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1. Introduetion

When T: X —Y is a linear operator from one normed linear space
into another, one is often interested in its adjoint operator 7':Y’ — X’
which maps the conjugate space of Y into that of X. The adjoint 7* is
defined by the equation

(1) <x, y’T'> = <Tx, y'>, x € X, y' eY’.

A notable example is offered by the Riesz theory [5] when X =Y and
T is compact. Then one can relate the solutions to the inhomogeneous
equation

2) (I — WT)x = y
to solutions of the homogeneous adjoint equation
(3) (I — A7)z = 0.

The application of this theory to Fredholm integral equations of the second
kind is well known.

It is not always possible to obtain an explicit representation for 7,
but it can be done in some particular cases. For example, let X = L2(a, b)
denote the square summable real valued functions on [a, b], with

(4) (Tx)(t) = Sk(t, s)%(s)ds, x < X,

a
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where k(Z, s) is square ﬂummable on [a b] X [a, b]. Then, X' =X, T
is compact; and 8 ol
; b - & g

(5) (T'%")(t) = Sk(s, 1) %' (s)ds, X e X'

a

Generally X’ will be a space different from X. This is the case when X =
= C[a, b], continuous real valued functions on [a, b], and X’ = NBV[a, b],
normalized functions of bounded variation [1] on [a, b]. If T is an integral
operator of the type in Eq. (4), with k(t, s) continuous on [a, b] X [a, b],
then T is compact and its adjoint is given by

(6) (T2)(0) = | {jkls, Qax(5)aC, x = X,

a

b
where S (s, Q)dx'(s) is a StleltJes 111tegra1 Equation (6) ia a special case

of a 1esu1t [3, p. 516] whlch gives-the. ad]omt for certain compact integral
operators defined on X = C(S), where C(S) is a space of continuous scalar
functions on a compact Hausdorff space S.

Here we obtain an expression for the adjoint of the integral operator

!

(7) erit s (Tt ls-k(t, s) x(s)ds -

defined on the space X = C — {x = C(R ) R) ;'iimgﬁ-m}.x(t)~é“\'iéts},i_~_\f\f;it‘h
(i) ke C(Ry X Ry, R); | :
(ii) k{t, ) - k( ) umformly on compact 1ntervals

(iit) hm,_,m \ ]k(t,, Slids’= 4 |k( )|ds <100
0 0
This space has been employed by CORDUNEANU C. [2] in developing the
concept of admissibility for the study of integral equations..One difference
between the case treated here and the previously discussed examples is
that the functions in C, arc ‘definéd’ on a non compact set, R, having
infinite measure.

2 'lh(- Adgomt Opemtol

Let X = C,, and let T be “the- operator deflned by Eq (7): and ()
(i), (iii). Then X’ = NBV[0, ), where v € NBV [0, ) if v is of bounded
variation on [0, o), »(0) =0, and v 1s contlnuous from the right. That is

(8) ot 4 0) = o(), ¢ = [0, o).
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Furthurmore, for v € X' and % € X, (%, v} is given by the Stieltjes

integral

O

9) - (x, v) S x%(s)dv(s).

0
We assﬁme throughout this paper that
(10) ! k(t, s) =0 for s > L.
Then the adjoint 7' of T is given by

R(s, w)dv(s)du, v = X',

(1'1) () (E) =\ \ k(s u)dudu(s S

ol 8
SN
oL,*:g

P!oof Fro1n Eqs (1), (7), and (9) it follows that _
(12)' Sx( S Sk x(u)du dv(s), x € X, v € X' _
i v 00 0

We arbitrarily fix » € X' and seek” (T'v)(f). This is done by‘appfylﬁg Eq.
(12) to a convenient sequence of functi ions 1n C and taklng the appropnate
limits.

For any { [0, oo) and AL > 0, define the sequence of functions

0 for 0 < C
(n]AC)(s — C) for £ <s < { -+ AlJn
Dy aga(s) = 1 for T+ AC/n < s € T+ AL
1— (s — {— AQn/AZ for €4+ AL <s < L Alfn
0 for ¢ 4+ AL+ A¢jn < s < .
Also :dngine‘

| ‘ 0for0<s<¢
Qg arfs) = {1 for L <s < {4 AL
0 for C+AC<S<°O

Note that (Dc AL n = (Dg AL po1ntw1se on [0, oo) but not umformly, and
Dy ar & C,. However, each (I)C agn €C, for n =1,2, ... and

© ‘.;

(13) | o AC( )

The left side of Eq: (13), which we denote by ‘I,; can’ be written as the
sum of three integrals, I, I,, and Iy, where the latter are the integrals

ol./'\g

Sk s, % <Dc st (1) ds du ().
0
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of @y ar . over the three intervals on which it does not vanish identically.
Then

lim I, = (T%)(C + AY) — (TW)(Y).

#H—00

To prove this note that
1T, — (T")(T + AY) — (T0)(Q))] =
= I, + I, + (T"0)(8) — (T} (L + AL/z)| <

LF Ay CHALLAYn ’ ’
< Y(T v) + \ggtv) + T'oUE) — (T)(E + AL/,

(4
where V f denotes the total variation of the function f on the interval

[a, b]. Because (I"») is continuous from the right the last term — 0 ds
n — o00. Also, since (T'v) is of bounded variation too, it followsthat the

x
function A(x) = V(T'v) is also continuous from the right [4]. Hence, the
0

first two terms in the above inequality — O as # — co. This completes
the proof that the left side of Eq. (13) has the limit (T'v)(C 4+ AL) —
— (T"»)(%) as n — c0.
To take lim of the right side of Eq. (13) we use a limit theorem for
Stieltjes integrals [4, p. 232]. Let
e, 01(5) =  Bs, ) a0, (W)

and

ng,ag(s) = Sk(S, 1) D ar (4)du.

We show n¢ at,» = N ag uniformly on [0, co), which will allow the lim to

be taken inside the first integral in the right side of Eq. (18).

s

g, ag, #(8) — Mz, ax(s)] < S |k(s, #)|| Dy, ag, (1) — Py ag(®)] du <
0

< Slk(“)H‘Dc,Ac,n(“) — Dy ag(w)] du +

0

s

+ {1r(s, 1) — B(l1©g sc.#) — P ac ()] .

]

(14) (T)(¢ + AY) — (T0)(0) =
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Tet M, = sup |k(w)|. Since k(s, u) — k(u) uniformly on compact
ue< [0,0+2AL]
intervals, there exists M, > 0 such that |k(s, u) — k()] < M, on

[0, ) x [0, T + 2AL]. Hence,
e at0(S) — neac(s)| < My 288 n 4 M, 288 n.

That is, the convergence is uniform as claimed. Taking the fimit inside
the integral gives

ot 8

§ k(S, %)@C.Ac(%)du dv (S) .

Letting § =0 and A{ =1 gives the first equality in Eq. (11), since the
upper limit, s, in Eq. (14) can be replaced by f because k(s, w) =0 for
u > s and P (u) =0 for # > £ A

For the second equality we show that T'v is absolutely continuous
on compact intervals, which means it is the integral of its derivative on

[+ 9]

[0, ), and the derivative (a.e.) is shown to beS k(s, w)dv(s). Actually,

0
the calculations are done only for the right derivative, with the result
for the left derivative following immediately.
To prove absolute continuity, note that |k(s, )| is uniformy bounded
by some M > 0 on sets of the form [0, o) X [0, t,] by (ii), where the
M depends on ¢, Let e>0. For any 0 <4, <b <ay<... <@, <

< b, < 4 with 3 (b, — ) < 8 = ¢/(M V), it follows that
i=1 0

!

k(s, w)du dv(s)

a,
?

<

ot §

S UTB) — (T = 1

1

< VoM> (b, —a) < VoM =c
0 =1 0

which establishes the absolute continuity.

To obtain the right derivative of T'v we show that

AL—0

lim (1/AC)S Sk(S, u) Dy, ar (4) du dv(s) =

(15) :S k(s, €) dv(s) = S k(s, %) do(s)
4 0
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the last equality holding since k(s, {) =0 for s << {. Lct

$(AY) :‘S(I/AC) Sk(s, ) Oy, pr (w) du do(s) —Sk(s, Qdo(s)|.

0 0 4

Since @y 5 (1) =0 on [0, s] for s < ¢,

N

(16) 3(AY) = ?{(I/AC)Sk(s, u) Dy, ag (w)du — ks, C)}dv( )i
g 0
< t§§C{<1 JAY) S R(s, u) @y, ag (w)du — ks, C)}dv.(s) ‘ n
f’i CiAz .
-, S {(I/AC) S k(s, w)du — (s, C)}dv.(,s) .
LAY z -

We can assume each A{ < 1, and let

M, = sup |k(s, #)]. Then, the first term in inequality (16) is
[, C+11% 00, L+1] gt :

bounded from above by 2M, V v which — 0 as AT - 0. _

To show the second term — 0 e%s A — 0, note that it is bounded by "

& @D
(1182 { &l w)dn — k(s Q|- Vo

sup
4

$€ [T4AE, w)

C+AL

wh1ch can be made arbitrarily-small for small enough AY becaues V v <

V v < oo, and the first factor can be made small as we now show

CHAY : s
et (s, A0) = [(1/AY) { bls, Wjdu = b(s, 0) [ <
4
CHAL :
< (1/A%) S (s, %) — ks, O)|du.
g

Let ¢ > 0. Since k(s, #) = k(u) vniformly cn [{, {4 1], there exists
S(e) such that |k(s, ) — k(u)] <¢/3 for all s > S and » = [{, €+ 1].
Furthurmore, k(s, %) is uniformly centinuous cn . [0, S) X [{, ¥ +1], and
k(u) is contintcus on [{, C -1+ 1]. Hence, there’ ex1sts G(s) uch that AL <<
< 0(e) implics  |k(s, u) — k(s, )| < ¢/3 cn [0, S] X [{, {+ AL] and
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|R(u) — k()] < e for w = [{, T - A{]. Hence, if AL < 0(e), either s < S
and |k(s, u) — k(s, {)] < e/3 < e or s> S, in which case

k(s, ) — k(s, Q) < 1k(s, u) — k(u)] + |k(u) — k()| >
+ 1R(E) — k(s, )] < /3 + /3 + /3

which gives the desired result that (s, AY) = 0 uniformly in s as A — 0.
This completes the proof that the right derivative of 7' at ¢ is

00

k(s, Q)dv(s) :S k(s, Q)dv(s).

0

-y 8

It follows in similar fashion that the left derivative is the same. Hence
A
k(s, ) dv(s) d¢ :S

0

(T)(t) = k(s, §) dv(s) ds.

Oy
o Sy R
olw 3

Q.E.D.
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