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0. Introduetion

Let X be a set formed with # -4 1 points of the real axis and f: X —» R
be the restriction, at X, of a polynomial of degree #. Evidently, there
are polynomials P and Q of degree #, such that

0.1) P(x) 20, Q(x) 20
for x & X, and
(0.2 J=P—0Q on X.

Professor 1. popovICIU has proposed the following problem : to study
the existence and the uniqueness of a pair (P*, Q*) of polynomials of
degree < » which is minimal, i.e.,

(0.3) PzP*¥20,Q0Qz20Q*=20 on X
for every pair (P, Q) which verifies (0.2); if the problem has a solution,

let this minimal pair be determined. Further, let a similar problem be
solved in the case when X contains # -+ 2 points.

* Communicated at the Colloque on Functional Equations, Iagi 1973.
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From (0.1), (0,2) and (0.3) we have
(P* 2 OAP* — f=Q* 20)=> (P* zOAP* 2 f) = P* =
2 max {0, f} = f,

and
Q* ZOAf+Q*=P*20)=(Q* 20AQ* =2 — /) =0Q* =2
z max {0, — f} = (— f)-
If
(0.4) p(®) = max | O(x) |

x=X

for every @ « C[X], then we want to find the polynomials P*, Q* with
properties

(0.5) o(P* — fy) = min o(P — f,)
Peg',’{+
and
(0.6) o(Q* — (—f),) = min p(@ — (—/)4)
Qe@i’fh
where

gl = {p =8, |Vx =X, p(x) = f,(x)}
gl —(p e8,|VxeX p) 2 (— (0}

Therefore, one observe that the above problem is a specimen of the best
one-sided approximation in uniform norm.

Inspired by popoviciu’s problem our aim in this paper is a study
of several problems of best one-sided approximation. Some of our theoremes
generalize known results about the same topic, and several new results
are incorporated into a presentation of the previously known theory.
Régarding to the'interpolatory families, we note that one uses 'the notations
of 1. poPOVICIU and T. PopovICcIU (see for instance [8—10]), which seems
to be practicaly.

1. Statement of the problem; existence of a hest approximation

TLet X bea compact set of the real axis and C[X] be the real normed
linear space of all functions f: X — R which are continuous on X, fiormed
by means of L

(1.1 p(f) = max |f(=)], f = CIX].
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The norm p is the measure of the closeness of the approximation. For a
fixed element f from C[X] we denote ' ' :

(r2) Cs ={g = C[X]|Vx = X, glx) < f(#)}
Let % C C[X] be a subspace (closed), and
| Tty = CsN % ={g <% |Vx = X, glo) < A}

The purpose is to study the elements g, from ¥y such that
(1.3) P(f — g«) = min p(f — g),

g=¥p

in which case we say that g, = g«(f; %; X) is the element of best one-sided

approximation from below on X of the function f by elements from .

In the same way may be defined the elements of the best one-sided approxi-

mation from above, g* = g*(f; % ; X). The following theorems deals

with approximation from below ; an analogous result holds for approxima-

tion from above. In our case p(f — g) = max (f(x) — g(#)), but in order
xeX

to put in evidence the similarity with the unconstrained uniform approxi-
mation, we shall frequently use the notation introduced in (1.1). It will
be supposed that :

d=E(f;%5; X) = inf p(f—g) > 0.

In the following we need statement (see for instance [4], Th. 1.4.1.):

raroreM 1.1, Let W be a veal normed linear space which is provided
with the norm ||-||, ¥ C W a subspace and ¢: W — R a continuous functio-
nal. For a fixed element g, € X let us put

S—ig=Wlole) <wle)) CW.

ff_ Qs a giveh set with non-void interior and by K(-) respectively K[:] one
denotes the cone of admissible deplacements vespectively the cone of adherent
deplacements, then the functional @ attains tis local minimum relativ of set

QN X at the point g, if
K(Q; g0 N K(S; g) N K[ 8] = 9.

If these comes are cowvex then the above condition is likewise necessary for
minimum on-Q () . - A e e Sl

It is worth mentioning that the characterization theorems for one-
sided approximation:may be proved ditectly by means of the cones of
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admissible deplacements as well as of the adherent cones. Other proofs
may be performed by using the fact that the one-sided approximation is
a particular case of some problems of uniform approximation with constraints
(see for instance ¢. D. TAYLOR [12]). In the second of this paper we gene-
ralize the one-sided approximation in the following manmner: instead of
an interval [a, b] one considers an arbitrary compact set and the Cheby-
shev space on [a, b] is substituted by an interpolatory set of functions
which are defined on this set.

Firstly we get two results regarding the existence problem in the
case when X contains only a finite number of points as well as o is a
finite dimensional subspace. We mnote that in this case any f: X — R
is continuous on X. It is well known that the proof of the existence of
a best approximation essentialy depend on the fact that a continuous
function on a compact set attains its extreme values.

THEOREM 1.2. Let X = {%y, ..., %,}, % € R and ¥ C C[X]. Then
for every f:X — R there exists at least ome element g, = gu(f; X, X).

Proof. We consider the sets
M;={g sC[X]|0=flx) —glx) schi=1....m

whetre ¢ is arbitrary sufficiently large positive constant. The sets Q =
= () M; and Q| % are compact C[X] respectively in ¥, and d =

i=1,...,m

= inf P(f — £). The functional ¢ defined by
ESONy
o) = p(f — &) = max |f(x) —g(x) | & = CX],

being continuous on C[X], attains its minimum at least on a peint
£y« €0QMN %, and we have

9(gs) = p(f — g¢) = min p(f — g) = min p(f —g). [
g<ONY E<S¥K

B

THEOREM 1.8. If X C R is a compact and R is a finite dimensional
subspace of C[X), then for every f  C[X] there exists at least one elemeni
e\ X3 X) of best one-sided approximation.

Proof. Let 9 = span{gy, ....g&,}, whete g, ..., g, is any basis,
g €C[X]fori=1, ..., n Let Cy be the set

Cp={g = C[X]|Vx = X, g(x) = fl#)}-

Further the set 'V = Cz () % is convex and closed in ¥. The functional
p defined by (1.1), is continuous on %. Now, let us consider

M={g<CX]|p(f—g) =d+ 3
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where § is an arbitrary positive number. Taking into account that

MO # g, it p(f—g) = il pf—g =0
B

EMn%B

we see that it is enough to seek the minimum of ¢(g) = p(f —g) on
M (" %p. The set M (" % is compact in %, because it is closed and
bounded in %. The continuity of p(f — g) with respect to g, implies that
there is at least one element g, = M () %y such that

p(f—ge) = min p(f—g) = min p(f —g).

g=sMnYep g<ily

One observes that the above theorems follow from a more general situation.
Namely, if Q is a closed subset from C[X] such that its intersections
with every subset {g = C[X] £ | p(f —&) = ¢}, p € R, is compact, then

e C[X] admits at least one element of best approximation by means
of elements from Q. In particular, this is true if Q is a closed subset from
a finite dimensional space .

2. Characterization

(i) General case

The following important theorem is a modification of the characteri-
zation theorem for approximation with restricted range due to 6. D. TAYLOR
[13, Theorem 3.2.]. In this section X is a compact set which contains at
least # distinct points, and % C C[X] is arbitrary subspace (closed with

respect to norm p).
For a fixed g = {; we denote

E,(8) = {x € X |f(x) — g(x) = p(f — &)}
C_(g) ={» € X | fl#) —glx) = 0},
and

Alg) = E,(g) UC_(g)
1if x= E, (g),

og(x) =
() —1if xe C_(g).
Points in E*(g) are called (plus) extremal points and points in C_(g) are
called points of the (lower) contact. The points in A(g) are called critical
points, relativ of function e =f— g. Analogous symbols we have for
approximation from above. If gy = g.(f; %; X), then p(f — gy) = dy IS
called the deviation and f — g, = e, is called the deviation function. It
is known that even in order to develop a theory of best approximation
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it is necessary to assume that the approximating set has at least omne
element which verifies go(%) < f{x) for all x = X. This fact we shall
frequently symbollically denote with g, < f. «

THEOREM 2.1. If there exists an element gy = X which verifies g < f,
thew a necessary and sufficient condition which must be verified by g, € %
such that g, be an element of best ome-sided approximation from f, namely
g« = g4(f; 25 X), ds that there does not exists g € 9 such that

(2.1 o(x) g(x) > 0 for all x = A(gy),
where 6 = oy,.

Proof. The functional ¢:C[X] — R defined by ¢(g) = p(f —g) is
continuous and convex. Therefore the sets

Q={g =C[X]|p(f—g) <p(f—8%}
and i
Cp={g = C[X]|Vx = X, flx) —g(») 2 0},

are convex. Since g, € COB one has C 5 % # @. In this way the conditions
of the Theorem 1.1 are fulfilled. Thus g,(f; %; X) verifies

(2.2) K(Q;gx) N K(Cp; 84) N K[ 8] = &.

But it is known (see for instacne [4] or: [2]),

(28) K(Q: &) = {& = CIX]| V¥ < E, (g, glx) sign (f(x) — gu()>0},
(2.4) K(Cy; g4) = {g = CIX1|Vx = C_(g4), glx) <0},

(2.5) : K[%; g,] = 9.

In our case sign (f(x) — g4(x)) = + lforallx € E_ (g4) and (2.2) reduces to
(¢ = CIX]|Vx < E,(g). g(#) > 0} N {g = C[X]| Vx = C_(gy),
gx) <N X =&,

which proves our assertion. [] ‘

(i) The éase with finite dimensional subspace

Firstly we note that in this case the set A(gy) whichis defined in (i),
contained only finited much of points. Let X be:a compact of real line
which contain at least #» distinct points as well as % C C[X] be a sub-
space of dimension #. We may write # = span {gy, ..., g,} where g3, ..., g,

7 BEST ONE—SIDED APPROXIMATION 187

is a basis of %, g, € C[X], 1 =1, ..., n Then we may transpose our
problem to the same topic in R". This is motivated by taking into account
the linear biunivoque correspondence between I and R*:

k3

g =, 08 €Xeoa= (0 ..., «,) € R".

k=1

“Therefore to the set Cy corresponde the set
@6) Voo = R IWx = XY agil < S0

Turther we define the continuous application a: X = R" by

a(x) = (gu(#), ..., ga(H)), ¥ € X .

and put
a(A(g)) = {a(x) | V& = A(g)}-

The following characterization theorem is valid.

THEOREM 2.2. Let us assume that exists an element go < ® such that
g0 < [, and f be a given function in C[X], f & 5. Then each of the follwing
is a necessary and sufficient condition for g4 < I to be an element of best
one-sided approximation, g, = g«(f; %; X): : T L

(a) There does mot exist g < span {gy, ..., g} such that o(x)g(%) > 0
for all x € A(gy)- ‘ '

(b) The zero m-vector O.n is in the convex ‘hull - of the set of n-tuples
(e, - &3) |V < A} -

(c) There exists the points %y, ..., %, in A(gy), m = n + 1, and positive
numbers v, such that a linear (and continuous ) functional I € C[X]* defined
on C[X] of the ,point eviatuation’ type

i = l(“ pe Y ;f),= > o(x) v,/ (5), f = CIX]

xl, s ey xm t=1
which satisfies
Ug) = 0 for all g = X.

Proof. We shall show that: (g, < g(f; %; X)) < (a) = (b) = (¢). In
view of Theorem 2.1, firstly part is established. To show (a) < (b), 1et
(-, -> denote the scalar product in R™ Then the set defined in (2.6)
may be written in the form

Vy={x =R |Vz <X aa®) s}
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valent with (c). On account of Caratheodory Theorem, there exist at most

and our problem reduces to the finding of a point g € R* for which #n + 1 points By, ..., B, and positive coefficients p, such that

¢(og) = min ¢(x)

2.9) O = 2 016,
where =
¢(a) = p (f - k2=1 ocig;) . m

B = {o(x)a(x) | % <= A(gx)} _Elp,- =1 0>012m=cn+1.

==

By using the formulae (2.3)—(2.5), we find

If x;, = a(E,(g4)) we have
K@;8+) ={g =C[X]|Vx = E, (g, g(x) > 0} =

={« € R"|Vx € E_(g,), (o a(x)d > 0} = : 0:Bi = pia(x;) = o(x,) pia(x;),
={« € R*| ¥x = a(E, (g)), <o, B> > 0}. ~as well as if x; & — a(C_(g4)), we have

K(Cp; gy) ={g = C[X]|Vx = C_(g4), (%) <0} = i = — pia(x) = o(x;) p,a(x,).
—{x = R"|VYx = C_(gs), <& — a(¥))> > 0} = Thus, from (2.9), we have

={x = R*| VB = — a(C_(gy)), <& B) > O}.

O = 3 o() pials) = 2 evo(m) Eax), - £,(x),
K[X; g4] = R". 3

: . which is equivalent with
By means of the Theorem 2.1, we conclude with the fact that the system

of linear inequalities in R* "
(2.10) 2 o(%) pig(x) =0, E=1,...,n
(0. B>>0 VB = a(E, (g4) =
a, B> >0 VB = —a(C_(gy) By multiplying every equation in (2.10) with arbitrary numbers «, & =

=1, ..., %, and by adding these equalities, we obtain
in unknown a, is inconsistent, i.e., there isn’t any solution. Since

— a(C_(gx)) = {o(x) a(x) | Vx = C_(g.)}. i

k2

o) 0| L am) | = 0 7 < 4lea)

1

this system may be written in the form that is

(2.7) o, B> 0, with B = {B} = {o(x) a(%) | Vx = A(gy)}.

The set {B} is compact in R*. It is known (see for instance [1, p. 19]) that .
the inconsistent property of system (2.7) is equivalent with We note that E, (g,) # . Indeed, let us assume contrary. The inequa-

lity 1 = m implies C_(g,) # @, i.e., we must have A(g,) = C_(g,) and
(2.8) Opn = co ({B})

which is equivalent with (b). The chaim will be éompleted by showing 0 = Z o(%) pig(x;) = —; e:g(;)
(b) <> (c). In order to show this it is sufficiently to show that (2.8) is equi- =1 -

n

Ug) = > o(%;) p:g(%;) = 0, Vg Zk;: o8, [

ﬁ.

"
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for every x, € A(gy). In other words, for the element =g —go €«
holds ;

ut

> oile — g0 = 2o o) — () > O

(because gq(%;) = f(;) for all x; < A(g,)), which asserte that there is an
element in % such that /(g) = 0.

In conection with the unicity we note that the conditions which we
have imposed, not asures the unicity of the best approximation element
for each f  C[X]. In the following paragraph we see that in the case
when % is an interpolatory subspace, then the best approximation has
an unique solution as well as that the interpolatory property is also a
necessary condition for the unigueness.

3. Approximation with interpolatory sets

Tet 9 C C[X] be an interpolatory subspace on X of dimension %
ie., 9 is linear interpolatory set of the order » on X (see [8]), and
1:C[X] - R is a non-zero linear continuous functional defined by

Y]_J w0y 'Yn+1 ntl
.1 =1 )= St
1r =00 Xutl i=1
If I(g) = O for every g € %, then we have
R 8v "'lgn!’ 1o -
.2‘- L= (— n4+1—1 - .
(3 )) Yi ( 1) Y HV(%]_, ey Xi1s Xidds e xu+1) V(xl, PP, ,’Vn)

and ,,prewronskian”

ga(%1) &u(#a) - .. Gal%4)

V(gl, . g”) _ | &a(%1) &al%) - - &%)
Xpy o e er %y :

gn(xl) gn(xZ) v gn(xn)

differs from zero. Moreover, we have

£y ---,gwf): y

xl; ey Xng

4V gn)_

xl, ve ey xn

(3.3) Up) = oV |

In his work . poroviciu [10] establishes that the unique functional
of the form (3.1) which vanishes on ¥ is defined by (3.3). Likewise
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he notes that in case when X = [a, b], the prewrbnskian V(gl’ é::)
1 et Py

may be assumed positive. Therefore, in this case (3.2) implies the well-
known alternatory property of the coefficients vy, ..., Yut1: This property
remains valid even if X is an arbitrary compact set on R and X is inter-
polatory of type I.{[a, b]} (sce [8]), where [a, 8] C R is a closed interval
which contain the set X.

The following theorem deals with vmnicity solution of best one-sided
approximation. The proof of this theorcm may be performed by using

similar arguments with those from the unconstrained case (see for instance

[4, p. 96]).

prporEM} 3.1. Let us suppose that there exist one element gy € X such
that go < f. In order that an umique element gy = gx(f 1.9 ; X) of best one-sided
approximation may exist for every f e C[X], i is necessary and sufficient
that the subspace % to be a interpolatory on X.

We note that in interpolatory case, if the functional which is comnsi-
dered in Theorem 2.2. (c), is ortogonal on %, i.e., /g) =0 for all g € U,
then we must have m = n -4 1. Indeed, let us assume < u. Then there
exist an element § € % defined by g(%) = vi 1 = 1, ..., m and we have

[(g) = ;Yig(xi) = ;Y% > 0,

which contradicts our hypothesis. But this means that in the interpolatory
case there exist exactly # + 1 points which form the set A(gy) of critical
peints from X.

%4. The alternatory ecase

If 9 is of the type I,{[a, b1} [ b] 2 X, then the quotient of pre-
wronskians in (3.2) has a constant sign and all coefficientsy,, ¢ = 1, ..., n+41
are not zero. Therefore from (3.2) we conclude that y; have alternating
sign. Finally the fact, that the set A(gs) C X of critical points contain
exactly # - 1 distinct points, enables us to assert that the deviation-
function e, = f — g4 has exactly # +- 1 points in X at which e, takes
alternatively the values d, and 0. This situation is called the case
with alternamnce Further we extend the Theorem 2.2 as

runorEM 4.1. Let % = span {gy, .... &} C Cla, b] be an interpolatory
subspace of the type 1,{[a, 0]}, X < [a, b] s arbitrary compact, and let us
suppose that theve exists an element go < XA with g,(%) < f(x) for all x € X.
Then each of the following is a necessary and sufficient condition for gy = %
lo be a best one-sided approximation to f, i.e., gu = &x(fi %; X):
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(a) There does mot exist g < span {g;, ..
Jfor all x « A(g,).

(b) The zero m-vector Ogn is tn the convex hull of the set of n-tuples
{o(2)(g2(2), ..., 8.(%) | x = A(gy)}-

(e} There exists a linear functional | = C[X]* of the form (3.3) which
satisfies I(g) = O for allg = %, where x; < %, < ... < %uy1, % < E, (g4) U
UC_(84), s®)v;>0fori=1,...,0n+ 1, and yyir1 <O for i =1, .., n.

(d) (Alternation) There exist the points %, < %, < ... < %pyi 1
A(gs) = E, (g4) U C_(gy) such that o(xi) = — o(x) for i =1, ..., n.

In this case we have the following consequences.

s 8} Such that o(x)g(x) > 0

Cor ollary 4.2. Let % < ... <%,.1 be critical points from X
velative to deviation-function ey = f — gy. Then the coefficients «, of gy =
= g.(f; H; X) verify ,

"

(4.1) 2 0 8u(%) = fl%) — 8y, i=1,..

k=1

Ln+1

where B; are the coordinates of the alternating-vector $ = (1, 0, 1, 0, ) e
€ R+ or of the similarly vector § = (0, 1,0, 1, ...) € R+,

To the system of-points %, < ... < x,,; corresponds for the functio-
nal ] the system of coefficients

7‘1) (J.]_, A2J “‘21 ) 7“!' p‘s

or

Bo A g Ao oen, g A,

with 2, > 0 and u; <0 and » 4+ s = % 4 1. (We select one of the above
system such that d, > 0. This we shall show later). Similarly, if %] <
< ... < %41 are critical points from X relative to the deviation-function
e* =f—g* with g* =g*(f;%; X), then the coefficients of g* verify

(42) 2w = flr) — %, i=1, 1

where v, ¢=1,...,# 4+ 1 are the coordinates of alternating-vectors
n=(0—1,0, —1, ...) = R++! respectivelyﬁ =(—1,0 —1,0,...)= Rr+.,
If g4 is the element of the best one-sided approximation from below of
Jon X = [a, b], then in [8, p. 12] it is shown that this is equivalent with
the fact that — g, is the element of the best one-sided approximation
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from above of —f, ie., g¥(f; %; [4, b]) = — gu(— S %; [a, b]). This
may be extended to the interpolatory case with an arbitrary compact set
X C [a, b]. Therefore in the case when the knots are ordered as
% < ... < %, we can assert the following : if for the vector § the system
(4.1) furnishes us the element g,, then from the same system one finds,
with the vector v and for a certain system %, << ... < #,4, the element
g*. We remark that generally these two systems of knots are not the same.

Corollary 4.3. If n is even, then the points %, and %, are critical
points of the same kind, i.e., both belong to E,(g4) or to C_(g.). For n
odd the same points ave critical of the different nature.

Indeed, let us suppose # = 2k « N and 7 4 s = 2k 4 1. According
to the alternatory property, one results » =241, s=% or » =24,
s =4k 4 1. In the first case x; and x,., belong to E, (g,), while in the
second case these points are in C_(gy). ff n =2k — 1 « N and 7 s = 2%,
we give » =5 = k. But this means that x, and =x,.,; are not of the
same kind. Moreover, in both cases the number of contact points (in C_ (g))

is s=[%}+l.[’

Corollary 44. Let X = [a,b], X = span{g,, ..., g,}| be an inter-
polatory of the type I {[a, b]} (i.e., X is a Chebyshev subspace of Cla, b]
on [a, b], and suppose that g, = 1. Then, if fis non-polynomial with respect
to X, the deviation-function e, = f — g (f; % ; [a, b)) has the end-points
a and b in dts set of alternance A(g,).

Indeed, suppose that x; is extremal, i.e., eu(%:) = p(f — g4), and
%i,41 18 a contact point, e*(x; ) = 0. Let us suppose that there is an
extremal point x, between x; and ;. (the same study when x, is a
contact point). The function e, differs on [#;, x,] of constant fnnction
P(f — g4). This is motivated by the fact that the number of extremal
points is finite. Therefore we find a positive number ¢ so that the function
ex — ¢ = f — (g4 -+ ¢) vanishes at three points from [x;, %; 1] and one
results that the above function has at least # 4+ 2 roots on [a, b]. But
this contradicts the fact that g, +c¢ =% and % 4 f is] interpolatory
of dimension # 4 1. Further, let us assume that the end-point 4 is not
critical point, ie., 0 < eu(a) < p(f — g4). Then we can find a positive
number ¢ for which the function e, —c =f — (g4 4 ¢) has a root on
[@, %,] as well as a root on [%,, x,]. This means that ¢, — ¢ has at least
# 4+ 1 roots on [a, b], ie., f= g, + c. But this is a contradiction and
the proof is complete. [ ]

The above Corollary extend a well-known result by 1. poroviciu [9]
in the case X = [, b] and % is the subspace of polynomials of the
degree » — 1.

— Revue d'analyse numérique et de la théorie de l'approximation, tome 3, 1974,
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'5. On_computation

Let be X — (%, ..., %nqs} fixed and [ be the functional considered
in Theorem 2.2.(c). Put o : R,

L% >0
ol i v <0,

and T={e{l, .. n+1w>0 J={<{l,...on+ 1} |y, <O}
Then we have ‘ o

1) = UF — ga) = 2 WA — glo) + 2wl () — g(e)
= AU = e(39) '

Y, € Ep(gs), %4 € C_(g4)-

Thére_forél if I+ @ and ;a}'* > 0, then we see that U(f) > 0. In this r’nal;ﬁer
we' conclude that by selecting the sign of v, in (3.3) so that i>0,
then by means of (3.2) one has the posibility to divide the index set
{1, ....n 4+ 1} in the subsets I and [. Instead of I we shall consider the
normalized = functional [, = I/ 2 2, which satisfies . (f) = dy. If iy is
. 2 =g !

welldefined then is: known the deviation d, = l4(f). The knowledge of
the sets I, J is equivalent with the fact that are known the subsets
E,(gy) and C_(gy). Taking into account that the coefficients o, of

gy'=2_ u,g; satisfy the system of ecquations

(5.1) S g = gla), i=1..ont 1
where
(5.2) o(x) = flw) — =i g, .

2

Thus g, is the clement which interpolates the function ¢ on the set X.
On the other hand, from the construction of ¢ as well as by taking
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into account that every element from % is determined by # distinct
points, we may write . '

(5.3) g=L(®; %y, ..., i1, Fiz1, +ovs Fug1; @)

We note that the signs o(x;) may be determined as follows: if (5.1)
is considered.as a system in the unknowns a, ..., o,, dy, then

"

V'z‘:’l: -‘-ngwf) V(gl' - i
g - (H1, v oes Xpgq L W Fagy
* = Lt o()) 21 4 o
V{glf ey gn: 92 ) 2 —2(_'? Di
Fpp o0 s ¥t 5 -

where D, are the co-factors in the developing of the denominator by the
eléments of the last row. Because the numerator has a constant sign
and the denominator is a linear combination of (1 4- o(x,))/2, we may deter-
mined the sign of coefficients D; such that d has a. positive value and
moreover a minimal one. Indeed, put . A :

o(x) — sign (V(gl, gn;‘f ) Drl)i,.

xl, e ey xn_l_l

t=1,...,n -+ 1.

The above method depends of a functional! which enables us to find
dy and o(x;), s =1, ..., n + 1. Professor 1. popovIicIU in his work con-
siders simultaneously two interpolatory-systems ¥ = span {gy, ..., g,} and
W = span {g4, ..., &, &1} (Where g, ;1 is selected in a convenable manner).
By means of this idea we shall give a more elegant solution.

Tet
n+1

u = L(W; %, ""x"J’l;'f):;;a"g’.‘

and

n+1

+

v=L(W; %y, ..., ¥py1; f) = b8

jiy

/

and let us consider |

h=uw—d-v | e et Ao e
where d is a real number. If d = d, is selected such that the coefficient
of g,.1 1Is zero, then the element

"

kl* =% — dyv = 2 (@, — db,) &

k=1
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belongs to % and satisfies the system (5.1). Therefore we have
h* = g¥*(f; %; X). From the above remarks and by taking into account
(see for instance [8, p. 34])

g1 = [W; Xy oo Hpgr; 0], byr = [W; %y, -, Xuya; 0],

if we denote dy = @,.41/bs4+1, then one finds %,. Because the generalized
Lagrange operator is linear (see for instance [8, p, 27]), we may write

(5.4) hy = g(f;%;, X) = L(W; %0 v v) Xugr15 9)

where ¢ is given by (5.2). We note that in (5.4) the coefficient of g,y
is zero. It is of interest to remark that from f(x,) = »u(x;), 2 =1, ..., n 4 1,
as well as I(g) =0 for all g €%, we conclude that I(f) =d, =

[W; %y ..., %ue1; f] is a divided difference (of order » relative

bu+1

to the interpolatory segment ¥ ( °W).

Because (5.3) is symmetric relative to the knots and on the other
hand, by taking into account the relationship between ¢ and f, in the
following we intend to represent the element g of best one-sided appro-
ximation in a more convenient form. Namely, let us denote

Sk =f(xk) - L(%; xl) oy XE—1, xk+1: « a0y xﬂ'l‘l; f)(xk), 1/. = 1, A (] + 1.
It is known that (see for instance [8, p. 45])

V(gl: -»ugn+1)
5, — Hy s ¥ [ %y ..y %urr; f1

81 v- s 8n
V(
i oves Bpmrs Fppas o ova Emygy

Let 64, ..., 6,,; be non-negative numbers so that

41
(5.5) 2,6, =1
k=1
Put
n+1
(5.6) ho= ,,21 0,L(%; %0 oo Boets Bhgts « - vs Zwpr f)

where 0, must be determined in order that % = g.(f; % ; X). On account
of the equalities

F(w) i £ R

LKy % oo Xpety Xptts ooy Xnar; F)(%) =
( 1 k—1, Xa+1 +15 ) (%) fm) — 8, if i — &

i,k=1,---:%+1J
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we may write
nt1

(%) = ; 0, f(x;) — 6,3
=fl%)— 63, i=1...,n4+ 1
From this it follows
(5.7) fl®) —hx) =63, i=1,...,n+ 1.
Let us suppose that |3;| #0, 1=1,...,2 + 1. (For example, this is

fulfilled when % is interpolatory on X and f is not polynomial relative
to % on X). Because b = g,, we have

{d* if x% € E,(g4)

f@) — k=) =10 i x <C_(g)

and from (5.6) we conclude that

de _ 2 it el
g, =1 % &
0 if 1]
Thus (5.5) implies
n+1
1= 2 ek . 2 Ay Zl
k=1 iel 8 ie1 8;
that is
ar = L
&
icl 8
and finally
1
1)
k for kel
(5.8) 0, = 2 L]
kel Sk

Therefore g, is given by (5.6) and (5.8). For the non-restricted case, a
similar result was obtained by MoTzKIN and sHARMA [7, Theorem 2].
In the case with alternance we have 3,8;;; <0, 2 = 1, ..., . This implies
the remarks from the preceeding paragraph. Likewise, a similar represen-
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tation may be given when X contains a finite number m > % + 1 of
distinct points. | T

Further we present an algorithm for the solution of the best one-sided
approximation problem. In what follows ¥ is-an interpolatory stubspace.
The algorithm is the analogue of the one-point REMES exchange algorithm
for uniform unconstrained approximation (see for instance [11, p. 173]).
Our algorithm starts with a set X of # 4 1 point distinct. 200, 29
of X. If we denote g = g*(f; %; X), then the deviation function

f— g is now examined over X and g% = > a8, is compared ‘with f.

Fromn the inclusion” =

1,(0) = {g = % | V¥ = XU, gl) S f) D
Dig=n|Vr = X, g(x) = fw)} =%

it follows

POD) = max |O(x) | < max|O(x) | = p®)

i=1, ..., n+1 . _x}IEX

for every ® € C[X]. In particular"

a0 = pO(e0) = min pO(f — g¥) < min p(f — g¥),

gEjCB(O) gE‘JﬁB . 5
ie., 5 I )
(5.9) ' 4o < p(e®).
Always there is at least a point x, € X — X© such that

(5.10) ¢O(x,) = max eO(x) = MO

=X X0

as well as a point %, € X — X© such that
(5.11) . (O(xy) = min €O(x) = mO,
’ xe}"(d){(o) P [ |

By means of (5.9)—(5.10) we see that
(4.12) MO = plev).

1f weé have simultatesusly' - - i
B cpoet - i1 B | T ey .

(.13): om0z 0 anddO = o),
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then the fact g© = %, and since ¢ has # .4 1, critical points (i.e, the
points of X©® (= X) enables us to assert that g = gu(f; %; X). If it
is not as above, then at least one relation from (5.13) is violated. A point
is replaced where the violation is greatest and this point is exchanged
for one of the points of X© in a certain way. On account of (5.9) and
(5.10) one concludes that it is possible to have simultaneously

(5.14) m® < 0 and dO < p(e?).

Let x, respectively %, be one of the points which satisties (5.10) respecti-
vely (5.11). Setting = = -

o (% MO — 4o = | mO |,
(5-15) Xy = %y if MO — 4O £ | mO |,
and
(5.16) : XU = (a0,
where
(5.17) xngx?’ for i=1,..,n+1, i#1,
o for di=idy

we have: prepared the next step in algorithm, i.e., from' X©:to' XW.. If
%)) = %, then x = E;_,(g(”) and when x§ = x, ‘then %P e Cc_(g").
Similarly with the uniform non-restricted approximation (see for instance
[4, p. 151]), it may be proved that ' the  sequences . (@), (m®),

(M®) 1 =1,2,..., and (g®) v=12, ..., (g = %p), are conver-
gent when =~ 4 c0.

In the case with alternance it is easy to exchange a point % = X©
with x{V. Indeed, let| x0 ‘and %" be two points from X© so that
w = (»,, x). Since we know the sign of coefficient relative to x{!
which appears in the functional /, further we exchange with preservation
of the alternance, one of xﬁ.‘:)_l, xi‘:) with x{V.

6. The connection between one-sided and uneonstrained approximation

Let % ='span{g, ..., &} C C[X] be of the type I,{[4, b1}, [a, &] 2X
and g, = g{f; %; X), g* =g%(f;%; X); § =g(f; ¥; X) be the elements
of the one-sided best apptroximation from below, from above respectively
of the unconstrained best approximation. Then we have
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THEOREM 6.1. Let gy, g*, E be the elements described as above. In order
to exists a positive constant ¢ such that '

(6.1) gr te=g=g*—c
it is necessary and sufficient that g, = 1.

Proof. Let g* = gy + 2c where ¢ > 0, and

Ags) = E . (gx) U C_.(g4)
A(g*) = E_(g*) U Cy(g%):

be the sets of critical points relative to g, and g*. Then C,(g*) N
N C_(gs) = ©. Indeed, if we assume that the intersection is mnon-void,

then C, (gs) = C_(gs). Therefore the elements g* and g, have [%] +1

contact-points, which implies g* = g, (see for instance [5]). It follows
that we have

E_(g*) = C_(g«)

(6.2)
E,(gs) = Cy(g"%)-

Taking into account (6.2) and Corollary 4.2 we conclude that g4 and g*
may be obtained from (4.1) (or (4.2)) by means of one of the pairs (9, 1)

(3, m) of alternating-vectors. Evidently that d* =d, =c¢. From (5.3)
we may write, with the pair (8, %)

181
L:

V[gp ---:gs] }_
Byy veey By 18n

Zu =g*(f, %;X) . fiv) — ¢ flxa) flx) —¢ ---iO

V(gl) -'-.gn)
Ky, ey

and

V(gl- --—-g,.] i4
______ Aot Wul . 1fs

g = —ga(—f; %3 X) =Sl —JC—0 ... 0

V(gl. ---.gn]
xl’ ---. x”
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(see for instance [8, p.34]). Substituting these values in the equality
g% = g4 + 20, we obtain

% 11
y sovs Bn .
63) o) 1l =o.
[ S P L]
2 2 26 12
Because V(ga' &) £ 0, in the determinant in (6.3) the rows are linear

Xy oo %
dependent : there are the constants », such that

(6.4) SongE) =2, i=1...,n+ 1L
k=1

From the fact that 9% is interpolatory the equality (6.4) remain valid
and for every x € X. This implies that % contains the constant func-
tions, i.e., g, = 1.

Further, if g, = 1 and g, = g4(f; %; X), then g, + dy € % and the
function f — (g4 + dy) takes the values — d, and 0 at z 4 1 distinct
points. Therefore gy -+ dy = g* = g*(f; %; X). It is clearly that ¢ =

=%(g* +g%. [0 The case when X = [, b] was investigated in [6]
where the reader finds many references. We mnote that in general case
(even if g, = 1) the following inequality

+

IA
N

1 1
dy = d*

is valid, [3, p. 28].

7. The approximation with positive elements

Let X be a set on the real axis which contains at least # - 1 distinct

»

points and f= ) a,g, be a given element from [¥, ¥ is assumed to
k=1

be interpolatory “of the. type I {[a, 8]}, [a, 0] 2 X. By ¥ we denote
the subset of % which contains only non-negative elements on X. We
want to find a pair (P*, Q*) of elements from 9* which verifies the follow-
ing minimum property

(7.1) PzP¥z20, QzQ*=20 on X

and

(7.2). f= P* — Q* on X.
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If we use the same reason as in the paragraph of introduction, we have

(7.3) p(fy — P*) = min p(f, — P)
o Pt
and
(7.4) p(—fly — 0% = min p((=f), — Q)
0=t~
where |

W ={g =N*|Vx = X, gx) 2 [, (%)}
KD = {g et | Vxr =X, glx) 2 (= ()}

Thus we have

'

(7.5) P* = g¥(f, ; %; X) and Q%= g*((— f), ; %; X).

v

Evidently if f does not change its sign on X, then the solution is tr1v1a1
If f, =fon X, thenP* fQ*—O andw11:hf —foanehave
P* =0, Q%= —f. , .

. We remark that the solutlon of the best approxlmatlon of ‘this: kmd
(which is descnbed as above) has 4 mean even 1f X contalns only "
distinct points.

In the case when X = {x,, ..., xn} from (4'.3) and (7;5) one has
P* =] L(?C; x]_, ] xn; f+)'
Q¥ =L(%; %y, ..., 2,5 (—f)y).

I X ={%, ..., %41} the solution is given by (5.6). If % =& we have
the problem proposed by 1. POPOVICIU.

~ PFinally we note that if one of P*, Q* is determmed then the other
may be find according to (7.2). :

1
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