseudo-division and pseudo-multiplication processes, IBM J. Res,
Dev. 6, 210—226, (1962).

[4] Specker, W. H., 4 class of algovithmus for ln x, exp #, sin x, cos %, tg7t x and
ctg™ », IEEE Trans. E.C. 14, 85—86, (1965).

[5] Koyanagl S.,, Watanabe, K. and Hagiwara, H., Approximation of ele-
mentary functions by micvo-programming (in Japanes), Proc. 14th Annual Meeting
of the Information Processing Society of Japan, 171—172, (1973).

Received 1. III. 1974, .
Research Institute for

Mathematical Sciences
Kyoto University, Kyoto, Japan

