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1. Introduction

In the theory of positive linear operators the theorems of Bohman-
Korovkin and Mamedov about the convergence of a sequence of operators
to the identity operator are important.

TIIEOREM OI' KOROVKIN:

Let (L) (n = 1,2, ...) be a sequence of positive linear operators mapping
Cla, b] into Cla, b] and let {f,, fi, fo} be a Tschebyscheff-system (1-system)
on [a, b]. Let this sequence satisfy the following conditions :

(L.1) (Lf)(») = fix) + o(1) (1 =0,12;n—> 00} x < [a, b]).
Then (L,f)(%) converges to f(x) if n — oo for each f € Cla, b].

If the convergence in (1.1) is uniform on [a, ], then the convergence
of (L,[)(x) to f(x) is also uniform on [a, b]. The theorem of Mamedov gives
asymptotically the speed of convergence of (L,f)(x) to f(x) if the speed
of convergence is known for the testfunctions e, ¢, and e, defined by
e. (x) = #* (i =0, 1, 2) forming a special T-system. To the best of my
knowledge up to now asymptotic formulas for the speed of convergence
in the case that the testfunctions form an arbitrary 7-system do not
exist. In this paper we investigate this case. We give a solution to the
problem by using a special: differential calculus defined with regard to

the testfunctions f,, f; and f,. In section 2 we develop this differential cal-
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culus only in so far as is needed for the proof of the main theorem in
section 3. Many other extensions are left out of consideration here. In
section 4 we give some applications of the theorem. For an explanation
about T-systems and complete T-systems (CT-systems) or Markov-sys-
tems we refer to [2].

2, T-systems, positive linear operaters and differential ¢perators

Let {fo, fu fo} be a T-system on a closed interval [a, b] (— o0 <
<a<b< o) and let (£,) (n =1, 2, ...) be a sequence of positive linear
operators mapping Cla, b] into Cla, b] satisfying the conditions (1.1)
where x is a poiut of [a, b].

We assume that

2.1) ﬁjmm:ﬂwr+%ﬁ+ofi)azﬂme

?(%) o(n)

where ¢(x) is independent of x, ¢(n) # O for each # and ¢(#) — o0 if # — 0.
Without proof we give some lemmas and we show that the operators £,
and the conditions (2.1) can be modified to other operators and conditions

which are simpler with regard to the theorem of Mamedov.
: 2

Lemma 1. There exists a linear combination g :2“i f; which

Cg=0
is strictly positive on [a, b].

At least one of the numbers a,, oy, o, is then not equal to zcro. We
agsume that «, # 0. Then we have

Lemma 2. {g f fo} ts a T-system on [a, b].
We define the functions #,, #, and #, on [a, b] by u(x) = 1,

ulzéand 142=é.
4

4

Lemma 3. {uy uy, tts} ts @ T-system on X.
Now we define the positive linear operators L,: C[a, b] — C[a, b] by

1

(2.2) (L, ) (%) =~ o (£,/8)(%)
5 o [+ 22
i=0 L @(n)
for w =1,2, ..., excluding the values of # for which the denominator

in might be equal to zero,
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Then we have

1
(h@@=1+4wﬂ
. Wy (%) ?'_1__‘
(2.3) (L) (%) = wa(x) + 05+ 0 w)a
. ¥, () .
mmmwwmm+ﬂm+oud
where

5wl —8)
——— (k=1,2).

M

> o f;

iZo
Lemma 4. The functions u, and u, do not both have an extreme

value at the same inner point x < [a, b].

Lemma 5 Ifx < [a b] and u, does not have an extreme value at
%, then there exists a closed neighbourhood Q of x where {u,, 14, Uy} 1S @ comp-
lete T-system (CT-system).

Let {vy, vy, vs} be a CT-system on the closed interval [a, b].
For each function f € Cla, b] we define the operator D° by

2.4) (Dof) (x) = f.(.(_) % < [a, b].

V(%)

Of course, if vy = #, we have D°f = f. Further we define the differential
operators D¥k = 1, 2) by

. i P (D) R~ DN e
@5 (D)) = m (DE—10,) (x+ h) — (DA 1w,)(#) [a, ¢
r+heab]

for each f & Cla, b] for which this limit exists.

We call f k-times differentiable at x = [a, 0] (k =1, 2) with regard
to the set of functions {v,, vy, vs} if (D*f)(x) exists.

Because of lemmas 4 and 5 we can speak about differentiability of
a function f at the point % considered above with regard to the T-system
{169, 1y, Uy},

Lemma 6. Let feCla, b] be twice differentiable ai x < |a, b]
with regard to the T-system {uo, ty, Wy} with uy(x) =1 on [a, b]. Then there
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exists a meighbourhood Q C [a, 0] of x and a continuous function h defined
on Q with hix) = 0 such that

(2.6) £t = f(%) + 100D 4 v2 (D) (%) + b)),

where 1) = vi(f)
Youl) = valt) — va(%) — (0a(t) — va(X)D(3))(D0a) ()

and with v, = wy and vy = Uy 07 Uy = Uy and v, — 1, and

(D',)(¥) = lim vp(¥ £ 4) = 0,
) 10 (¥ A B) — vi()

We remark that only the existence is assumed of the sccond derivative
at the single point x.

3. Generalized theorem of Mamedov

An important property of a number of sequences of positive linear
operators is the so-called Voronowskaya-property (V-property), in detail
studied by ¢. MUHLBACH [5].

Definition. Let x = [a, b] and let ] = Cla, b] be a function wilh
l(x) =0 and I(t) >0 if t # % Let (L) (n=1 2, ...) be a sequence of
positive linear operators, L,:Cla, b] - Cla, b] then 1t is said that (L,)
possesses the V-property wilh vespect to 1 if for each function g < Cla, b]
with g(x) =0

(3.1) (LJg) (%) = O((L,)(x), 7 - o.
holds.
Now we arrive at the main theorem of this paper.

THEOREM. Let [a, b] be a compact interval of the real axis and let
{1q, Uy, s} e a Tschebyscheff-system on [a, b] with folx) =1 on fa, b].
Movevoer, let (L)) (n=1,2,...) be a sequence of positive linear operators
L,:Cla, b] - Cla, b] and let this sequence satisfy the condilions

(Luasg)(x) = 10 (@(—1))
(3.2) g ,
(L) (%) = (%) + ‘fp(—()’ +o (;(1_)) (=12

where x € [a, bl, o(n) is independent of %, o(n) # 0 for each n and @(n) — o©
if n — oo, Finally we suppose that wy is differentiable with vespect to {ug, %y}
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at % and that the sequence (L) (n=1,2, ...) possesses the V-property with
respect to the fumction Y. Then we have for each function f € Cla, b] for

which the second devivative with vegard to the Tschebyscheff-system {uo, u,, Uy}

at x exists

o(m){(L,f)(x) — f(2)} = Fu(2)(DY)(x) +
(3.3)

+ {Ga(#) — Gu(R) (DY) (D HDY) (%) + 0(1) (- o).

Proof. Since fis twice differentiable at ¥ € [a, b] we can write, accor-
ding to lemma 6,

f(t) = fx) + DYf(x)(1(t) — (%)) +
(3.4)
(D) + P t)) (wa(t) — wa(x) — Dug(%)(uat) — a(%)))

where the function % is continuous on [a, b] if we define A(x) = 0. We
apply the operators L, to (3.4). Taking (3.2) into account we obtain

Tis = IF——I(x) 2 ‘I’__z(x) _ I . Wi(#)
L) = 112) D) o(n) + DY) ( ¢(n) D) o(n) ) +
(3.5)
T (Lt — (g — (0 — wa()uo) Diaf) ) (x) + 0 ==Y
o(n

Since the sequence (L,) (n = 1,2, ...) possesses the V-property with
respect to the function y,, we have

3.6 (L, — ual®)hg — (n — 2 Drua(2) 1) (¥) = (Ls,ah) (4
= o((L,y2,) (%))
_ (1),
Y (Wl)‘

TFrom (3.5) and (3.6) we obtain (3.3).

Remark. With the functions u,(x) = ¢ (1 = 0, 1, 2) the theorem redu-
ces to the theorem of Mamedov (with a very little change) and (3.3) reduces
to

P (L)) — 1) = (0 () + (Fal) — 2e¥o(2)} 7+ 0(1) (> o0).
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4. Applications

1. The trigonometric case.

If [a, b] is a closed interval of length less than 2x the system {u,, %y, 15}
with uy(x) = 1, 4y(x) = sin x and u,(x) = cos ¥ (x = [a, b]) is a T-system.

If x «[a 0], v # (] -+ EJ n, 7 integer, and f € C[a, b] is twice diffe-

rentiable at x, then we have for each ¢ = [4, b] by lemma G

(4.1) fit) = f(x) + (sin £ — sin %) Ly (cos ¢ — cos x 4

+ (sin £ — sin %) tg x)(f"'(x) cos ¥ 4 f(x) - sin %) + A(f) (cos f — cos x +
+ (sin ¢ — sin %) tg x)
where 4(x) = 0 and lim A(f) = 0.

t—x
Let (L,)(n = 1, 2, ...) be a sequence of positive linear operators having
the V-property with re.,pect to the function vy,, where

Yo, (2) :cost—cosx+(s1nt——sm x) tg «,

and satlsfylng the conditions of the theorem of Korovkin and let -(L,)
(n=1,2, ...) have the propertics

(L) (%) = 1 +44)
@(n)
(4.2) (Lar)(x) = sin v+ P_(% 1o
@(n

5]

wolgs) e

(Lnu2)( ) = CO5 ¥ + i (x)
o(n)

where ¢(n) is independent of x, ¢(n) # 0 for cach # and ¢(#) — oo if
n — 00.

With the theorem we find
(4.3) o(n) (L, /)(x) — J(%)) = Wy(x) cos x — W (x) sin x)f'(x) —
— (¥.(%) cos x + W, () sin x)f""(x) + o(1) (n — oo).

I x lab], x= (j —}—%) m, j integer, we consider the T-system

uo(¥) = 1, #y(x) = cos x and uy(x) = sin x. From lemma 6 we get an
expression analogous to (4.1) and with the theorem we find (4. ) too.
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Therefore, expresion (4.3) is valid for each ¥ & [a, 5]. (4.3) is simpler than
the corresponding formula found by scourrr [6]. Schurer used five
testfunctions : u,, #,, #,, and further u; and u, with #4(x) = sin 2x and
uy(x) = cos 2x. In the right-hand side of (4.3) he got

(V) cos 2 — W\ () sin 0)f () — - (V) cos 25 - W, () sin 201" (3) + o

1
4
where ¥, and ' are defined by

V(%) = lim o(#)((L,us) (%) — us(x))

H—+00

Wo(#) = lim o(n)((L,u)(x) — ua(x)).

H— 0

2. We apply the theorem to the sequence of positive linear operators
Pn-=12 ... P, :C[0,1] - C[0, 1] defined by

(4.4) mﬂ@=U—W“WW_J£(

] Y (1) 4,

4k

where ¢ is a non-positive constant and L{" (f) is a Laguerre polynomial
of degree k. These operators were introduced by E. w.cHENEY and

. SHARMA [1] and also studied by s. WATANABE and v. suzUuk1 [7]. We
consldcr on the interval [0, 1] the T-system {100, 11, 15} thre uo(x) = 1,
uy(%) = x? and wu,(x) = x% Then we find

Ui(x) = x2(1 — x)2 — 24x
Wo(x) = 643(1 — x)? — 4éx with ¢(n) =n 4 L.

The sequence (P,) possess the V-property with respect to the function
vo,» defined by v, .(f) = (2 — x2)2. Using this result our theorem gives

(4.5) (n 4+ D{L,N(x) — f(2)} =

= — )+ ) L ol) (o )

2

for ecach f = 0[O0, 1] which is twice differentiable at x € [a, »]. This result
is due to s. waTaNABE and v. suzukr [7].

3. If the functions u;, u, and f are twice differentiable at x = {a, b]
we can simplify formula (3.3).
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In this case we have

(DYf)(x) = LW

u1 ()

and

(D2f)(x) = (%) - f (%) — ui’() - f(x)

ui(®) - ug' (%) — u(%) - wa(#)
Under conditions of the theorem in section 3, (3.3) then reads
(4.6) e(m){(L.f) (%) — fla)} =
(P’ () — Va3l (Df (#) + (Fa#mls) — @) | o(1)

ug(muy’ (%) — ui’(%)uz(x)

(n— o)

Remark : Since {un,, #,, u,}is a T-system, the denominator in the right-
hand side of (4.6) is not equal to zero.
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