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Ilere we start from k :2, since (l - 2-Ð : ll2 is too sma11 to
recover later by other prod.ucts. Hence the convergence region is ¡estricted in

I zt I S B - þt: B' *0.568...,
(15) 0.57... : e- B/ < l tl < ea' : L.76...

For other values of ú, we make scaling t :2^ . y (m being integer),
and. set 22: 77¡ . log"2 in (14) instead of 0. Here we cannot take 112 <
Sy S I or 1 3y 5_2, bttt we must choose the mantissa y in

(16) 314 
=y =312 

or tlJt:t =JÌ.
But this restriction is not serious in the actraT programming.

Finally remark that this algorithm is not suitable for the computation
of 1og I when the argument I is quite cl,ose to l. In such a case we should
replace the function by 1og (1 * r) computed. by the Taylor series

log (l *s) :5 - "' + "' - ....
2t s '

or by other approximation formulas,

Added. in Proof :

After I køue finisked to þreþør ent I the
þøþers [3], t4l ønd. l5l &re c d. u rn sed,
here. Tlt'e øuthor woul,d. lihe to d,i ons eir in
ø seþørøte þaþer.
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CN BEST ONE-SIDED APPROXIMATION
WITH INTERPOLATORY FAMILIES*

by

II]JA, LAZARDVIC

(Beogracl)

0. Introduction

I,etX beasetformedwithn f l pointsof the real axis andf : X -> R
be the restriction, at X, of a polynomial of degree ø. Evidently, there
are polynomials P anð, Q of degree n, sttc\t that-

(0.1) P(x) > 0, Q@) z 0

forxeX,and,
(0.2) .f:P-QonX.

Professor r. popovrcru has proposed the following problem: to study
the existence and the uniqueness ãf a pair (P*,Q\-of polynomials oi
d.egree S ø which is minimal, i.e.,

(0.3) P>P*>0,QZQ*20 onX

for every pair (P, Q) which verifies (0.2) ; if the problem has a solution,
let this- minimal pair be determined. Further, let a similar problem be
solved. in the case when X contains n + 2 points.

+ Communicatecl at the Colloque on Functional Bquations, I.açi lgTB
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From (0.1), (0,2) and (0.3) we have

(P* 
= 

0¡e* -f : ?* > 0) - (P* > gAP* >Í) *P* >

) max {o,f} : f *

(?* l0A/+ Q*: Px ì 0) = (0* > 0A?* > -Í)*8* Z

> max {0, - Í} : (- f)*'
If
(0.4) p(o) : max lo(ø) I

,ex

for every @ e c[x], then we want to find. the poly[ornials P*, ?* with
properties

(0.5) p(P* - f*) : min p(P - Í*)
p-9,Í+
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The norm 1 is the measufe of the closeness of the approximation. For a
fixed elemènt / from C [X] we denote

(r.2) CB: {s = CtXl lYx = X, e@) =Í(x)}.
Let X( C C txl be a subspace (closed), and

c1P 
-1 

/.\cl?-ld=clflto,p-CsÀK:19 eI(,lYx =X, S@) =l@)),
The purpose is to stucly the elements g* from 7tr such that

(1.3) þ(Í - 8*) : min þ(f - g)'
e=x(a

.)2

and.

and

(0.6)

where

, s{,*: {þ = enlYx = X, þþc) Zf*(*)},

ef,-rt*: {þ = e,,lYx = X, þ(x) ¿ (-/)*(ø)}'

Therefore, one observe that the above problem is a specimen of the best
nofm.

our aim in this paper is a stud.Y

e for instance [B-10]), which seems

to be practicaly.

statement of tho problem; exístenee of a best approximation

I,et xl¡e a compact set of the real axis and c[x] be the ireal normed
linear space of all fuïctionS/: X + R which are contintiotls on X, normed
by means of

(1.1) þU): ma5 lf@)lf eclx).

p(?* - (-/)*) : min p(Q - (-/)*),
ç'g('-f l¡

ne-sid.ed.
hom I(.
approxi-

X). The following theorems deals

with approximation from below ; ^n anäTogous result holds.for_approxila-
tion frã^m above. In our case þ(f - g):-y*. U@)--g(x)), but in order

to put in evidence the similarity with the uncolstrained. ulifo.lm.approxj-

-n[iã"- we shall frequently usé th" notation introduced in (1.1). rt will
be supposed that

d: Eff;I("; X): inf þ(Í - g) > 0.

, 
&. JUB

In the following *" r""d statement (see for instance [4], Th. 1.4.1.) :

TrIEORDM l.l. Let w be a yeal, l'inear sþace ahich is þrouid'ed,
u¿tninlnorm ll.ll,7C CW øsubsþøc :W + R. ø continuows.functio'
nøl'. For a. fixed el,ement 8o e I( l,et

s': {8 = w lq(s) <'qkò. cw.
If Q'i.s ø giaen s ønd' ectiuel'y !(l;.) one.

den"otes thi cone ts re cone of .ad'kerent.
d,epl,ø,canents, the s iús um re\øtiu of set

QÀxC øt the þo

K(Q ; sò n /((s ; so) O KII('; gof : @'

If these cones øre co'ybaetc tken the a.boae cond'ition i,s l,ihewise necessøry {orm'inirnumon.Q)1(. f i

It is worth mentioning that the characterization theorêms for o'ie-

sid"J-"ppró"itàtøu*uy Ë" proved directly by means of the cones of
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admissible d.eplacements as well as of the adherent cones. Other proofs
may be perfoimed. by using the fact that the one-sided approximation is
a particular case of some problems of uniform approximation with constraints
(sêe for instance c. D. TAVr{on [12]). In the second. of this paper- we gene-
ialize the one-sided approximátion in the following manner: instead of
an interval la, bf one cõnsiders an arbitrary compact set and the Cheby-
shev space on lø, ó] is substituted by an interpolatory set of functions
which are defined on this set.

Firstly we get two results regarding the existence problem in the
case when X contains only a finite number of points as well as 7l is a
finite dimensional subspace. We note that in this case any f : X-+ R
is continuous on X. It is well known that the proof of the existence of
a best approximation essentía1y depend on the fact that a continuous
function on a compact set attains its extreme values.

THEoREM 1.2. Let X: {xt, ..., frn,}, x¿ e R a.nd KCCIXI
Jor euery f : X -+ R there erists øt leøst one elent'ent g* : g*(f ;

Proof. 'We consider the sets

M¿: {g = ctxl l0 
=Í(x¿) - 

g(x,) 3 c}, i : l, ...,ry

where ¿ is arbitrary sufficiently large positive constant. The sets Q :
: À M¿ and Q(11( are compact CIX] respectively in K, and d,:

inf þ(f -g). The functional I defined. by
c=Q n'l(,

ç(g) : þU - ù: max lÍ@') - s(%t) I g = clxl'

where Ð is an arbitrary positive number. Taking into account that

MÀI%+ø, inf þ(Í-Ð: inf þU-8):d',
ß. M nr(s c=x(p

we see that it is enough to seek the minimum of ç(g) : þU-,Ð on
M 

^ 
fC-. The set M 

^ 
1(, is compact in X(, because it is closed. and

toånA"ä in 7(. The "onti"úity 
of þ7Í - g) with respect to g, implies that

there is at least one element g* = M 
' 

r('B such that

þ(f - 8*) : min þ(Í - 8) : min þ(Í - ù'
c. M nltp c'Xtp

One observes that the above theorems follow from a more general situation.
Namely, if Ç is a closed. subset from CIX] such
with eïery sïbset {g = C lxl S I þU - g) S p}, P

f e C lXl admits at least one element of best ap
'of 

"l"menis 
from Q. In particular, this is true if Ç is

a finite dimensional space 7e.

Then
i x).

being continuous cn ClXl, attaiirs its minimum at least on a point
gx = Q () 7(,, anð. we have

ç(sx) : þ(f - 8x) : ,#T* þU - Ð -- ,y;i þU -Ð. J

THEoRÐM 1.3. IÍ X C R is a comþact and, K is ø finite d'imensionatr
subsþace of CIX), then foieuery Í e ClXl there exists øt l,east one elemen'i

S*J; X; X) oÍ best one-sid.ed' øþþroxirna.tion.

Proof. I.et X(: sqaî{gr, ..', g,}, where gt, .. ', (,, is any basis,
g¿ e C [X] for i - l, '..,n. Iuet Co be the set

Ca: {E = ClXl lyx = X, e@) 
= 

Í(r)}.

Further the set 'V : CB fl 7l is convex and. closed in 71. The functional
1 definecl by (1.1), is-òontinuous on 7f. Now, let us consider

M : {8 = c[x] lþU -s) < d + Ð],

2. Characterization

(i) General ease
is a modification of the characteri-

iï:"::"f#ii-".#il?"f J"ffiilit
] is arbitrary subspace (closed with

respect to norm þ).
For a fixed g e I(a we denote

E*(Ð : {x e x lÍ@) - eþ6) : þ(f - s)},

C-(s) : ix e X lÍ\x) - g(x1 : 0j,

and

A(e):E*(ùUC-(s),
l if xeE*(g),

- 1 if %e C_(s).

i:r ffi

ot(x) :

is known that even in ord.er to clevälop a theory of best approximation



it is necessaty to assume that the approximating set has at least one
element which verifies go@) <Í(%) for a7I x e X. This fact we sha1l
frequently symbo1lically denote with gs ( /.

THEoRÞM 2.1. IÍ there exists øn el,ernent go eK ulticlt' uerifies go1Í,
th,en a necessq.r)l and' sufficient condition uhick must be aerified' by g* = ?(
suck that g* be øn elernent of best one-síded' øþþrox'i,møtion from f, nørnel'y
g*: &+(f i\lc; X¡, is thøt I'h,ere d'oes not exists g ë l( such that

(2.1) o(r) g(x) ) 0 for øtl x e A(¡,à,

where 6 : õs*.

Proof. The functional q:C[X]+R defined by q(S) :þU-Ð is
continuous ancl convex. Therefore the sets

Q : {s = clxll þU - d < þU- s*)}
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C": {g = ClXllYx = x, Í(x) - e@) > 0},

afe convex. Since go = Ci on" nas i f) X + Ø. Inthis way the conditions
of tlre Theorem 1.1 are fu1fi1led. Thus g*(/;7{,; X) verifies

(2.2) K(Q ; e*) I K(C"; s*) O IdlI(; g*) : ø .

But it is known (see for instacne tal or t2l),

(2.g) K(Q; s*): {g € ctxl I \x e E*(s*), e@)'sign (/(ø) - s*(#))>0},

(2.4) K(Cu;g*) : {s = Ctxl lVø = C-(g*), g(x) <0},

(2.s) KlT(; g*l : \t. :

In our case sign (f(*) - e*@)): f 1 for all x e E+(g*) and (2.2) reduces to

{e = clx)lYx = E*.(s*), s@)> o}O {g = ClxllYx = C-(s*),

s@)<0)nYc:Ø,
which proves our assertion. f]

(ii) The.dase with finitc dimensional subspace

F'irstly we note that in this case the. set ,4(g*) which is defined in (Ð,
contained. only finited. much of points. T,et X be;a comPact.of real line
which contain at least n distinct, points as well as I(ÇC[X] be a sub-
space of dimension n.We may write 7( : sqan {gr, ..'., g,} where 8t, " ., g,

is a basis of xL 8¡ e Clxl' i = l'.':"n' Then we may

oroblem to the same topic in'n'' This is motivated by taking
ih; üt;;;biuttivoque ðorrespondence between 7t: and R":

g : f engt, e î('-' a': (o¿r, ' ' ', æ,) e R" '
h:1

lfherefore to the set C, corresponde the set
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transpose our
into account

{2.6) VB: æ e R" lYx e x, ) 
"ugi@) 

sf(x)' É-1

ì
I

and.

Further we define the continuous application ø: x s R" by

ø(r) : (gr(*), ..., g*(x)), % = X,
and put

ø(A(Ð) : {ø(x) lYx ' t(ù}'
'The following charact eÅzatiott' theorem is valid '

\fl:l'
which satisfies

l(ù :0 for øl,l' g = x9' ;j ,

Proof . We sha1l show that : (g* = g:*(Í t )l* (ø) + (å) + (c

oi"*'áiîr,Ëäääî.rl-¡rrtiv p"rt"i, "õiäi,ri To show .\o) 
=.(u¿., ) denote tt"""ó"iåï pr"ä""t in R". T he set defined in

mav 6e written in the form

: Vp : {æ = R'l\ x e X, (æ, ø(x)) 
= 

f(x))

ssw?ne øn el'ernent go e 1(' suck thøt

4. ;;:|;io 
'L ,T',!""ui.* "/,,#:",Í'!ii:{,

,s

'n 
: 8*'( xL; x):

(a) Tltere d,oes not exist g € span {gr, ..., gn} such that o(x)g(x) > 0

Jor øll' x = A(g*)' 
e conuex hul':, or the set of n-tuþtes(b) The zero n-aector 0¡, is in th

{o(x)(g,(x), . . ., s"þ)) lYx = ,4(g*)}.
(") . ' ., x,, in A(g*), ry =.T 

I l' ønd' þositiue
'nurnbers contiäuousl fünctionøl' t' e ClXlf' del'ined'

on CIX " tYþe

('.:, ',';:'4:å o@a)v¡r(x')' r =ctxt

).
),
(2

In
1et
.6)



and our problem reduces to the finding of a point (* € R, for which

q(ø*) : min 9(a)qeV

where

ç(q) : þ(r -å.,*)
By using the formulae (2.8)-(2.5), we find

K(Q; Sù : {g = ClXllyx = E*(s*), g(#) > 0}:
: {oc e R" lYx = E-(g*\, (q., ø(x\) > 0}: :

: {o{ e R"lV* = a(E*(g*)), (", g) > 0}.

K(C";8*) : {g = CLX|lvx = C_(g*), g(ø) < 0}:
: {ø e R IV* = C_(g*), (*, - ø(x)) > O} :
: {a e R" lVp e - a(c_(g*)), (*, p) > o},

KlTt; E*f : R.

By means of the Theorem 2.1, we conclude with the fact that, the systernof linear inequalities in R"

(0,, P) ) o Vg = a(E*(e*))

in unknown ø, is inconsistent, i.e., there isn't any solution. since

this systern ^^;:"o;,fll;'Í :' ,.,'il''. 
= c-(s*)Ì'

(2.7) (a, 9) > 0, with p = {g} :{o(x)ø(x)lyr - A(g*)}.

lh" i:! {p_ì t: compact in R,,. It is known (see for instance il, p.rr'e lnconsrstent property of system (2.7) is equivalent ïiti
(2.8) o¡r e co ({p})

which,is equivalent with (þ), 1ne chqim will be completed by
(b) + (c). rn order to show this it is sufficiently to showihat (2.é)
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valent with (c). On account of Caratheodory Theorem, there exist at most
?t, + | points Pr, . . ., p- anð, positive coefficients p, such that

ñ
(2.e)

with
m

pt e {c(x¡) ø(x) | x, = A(g*)}, Dp,:l,Pn>0, 1<m'3nll.

11 x, e a(E*(g*)) we have

p¡9¿ : p¿ø(x¿) : o(x¿) p¡a(r¿),

as well as if xn = - ø(C -(g*)), we have

p¿þ¡: - p¿a(x¿) : 6(xi) p,eþçi).

Thus, from (2.9), we have

M

oÃ, : D pogn
i:r

0or : D ø@a) pna(x,) : D pno(xo)@r(xn), .n:t ¿:r , g,(x)),

which is equivalent with

lBB ILIJA LAZAREVIC I
B

m

(2.10) Ð'(*,) p¿gp(x¿) :0, h. : l, ..., /t,.

By_multiplying_every _eguation in (2.10) -with arbitra,ry numbers uo, h:: 1, . . ., n, and by adding these equalities, we obtain

ti"@,) r'[å noso@)]: o, x¡ = A(s*),

that is

t(Ð :i"@) pis@) : o, Vs: f noro. n¿:t k=l

We note that, E*(g*) * ø.Indeer , 1et us assume contrary. The inequa-
lity 1 S m impTíes C_(g*) * Ø, i.e., we must have ,4(g*) : C_(gx) ãnd

191) that

showing
ß equl-

n 11t

o : D o(x,) pog@o) : - D p¡g(x¿)
i:l ¿ :t
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(3.1)

for every x¡ = A(ß*). In other words, for the element E: g -go e ììt]

holds
1n Itl

f, e,(s - so)@,):ÐP"(Í(*') - eo(ø')) > o'

(because g*(x,):f(x,) f.ot all x, e A(g*D,which asserte that there is arr

èlement in' ,L such that UÐ :0.'^"*^il-";;ection *itn trr"'inicity we note that the conditions which rn'e

best aPp
aph we s
the best
rpolatory

S.

3. Approximation with intcrpolatory sets

Let I(CCIX) be an interpolat-ory subspace on X-.of dimension ø

i."., li i, fiieur" i"i"ipoiátoty rät of ihe ord"r n, on X. þee .[B]), and

i','ôf*l--" n ii " noti-r"to linear continuous functional defined bv

he notes that in case when X : la,å1, the prewronski ^^ '(f;: 
f;)

\ht...'*nJ
in this'case (3.2)
flicients "(t, . . ., ^(,

'"""#1äiì"å"Ë,f
The followirg theórem deals with r-nicity solution of best one-sided

"pp';;ì;;ti;;. ä;-i;;;f- ol tni' the orcm mav be performe d bv using

similar arguments wit'h i¡ose frcm the unconstrained case (see for instance

ta, p. e6l),

Let u st one

that that a. *U: Ze t

aþþ exist LS nec

tiìãt to be

we note that in interpolatory case, iÎ the functional which is consi-

d,ered-rin ih.or.- i.l. ttt' r; ortogána1 on x(, i'e', t(g):0 for a]l g e r('
then we nrust have *:'" f 1. Ïndeed, 1et us assume ln 

= 
n. Then there

;;úi;; ãt"m"ot g ='tc defined tw E@,)=\¡, i-l' ''''rn anð' we have

which contradicts our hypothesis. But this means that in the. interpolTtgr4

case there exist e*aËil;'; + i ptints which form the set .4 (g*) of critical

pcints from X.

4. Thc alternatorY ease

If 7ú is of the tYPe l,{la' bl}'
wronskians ln (3.2) has a constant- s-ig

are not zero. 
'Therefore from (3.2)

f 1 Points in X at which ø* takes
This ìituation is called' the case
e extend the Theorem 2'2 as

TIIEoRÞM 4.1. Let I(: spajn {gr,
tYþe l,,{la, b)), X c

re exisls øn element go

e fol'louing is ø.nece;sa
e-sided' øþþro ximation

4
t(g) : f,r,sWl :f.r? , o'

ff tG) : 0 for every g e X(, then we have

,m :,(r*,,, ' . ' \n*t
..' %n*L

gt' " '' g'\

frt, ,..' *¿-t' %¡+t'

tL+l

Dv,Í(*).
i:1

(3.2), l¿: ? 7)'+1-iY,,r'V( , *.*,)''(;', ,r;,)

,(r;:, ',1".):

differs fro- ,"ro. Moteover, v'e have

and ,,pfewfonskian"

(3.3) l(l) : \,,t'tv

In his work T. PoPovrcru
of the form (3.1) which

t10l establishes that the unique functional

"å"ittt.t on ?( is defined bv (3.3)' Likewise

gr(xt) gr(xr) '

g,(xr) gr(xr) .

g*(xr) g,(xr) .

' gr(x")

gr(x,)

. g*(x,)

8t,.'"8,,Í
fry ,, '' Xnll

v 8u
frt' .:,r;-)
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. (.e) There.d,o.es not exist g € span {gr, ...,gn} such thøt o(r)g(r) > 0
forøl,l,xeA(g*).
. . .(þ) .The zero n-.uector 0ol il -in the conaex kutl, of the set of n-tuþl,es
{o(x)(gr(r), . . ., g"(x)) | x e À(g*)}.

,l) Tkere eyi-sts q._linear functionøl l, e ClXl* oÍ the form (S.B) which
?o!¿^tf¿çt l!g) 

= 
p Íor øU g- =.1L ukere x, 1 xz 1. . . < r*+i, x¡ = E* (g*) U

U C- (g*), oþc¿) \¿ ) 0 for i : l, . . ., n I l, ønd. T¡T¿+t < 0 fitr i :' ll-".., l.
(d) (Al,t.ernøtion) .There exist the þoints th 3 xz < . . .

A(g*) : E*(g*) U c- (g*) such tha.t o(i¡+r) : -- o(x¡)- for i: l, ..., n.

In this case we have the following consequences.

- Corollar.y 4.2. Let xt1...1lcn+l be critical, þoints from X
reløtiae to d.eaiøtion-function e* : f - g*. Then tke cofficiänts ao'of gx :: g+(f ; t{.; X) uerify

(4.1) 
äousor-) 

: f(x) - Ðnd*, i: l, .. ., n,+ |

uhere 8a ø.re the coordinøtes of the ølternøting-uector 8: (1,0, l, 0, ...) e
e ftr+r .9r of tke similarty uector S: (0, 1,0, 1,...) e ft"+r.

- To-the system of.'points xt 1 ,.. 1 fr,,+t corr"spotr.ãs for the functio-
nal L the system of coefficients

from above of -f, i.",, gu(,f ; x(; la, ól) : -S*(- f ; X(.; la,b1). This
may be extend.ed. to the interpolatory case with an arbitrary compact set
X ç la., bl. Therefore in the case when the knots are ordered as
th 1 ... 1!h+r we can assert the following: if forthe vector $the system
(4.1) furnishes us the element g*, then from the same system one find.s,
with the vector r¡ and. for a certain system frt I , . , 1 frn+t, the element
g*. We remark that generally these two systems of knots are not the same.

Corollary 4.3. IÍnis euen,then,theþoints xrønd, !6¡¡1 Øra critica.l,

þoints of the sørne kind., i.e., both bel,ong to E*(gn) or to C-(g*). For n
odd, tke sarne þoints aye critical, of the d,ifferent nøture.

Ind.eed., let us srlppose 7¡:2k e N and. r f s:2k + l. According
to the alternatory propert¡ one results r:kll, s:å ot r:h,
s : å f 1. In the first case .r1 anó. xn¡1 belong to E* (g.), while in the
second case these points are in C- (g*). Tf n : 2h - | e ^ðÍ and. r + s : 2h,
we give / : s : h. But this means that r, and. !tn¡1 â.rê not of the
same kind. Moreover, in both cases the number of contact points (in C- (g*))

is.s:[3]+r.n
Lz l

C o r ollary 4.4. Let X : la, b), I( -span{gr, ..., g,)lbe an inter-
þol,øtory of tke tyþe I {lø, bl} (i.e., X( is a. Chebyskeu subsþøce oJ Clø, b)
on lø, bl, ønd, suþþose that gr: l. Then, if f is non-þolynomiø|, uith resþect
to X(,, lhe d,euiøtion-function e* : f - g+(f ; K,; la, bl) høs the end.-þodnts

a. ønd b in its set of øl,ternance A(g*).

Ind.eed, suppose that x¿" is extremal, i.e., e*(x¡,) : þ(f - go), and
fr¡o¡1 is a contact point, e*(xo,rt):O. Let us suppose that there is an
extremal point .ro between %¡o arLd- .f¿..'1 (the same study when øo is a
contact point). The function e* differs on lx¿", ro) oI constant fnnction
þ(Í - g*). This is motivated by the fact that the number of extremal
points is finite. Therefore we find a positive number c so that the function
a* - c : Í - (gn * c) vanishes at three points from ltc¿", x¿"+rf and. one
results that the above function has at Teast n f 2 roots on fø, ó]. But
this contrad.icts the fact that gx, I c = I( and, XC + f is] interpolatory
of d-imension n | 1. Further, 1et us assume that the end-þoint a is not
critical point, i.e., 0 1 en@.) < þU - g*). Then we can find a positive
number c for which the function ê*-c:f - (g*-þc) has a root on
lø, xrl as well as a root on lxr, rr]. This means that e* - c has at least
n + | roots on lø, b), i..., f : gx * c. Bttt this is a contradiction and
the pr oof is pomplete. !

The above Corollary extend. a well-known result by r. rorovrcru t9]in the case X : la, b) and 70 is the subspace of polynomials of the
d.egree n - l.

Àr, Fr, \2, Vz, . . ., À,, F"

or

[¿r, Àr, t\2, ]\2, . . ., l¿", l,

with À¿ > 0 and pj,< 0 and r * s : n + l. (We select one of the above
system such that d* 7 0. This we shall show later). similarly, if x', <
e* :.f - B* with g* : g*(f ;lt; X), then the coefficients of g* verify

n

(4.2) Doos'þ;) : Í@l) - r¿d*,,i : l, ..., n + |

where r)¿, ¿:1,...,n+l are the coord.inates of alternating-vectors

I-: (q, -7, 0, -1, ...) e /¡,+t respectivelyl : (-1, 0, -1,0, .. .) e /lø+r.
If g* !s the element of the best one-sided approximation from below of
f ,o" -X: lø,b1, then in 13,p. l2l it is shown that this is equivalent with
the fact that - g* is the element of the best one-sided ápproximation

- Reyue d'analyse numérique et de la théorie de l'approximation, tome 31 1974.
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, '5. On eomputation

!rþ;r.,ø,.'1] 
fixed and l be the functional consideled

lnto account that evefy element from 7(] is determined by ø distinct
points, rve may write

(5.3) g: L(x('l xv ..', fri-r, !t¿+t, " ', tcn+ti g)'

We note that the signs o(ør) may be determined as follows:if (5.1)
is considered .as a system in the unknowns 4u . ' ., a,,, d*' tt-en

ti -
Àr if y¿)0
p¡ if 1¿<0,

ft' ., frn*t ) ,f;,', :,';;l.lv

and 1:
Then we

{i
ha

= {1, . ..,,n * 1} ly¿ > 0}, J : {i e {1,,
VC

dx: I * "(.),Cn' T
' frnt7

ì i- !t:þt on
I i:r

t(l) : I(Í - Bx) =
.i,

ì
/-J
ieI ^oj9n) - sUtD *Ð v¡UQ¡) - sþ¡))

t=J' wheie Do are the co-factors in the d.eveloping of the denominator by the
elementS of the last row. BecaUSe the numerator haS a constant sign
and the denominator is a linear combination of (1 | o(xt))12, we maJ¡ deter-
mined the sign 

. 
of coefficients pa such that d, has a positive value and

moreover a minimal one. Indeed. Put , .Ì:.

o(x,) : $s" (v(s;;, . .:,r;:!,), nr,),

i:7,...,n'+7.
The above method depends o1 a functional I which enables us to fincl

d,* and c(xo), i. : l, ..., n I I. Professor r. popovrcru in his work con-
siãers simuÍtaneously two interpolatory-systems K : sþara {gr' ' . ., g,} and
W : span {gr, . . . , gn, g,,-rt} (r,vhere 8,+ r is selected in a convenable manner) .

By meãns oT this iãea rve shall give a more elegant solution.

Let
':n+l

u : L(W i xt, . . ., xnrl; f) :D orsi
h:r

and.

= /._,
ieI ^oUU) - s\t))

: d*D, \,'
¿eI

.r yo = E*(gà, z¡ = C-(g*).

therefore, if n this manner
*":"ã¡k,i¿ã that.l(/);o,
then:by me .the index s-et

11,...in* lconsiderthe
normaljzeð. d*. If l* is

'v,,el1d.efined then is known the deviation d'*:l.*U)'The knowledge of
the sets 1, I is equivalent with the r.act that are known the subsets
D*(g*) anð. 

-C-(Sn).-,Taking into account that the coefficients ou ?Ï

3*.': D "ug¿ 
satisfy the system oi equations

(5,1) qngiØ¡) 
= e@), i : 1, "',n + | a:L(qfl;xt,

and. let us consider

,t+l
t frnll;./) :D

h:L.'\
bn8n,

where
, h:!1,-d,a,,,ri,,., ,i ,.i.

where d. is a real number. If. d,: do is selected such that tiîe coefficient
of gn¡t is zero, then the element

(s.2) g(xo) : f(xo)

Thus g* is the element which interpolates_ the function g''sn ¿he set x.
On tlié'' other hand, from the construction of g as well as by taking h,* : 1¿ - d+a: Ð 

(øo - d,bo) go
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belongs
h* : g*(
(see for

to X and satisfies the system (5.1).Therefore we have
f ; IC ; X). From the above remarks and by taking into account
instance [8, p. 3a])

we may write

k(*,) :f urÍ@) - onb,
É:1

:lþ) - 0¿g¡, i:1,...,n+1.
From this it follows

(s.z¡ Í(x) - h(x¡): 0¿8¿, i: l, ...,tù + l.

Let us suppose that lSrl* 0, i:1,...,n f l. (For example,
fulfilled when 7e is interpolatory on X and, / is not polynomial
to 7(. on X). Bçcause h,: g¡, we have

&n+t: L".f"; xr, ..., frn*l i uf, b,+t: tX\o i xt, ..., xn¡yI al,

iJ we denote d'* : d'n1-1lb^¡1, then one finds å*. Because the generalized.
Iragrange operator is linear (see for instance 18, p,271), we may write

(5.4) h*:8*(f ;x; X): ¿(Xç i xr ..., xn+ri g)
this is

relativewhere g is given by (5.2). We note that in (5.4) the coefficient of gn+r
iszero. Itisof interesttoremarkthat,fromf(x):w(xr),i - l, ...,n + l,
as well as l(g) : O for all g e I(, we conclude that l'(f) : d*:

7 ,^nq. -: b*+rlw; xt, ..., Knt!;,f] is a dividèd difference (of order n reTative

to the interpolatory segment 7¿ C 1fP).
Because (5.3) is symmetric relative to the knots and. on the other

hand, by taking into account the relationship between g and. /, in the
following we intend to represent the element g of best one-sided appro*
ximation in a more convenient form. Namely, let us denote

8o: Íþc*) - LP(t tçt, ..., !tn-t, !ún+t ...t fi*11; Í)(rp), i : l, .,., n + l.
It is known that (see for instance [8, p. 45])

Í(x) - h(xn) :

and. from (5.6) we conclude that

d* if tt¿ = E+(g*)
0 if x¡ = C -(8*)

¿l* dt,

8¡
if ieI

iJ ieJ.
0¡: l¡¡ I

0

Thus (5.5) implies

8È

, (';:.
8n+t
xn+t

lN ; xr, . .., xn+ti fl.

ft+lr:Ðo;:Dt:¿*Dl
h:l ie I öi iel öa

,( Ep ...,8n
fr1, .. .' !lp-1' Í¡¡1'

that is

Let 0t, ..., 0n+1 be non-negative numbers so that

(5,5)

Put

(5.6)

n+l

Doo:1.h:r
and finally

I

n+l
lo:D oþLpti !út, ...,2tþ-t, frh+t, ..., túo+ti f)þ:t

ôÞ for heI
(5.8) 0¡: D

þeI

I
ò¿

where 0i must be d.etermined in order that k : g*(.f ; I(.; X)
of the equalities

On account 0 for h=J.

L(K !61, ..., zlh-b i6h+b ...¡ zïnir;Í)(X¿) :

i, h: l, ..., tt, + l,

f(x,)ifi*h
f(xu)-8¿ifi:Þ

Therefore g* is given by (5.6) and (5,8). For the non-restricted case, a
similar result was obtained by MorzKrN and sg¡nrue [7, Theorem 2].
In the case with alternance we have 8;8r+r ( 0,'i: l, ..., n, This implies
the rema¡ks from the preceeding paraglàph. Likewise, a similar represen-
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for

for
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it follows

tation may be given when X contains a finite number m2n{l of
distinct points. l- ,

for,the solution of the best one-sided
ows 7e is'an interpolatory subspace'

i4t neMns exchange algorithm
(see for instance [1], P. 173]).'1 point distinct. *f\,'...'*ff,,

of x. If we denote g(0) - g*(f ;rci xto)), th;n the cl.eviation funcfiln

f - gl0\ is now examined. over X and. g(o) :Ð."ugu is compared "with /'
ri þ_l

From the inclusion ':"=;'. "--- '' '"u^or: 
{g = ztlvi:e j((o)' g(xx) 

= 
rþc)})'

I {g = Ic l\x = X, s(x) 
= 

Í(x)) : zl"

then the fact gto) e 1% and tio"g ¿(0)'

points of ¡tol ç X) enables us to
is not as above, then at least one rel
is replaced where the violation is g
for one of the points of X(o) in . a ce:
(5.10) one concfudes that it is possible to have simultaneously

(5.14) mø < 0 and fl(o) <Þ(etot¡. . "' i

I.et xo respectively ø0, be o.ne of the points which satisfies (5.10) respecti-
vely (5.11). Setting

(5.1s)
'MP\ - dQ, > lm(0t 1,

MP\ - fl(o) <! | m(o\ l, ,

"tt+
(s,16)

where

i:1,,..,m+1, i,+io
0 

- 
aÙt

[*; ir

| *0, if

ptor(<Þ) :,:,T1i*)o(øfor) | s T:i I o(ø) I : þ@)

for every Q e C[X]. In Particular: ' ' :

dP) - þ(o)(e\o\): min þsff - g(o)) < min þ(f - glo)),
e = ?0s(0) e= 2(3

i.e., . 
.:

(5.9) dtot < Þ(etot\'

Always there is at least a point *o = x.- x(0) such that

(5.10) sto\(xo) : ma'x.^.eto\(x) - M(o\
xe X - X(o)

as well as a point xs' e X - x(0) such that

(5.11) . s(o\(rn) : Tit,^, ¿roryv,¡ : stot'' *=k- x9l i

By means of (5.9)-(5.10) we see thaü

(4.12)

we have, prepared the next step in o) 'toì X(i).' ff
x[\ = *0, ii"o xt'\ = E*(g(t') ãnd [tl -.c-(g"').
Similarly with the unifoim non-restr for instance
14, p. -1511), it may be proved (d'r't1"- (mt't)t

(Mt'\) t = 1,2, ..., and (g(r)) î :1,2,..., (g(.) e IÇ), are conver-
gent when r+ f co.

In the case with alternaqce' it is easy to exchange a point 5Q't e f,@\

witlr øgl. fndeed, tetl øjfl, arrd x\o) be two points from X(0) so that
xp e (*l?t_, ,1ol¡. Since, we know-the sign of coefficient relative to ßt)

which apþears in the functional l, further we exchange with preservation
of the alternance, one of *\o"\-r, nlo") with ø$l

y(t\ - {*f', ..., rlf,r¡

2¡\tlt

tçto)

tÁ')

(
{
t

6. The conneetion þetween one-sided and. unconstrained approximation

I¿et f(. .: span {gr, . . :.. g,} C C-[X] be
and g* : g*U; Xt; X), g* = g*U;'fC i X)'
of the one-sided- best approximation from
of the unconstrained. best approximation. Then we have

lf rve have 'simultafieóuslYr1 ' '
I

(5.13) :, ' r'latott>
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îHEORDM 6.1. Let g*, g*, ! be the el,arnents d,escribed, øs aboue. In order
to exists ø þositiae constømt c suck thøt

(6.1) g**c:g:g*-c

it is necessøry ønil sufficient thøt gt: 1'

Proof . Let g* :8* * 2c where c > 0, ar'd

,4(g*) : E+(g*) U C-(g*),

A(g*): E-(g*) Uc*(en),

be the sets of critical points rel rtive to gx and g*. Then C* (g*) O
fl c_(g*) : Q. fndeed, if we assume that the intersection ls non-volcl,

then C*(g*) : C-(e*). Therefore the elements g* and g* have ltl*t
contact-points, which implies g* : grn (see for instance t5]). It follows
that we have

2L BEST ONE_SIDED APPROXIMATION 201

(see for instance
g* : g* l2c, we

[8, p. 34]). Substituting these values in the equality
obtain

(6.3)
:ç"
2a 2c

-0

Because Z

dependent
(i,:, ..',í:)*,' in the determinant in (6'3) the rows are linear

:'there are the constants Ào such that

(6.2)
E-(e*) : c-(g{,)

E*(g*) : c*(g*).

(6.4) pt,ogo@) :2c, i : l, .. ., n + l.

From the fact that 7e is interpola ory the equality (6.4) remain valid
and for every x e X. This implies that 7e contains the constant func-
tions, i.e., 8r : 1.

Írurthei, if gr:1and g*:g+(f tI(;X), then ga- *d* =Z! a2!.th9
function f - (Si * d*) takes the values - d'¡ and .0 at n I l- drstrnct
points. fn"reÌói" S*'i d*: g*: g*(,f ; rl'; X). It is clearlv that g:
: f {r* * s*). f, The case when y : lø, bf was investigated in i6l
where the read.er finds many references. lVe note that in general case

(even if gr : 1) the following inequality

Takins into account (6.2) and' Corollary 4.2 we conclurle that 9..¡, ryg gT

ät b% "¡i"i""¿ 
iron 1a.t¡ (or (a.2)) by means of one of the pairs ($, r¡)

(8, ïl) of alternating-vectors. Evidently tlnat d'* : d* : c' From (5'3)

i'e räay write, with the pair ($, r¡)

lrl<1
d*d*d

is valid, [3, p. 28].

g,x : gx(Í i 7(.; X) :

7. The approxÍmation with positive elemcnts

Let x be a set on the real axis which contains at least n + 1 distinct
n

points arrd, f : D aogo be a given element fuom iIL K is assumed to
þ:1

be intetpolatory of the type I {la, bl we denote
the subJet of -70 

whicfr cóitaini onty on X' We
want to find a pair (Pt, 0*) of elements the follow-
ing minimum property

(7.1) P=P*=0, Q>8*>0 onX
and.

(7.2). l: P+ - Q* on X.

,g;;, '.'i.)

and

lt'
I

g* : -g*(-/; w; x) -a 0

,[et " " s"
\frt, '", it
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If we use the :Same reason as in the par¿graph of introduction, we have

(7.3) þU* - P*) : min þ(f* - P)
' P =I{+

[5] La zatev ic, I., Some þroþerties of n-Paraweter fami'lies of functions, Univ. Beograd,
Publ. Elektrotehn. Fak., Ser. Mat. Fiz., 367-380' 101-106, (1971).

[6] I, e w i s, J. T., Aþþroxirnation aith conuefr constraints, SIÃ]:[n Review, ló' 1, 193-217,
(1e73).

[7] Motzkin, T. S. and Sharma, A., Next-to-int'erþolatory Aþþroxi'mation on sets

wi,th multiþlicities, Canadían Joutnal of Math. XVIII, 6, 1196-1211, (1966).

[8] Popoviciu, E. Teoretne de med,ie. d,in ønalizø materuatiaä çi legdtura lor cu teovàa

'interþoldrài, Editura Dacia, Cluj, 1972.

[9] Popoviciu, T., Nòtes sur les functì'ons conae)tes d"ordre suþéri'eur (VI\,P.ev:ue
lVlath. de l¡'Union Interbalkaniqte, 1I, III-I Z, 1-10, (1939).

[10] Popoviciu, T., Sur Ie reste d,ans certa'ines formules lineai,ves d'aþþroxirnat'ion de
l'analyse, Mathematica (Cluj) 1 (24), 1,95-142, (1959).

tlll Rice, J. R., The Aþþroxirnation of F'tr'nctions, 1, Addison-Wesley, Reading, l\[ass.,
1964.

[12] l aylot, G. D., Oø aþþroxiøcation by þolynorni'als hauing resr'ialed ranges, SIIIM
J. Numer. Anal., 5r 258-268, (1968).

[13] Taylor, G. D., Aþþroxi'mølion by funations høtti'ng restricted, røøges, III, J. :ùf.atla.

Anal. Appl., 27' 241-248, (1969).

and

(7.4) þ(e r)* - ?*) = m1n

ç-æ(-Í)¡
þ((- Í)* - Q)

where

J(f+ - {g'= ze*'lYx = X, e@) > f*@)}
J( h+ : {g = t!* lYx = X, e@) > (- Í)*(*)}.

Thus we have

(7.5) P* - 84(f* ; r{.; X) and Q*.= g*((- f)* ; re : X).

Evidently;if / does flot change its sign oÍr X, then the solution is tiivial.
IJy'*:f o;n X, then P*.=Í,8f :0, and. v¡ithÂ:f on X we have
P* : 0, 8* : -_-...f ,

, 'W'e remark that the solution of the, best approximation of this kind
(which is rlescribed. as above), has a mean evèn if X contains'' only n
distinct points.

In the case when X : {*r, . . ., i*} from (4.3) anð, (7.5) one has

P* - L(7(; xr, .. ., x,i f+),
Q* : L(r( i frt, . . ., x,) (- Í)+).

I1 X: {*, ..., x*+t} the solution is given by (5.6). If. K: g we have
the problem proposed by r. rorovrcru.

Finally \Me note that if one of P*, Q* is d.etermined. then the other
may be find .accordíng to (7.2).
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