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$ 1. Introduction

Walther [1] proposed. a unified algorithm for elementary functions
'due to coordinate transformation. In a previous paper l2), the author
has discussed mainly the circular case (* : + 1) and its application to
,complex arithmetic.

In the present paper, the author would like to discuss the hyperbolic
case (m - - 1), in order to give a modified alogrithm for the computation
,of square root, exponential and logarithmic functions.

$ 2. Thc principlc of CORDIC in the hyperbolie case

In order to make the paper self-contained, we shal1 begin with the
principle of con¡rc in the hyperbolic case.

I-tet x, y be the real numbers satisfying fi> ly l. The hyþerbolic coor-
d,ittøtes (R,A) of a point P: (x, y) is tlefined by

R: (x'- y')tt', A: arctanh(ylx); x: Rcosh-¡4., !: RsínhA.

It is well-known that RzA 12 is the area of the domain surrounded. by the
s-axis, radius vector OP ancl the hyperbola x2 - y' : c passing through
P (see Fig. t).



774 THE COMPUTATION OF SQUARE ROOf 175SIN HITOTUMATU J2

v
Now taking a constant So(l Ðu I < l),

we shall apply the linear trairsfoimation
1(8u) : @0, yo) + (xn+t !a+ì by

(1) ?(so)
%p+t: xal S¡ln

Yh+L:ln*ìexo

which yields in the hyperbolic coordi-
nates

Therefore, we may compute square foot, exponential and. logarithmic

at the final steP, it is easY to
are of order e, Provided- that

k that for x, in (6), the trun-
of. higher ovd,er than e.

$ 3. Practice and convergence ol CORIIIC

In the binary arithmetic, the transformation ?.(8u) is most easily

performed, if we take 8¡ : * 2- A, where (1) is computed only by addition,
åubtraction and shiftinþ without actual multiplication'

For convenience, we Put

(B) En:2-þ, 9¿ : afctanh e¿

and select suitably the signatufe 8¿ : f eo. Precisely we take the algorithm

,,if lu à 0 then 8o: : - eo else 8u : : ep;"

in the case I, and.

,,i1 zo { 0 then 8o :: - EÈ else 8o:: e¿;"

in the case IL
Unfortunately, the constants pis c1o not salisfy the convergence cf1-

terion of w¡LtuEn [l] :

t-!

(9) 9r--f,,p¡3þ*-t (h:r'2....'n-2).

In fact, Bo's satisfy an inequality-of _oÞþosite direction in.(9); Ilow.ever,
as mentiòäed in lil and pioved in l2f, the inequalitv-(9) is !ry'te i!;13
adtl the correctiom ierm I P, t, < 3h * I in .the.1eft hand side of (9)'
Therefore it is enough to atid. some modification in ord'er to guarantee
the convergence. Probably the simplest way ,is to reþeøt th.e. þroc.ess once

irore wit:¡ îh" ru*" values of eo añd. pu at the Þ¿-th step (i > l), where

ho: 1, h¡:3h¿: + l (i 2 l), i.e., h : 4, l3' 40' 721, . "
For the usual accuracy less than 11 decirnals, it is enough to repeat at
h = 4 and 13 only. Piecisely speaking, we should write

2-h for 7<h< 4

2-w-t\ ¡ot 5<h<14
2-tn-zt for 15 s k, < 42

and, so on, but we continue use the notation (8) '

Í-

(2)
Ro+,: Ro x Ko, Ku:0 - |f¡rrz

Anrt : An I nn, c(r¿ : afctanh$É.

lVe introduce a third variable z and trans-
form is simultaneously with (1) as

Fig. I
Zh+t: 2¡ - &n

We take a seouence Ð0, and repeat the transformation Z-(àr), T(tr, .7'(8,-') with. (3)--sta*in{'riãm-itÀ "'i.'"; a;,, i;:;;l-""tiì *" jrrirr"(x,, !,, z,). Tl.e final values are given by

x, : K(x, coshø f 31, sinhø)
(4) lu : K(thsinhø f y1 cosho()

Zn: Zt- d'

where

(5) K :'ñ(t - ¡;¡rtz. o :'1] arctanhø,.
h:t h-r

rn the practical application, we select one of the following two goals:
f. y or / is forced. to be 0.

II. z is forced. to be 0.

If the goal was reached at the steps y, in the case f, we have

(6) x,,: K(x! - !?)ttr, zn: zt f arctanh ,, - ,, ¡ !1¡,g!J-L.tt 2 -tt-yt

simiarly, if the goal was reached at the step zn in the case rr, we have

(7) x": K(x1coshe, I Yrsinhzr)'
y, : K(xt sinhz, * yr coshzr).

(3)

at

I
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An alternate modification will be to insert "' 
:2 e. and the corres-4*

ponding value e'n: arctanh e'7, at all or necessafy steps. We prefer the
former one because of the simplicity.

The convergence region in the case II is

æ

(10) lzrl SB:Ð90*9n* 9r,+... :1.117...

and that in the case I is

(11) 'lylxrl stanhB:0.806...,

The values of po's should. be preassigned.. Remark that po may be

replaced. by et if ef is negligeable, anð, by .p + + "i if ef is negligeable,

so that we need rather few constants in the algorithm.

$ 4. Application to square root

It is easy to see that xr: t + c, !r: I - c gives

x, : K(x| - y?)'t' : (2K4¿) ^,lt

in (6). Ilence taking 
^fî: 

t¡ZX, ¡ne have x*:1fÌ in (6). Remark that
if we need no logarithmic function simultaneously, the variable z and
the constants po's are unnecessøry. F:nther, by the remark at the end.
of $ 2, we have only to repeat the process with repetetion at h : 4, 13, ...,
until, h : nl2, provided that accuracy of. n bits is necessary. The process
is as in the flow chart shown in Fig. 2.

The constants are

Repeat the process for k=!,2,.,., rt/z, and- at k=+ and lJ
repeat tr,rice l¡ith sane ¿ The assigneDer)t foi r and y
must be performed si'mqltaneously

Fig. 2

æ

fn the practical pïograllr., it will be better to determinetl the constant
c in such a manner that the residue becomes smallest for various vatiõ
of I in the interval {ll4 S, S 1} or {1/16 S, 

= 
1}. For rossac'=3m

in our Institute which lnas 37 bits in mantissa, the optimal value of ¿ is
0.36451229226,

In the practice, it will be better to normalize t in {U8 = 
, < Uzt

in ord.er to avoid overflow in the fix point arithmetic. For that case, there
is amod,ified proced.ure. Start fuomh:2(ez: U4) withc :0'27233292991
(approxima,cely 314 of the previous c), anð.repeat twice with same e at' h :1
(:2 x 3 + 1) instead. of 4 and- 13. The convergence region is 0.33 *
e-B' < ltlcl = 

eB'+3, B' : B - þt which surely covers the interval
{li8<t<il2).

(12)

and,

K : l7(l - 2-2þ¡lz * n (l - 2-2k¡rt2, llK :1.2074970806
h:r h:4,13,

c : ll4K2 :0.36451229219. . .

The convergence region is

(13) 0.1068. .. - e-28 S tlc s ezB :9.348. ..

which is surely implies the interval {ll4 < t < 1} or {1/16 < t S l}

x--/l

Y<Y*¿x

x € x + ey

e ¿x05

Ly

€x

x+x-

y.y

YES No

(=z- k 
¡

5 -. Revue d'¿nalyse numórique et de la théorie de I'approximation, tome 3, 1974.
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According to the results of the numerical experiments, it seems inte-
festing that the repetition up to the final bit (until. å : 38) gives worse
resultã than to stop at h :20; the maxirrial relative effor in the first
case is nearly 3 tlmes bigger t}ran that' in the leatter case.

S 5. A new algorithm for exponential lunction

Since ¿o : sinhø f coshø, it will be natual to try to compute ø*

by conorc case II, starting ltom x1 : lt : llk, z¡ :
gives xn : eo, provid.ed' that zr: d' lies within the
ItO). Hówever,-in the above,discussion, we have a1

*r> lyo l, which does not imply the limiting case
giïe an'alternate proof to guarantee the result'

Il xr: y,
formation (1),
is replaced by

xh+|.: xnÍ * tanhao): #¡ s€chøÈ expc{¿ : xh(l - 8l)t" expo(À,

which gives

n, -- nLfi tt - 8fl)r/2"exP (oo) : Kxreo.
Þ:1

Indeed, we can pfove that the final result (4) under coÌDlc case II is
true withoirt the^iestriction q<lyrl, while in the case I, the restriction
(11) is iídispensable. i' , ,

The actual algorithm to compute et lor reaT argument I is as follows :

1'. Put t'7og2Q : ry * s; m: integer, - 1 <s S 0

2o.Pttt 21 :s7ogr2, h:llK

whe¡e log"2:0.69314718056 and' l/K is given in (12).

3o. Repeat the Procedure

,,if. z 10 then begin ø i: x(l - e); z:: z i p end.

else begin xi: rç(l *.); zt:2- P end;

where e:2-þ, e: atctanh2-þ,

for h : 1,2,3, .. . with repetition at h : 4 anð. 13.

at the initial step, we have always %þ: yo under the trans-
so that the variable y is unnecessary. The transformation

tc"n+r 1 xoÍ I 8o). Since we have put 8o tanh ao, we see
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Remark that in the above scaling 1o, s is always negative, so that
at the first step, we have always z < 0. Ifence it will be better to start
with

zz: s'1og2 f arctanh(ll2), xr: llzK, e:2-', þ':2,3, ...

In the computation of complex exponeÍrtial function

fexp (ø + iy) : e*(cos y I i sin y),

we combine with coRDrc in circular case for the trigonometric functions.
rn that case it will be better to start witjn x, : T lKK+ : 0'36662806930 ' ' "
where

K+: Ëtt * 2-2h)1t2.
h:o

$ 6. Computation of logarithmie lunetion

I,ogarithmic function 1og I will be computed by the inwerse pfocess
as in tlie previous paragraph. Ilowever, to avoid actual division, we prefer
the following algorithms :

Assume first that the argument I is sufficiently near 1 (precise bound
will given later in (15)).

1'. Put

)íz: tlKt: J\¡zx : 7.045723138, y : t, zz:0.

Ilere K, : Kl(l -2-2¡trz.
2o. Repeat the following process:

,,if. x > y then begin ø: : (1 - e)fri 2i :a f p end-

else begin x:: (l -f ")x, z:: z - P end;"

where " 
: 2-h, I - arctanhe,

lor h.:2,3, ..., and at h:4 anð' 13 repeating twice with same e'-

The repetition is completely similar to the one in $ 5 except ojrlV
the branching condition -is replaced by x > y instead o1 z < 0' The
process brings ø as close as y. Finally iÎ x : y, then we have

x -- (KrlR1) ed : t,

which gives z : d" :7og t.
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Ilere we start from k :2, since (l - 2-Ð : ll2 is too sma11 to
recover later by other prod.ucts. Hence the convergence region is ¡estricted in

I zt I S B - þt: B' *0.568...,
(15) 0.57... : e- B/ < l tl < ea' : L.76...

For other values of ú, we make scaling t :2^ . y (m being integer),
and. set 22: 77¡ . log"2 in (14) instead of 0. Here we cannot take 112 <
Sy S I or 1 3y 5_2, bttt we must choose the mantissa y in

(16) 314 
=y =312 

or tlJt:t =JÌ.
But this restriction is not serious in the actraT programming.

Finally remark that this algorithm is not suitable for the computation
of 1og I when the argument I is quite cl,ose to l. In such a case we should
replace the function by 1og (1 * r) computed. by the Taylor series

log (l *s) :5 - "' + "' - ....
2t s '

or by other approximation formulas,

Added. in Proof :

After I køue finisked to þreþør ent I the
þøþers [3], t4l ønd. l5l &re c d. u rn sed,
here. Tlt'e øuthor woul,d. lihe to d,i ons eir in
ø seþørøte þaþer.
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CN BEST ONE-SIDED APPROXIMATION
WITH INTERPOLATORY FAMILIES*

by

II]JA, LAZARDVIC

(Beogracl)

0. Introduction

I,etX beasetformedwithn f l pointsof the real axis andf : X -> R
be the restriction, at X, of a polynomial of degree ø. Evidently, there
are polynomials P anð, Q of degree n, sttc\t that-

(0.1) P(x) > 0, Q@) z 0

forxeX,and,
(0.2) .f:P-QonX.

Professor r. popovrcru has proposed the following problem: to study
the existence and the uniqueness ãf a pair (P*,Q\-of polynomials oi
d.egree S ø which is minimal, i.e.,

(0.3) P>P*>0,QZQ*20 onX

for every pair (P, Q) which verifies (0.2) ; if the problem has a solution,
let this- minimal pair be determined. Further, let a similar problem be
solved. in the case when X contains n + 2 points.

+ Communicatecl at the Colloque on Functional Bquations, I.açi lgTB


