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Let (X, d) be a metric space and x, a fixed point in X. The set

X — {f: X > R, sup TEOIO «o flxg) = 0},
ey )

(1)

with the usual operation of addition and multiplication by real scalars,
normed by

LS —10)| s < x¥,

( — su
2 Il = sup L=

x,yeX

is a Banach space (even a conjugate Banach space [2]).

The space X plays, with respect to X, in many ways, the same role
as the conjugate E* of a normed linear space E, with respect to E. In
this paper we give further details in this direction.

For @ # Y <X and x € X we denote by d(x, Y) the distance from x
to Y, i.e.

3) d(x,Y) = inf d(x, y).

yeY
Proposition 1. Let Y C X, %, eV and %, = X — Y such that

(4) d(x, Y) = 4> 0.
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Then there is f € X such that

(5) fly =0, flx) =1, If

1
e prm
q

Proof. We will show that a function with the required propertics
is given by
1

(6) A2 S d(x, Y).

Indeed, f(x,) = 0, because x, Y. For x, z € X we have
|d(x, Y) — d(z, Y)| < a(x, 2),
and by the definition of f, it follows that

1
(7) Al = - < oo
This means that f< X4, _ ‘
Evidently, fly = 0 and f(x,) = 1. Since d(x,, Y) = g > 0, then there
is a sequence (y,)nenC Y such that d(xy, ¥,) — d(%, Y) when 3 — oo,
It follows that we can find an increasing sequence of natural numbers {#,].

r 1
such that d(xy, ¥,,) = d(%y, Y) + . Then

1
(o, Y) — dlx V)| d(x, Y) a(*e ) ~ 5

LA e L ety T L = — 1.

(v ) T Ay W) T A% o)

From the above inequality we obtain
d 1
8) Il 2+
By (7) and (8) it follows that Il = l, which completes the . proof of
q

the proposition.

For [ X?f we denote

9) f(-*l)(O) = fx e X, f(x) — 0}
Proposition 2. Let f = X§ — {8}, Then
(19) atx, fo(0) 2 2L,
li£llx

Jor every x € XU
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Proof. For every y e f-1(0) and x € X, If(x)] = | f(=) — !
< |Ifllxd(x, »).

Therefore

IA

. L) |
d(x, fCV(0) = =—=——»
{7 /000 1fllx
and the proposition is proved.
Definition L. A subset Y of the metric space X is called proximinal
if for every x € X there is an element y, < Y such that

(11) (%, yo) = d(x, Y).
If, for all x = X the element y, < Y verifying (11) is unique, then the set Y

is called chebyshevian. An element y, < Y, verifying (11) vs called element of
best approximation of x by elements of Y.

Proposition 3. Let f = Xy — {8} If Jor every 2= X — f0)
theve is an element v, < f&=0) such that

(12) |f(x) — f | = IIfllx &(x, 5.),

thew f-1(0) is proximinal.

Proof. Let x= X — fi=1(0). Since f-9(0) is closed it follows that 0 <
< d(x, f~1(0)) = d(x, y), for all y e f=1(0). Now, let y, be an element
of fC-1(0) for which (12) holds. Then for every y s f1(0),

LA — S| 5 1) — f) |
Ik dxyy  d® )

Ll

that is
] — lf(n 1
(%, yo) A% 9)

Therefore, d(x, y,) < d(x, y) and, taking the infimum relatively to y
we get d(x, y,) = d(x, JE1(0)).

In the following proposition we give a characterization of the elements
of best approximation.

Proposition 4. Let Y be a subset of X such that x, €Y, and let
x € X —Y. Then y, €Y is an clement of best approximation for x by ele-
ments of Y, if and only if there is an | e Xft such that

D lfllx =1

2) fly =0

3) 1f(x) — f(yo)| = (%, ¥o)- i

Proof. Tf x € X — Y and y, € Y is an element of best approximation
for x by elements of Y, then from the proof of proposition 1 it follows that
the function

(13) f(x) = d(x, Y)

has ail the required properties.
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Conversely, if f € X?,i is such that the conditions 1), 2), 3) hold, then
for every v € Y,

d(x, yo) = |f(2) — flyo) | = /() —f¥)] 2 Ifllxd(x, ») = d(x, ),

which completes the proof of the proposition.

Proposition 5 Let Y be a proximinal subset of X, %, = Y, and
x € X —Y. Let y, €Y be an element of best approximation of x by elements
of Y. The following conditions are equivalent :

i) yo € Y is the only element of best approximation of x.

i) There is mo y €Y, y# y, and f € X&¥ such that
a) [Ifllx =1
b) f(yo) = f(»)

) /(%) — ()] = d(x, ). .
Proof. Tet us suppose that i) holds and that there is y €Y, y+# y,

and f = X¥ such that a), b), c) hold. Then
d(x, ) =|f(%) —fO) 1F (@) —F o)l +1F(ye) —f ) =1 () — f(yo)l = (%, ).

Therefore, y is also an element of best approximation of x, which condra-
dicts i).

Now, let suppose that the condition i) is not accomplished. Then there
is y €Y, y# y, such that

d(x, y) = d(x, yo) = d(x, Y).

By proposition 4, there is f € X¥ such that [flly =1, fly = 0 and |f(x) —
—f(y)|=d(x, y). From f|y =0 it follows that f(y,) =0 = f(y). Therefore
the condition a), b), ¢) hold.

Tet Y C X and %, €Y. Let us denote

(14) Yt ={fIf = X{\, fly = 0}.
For %, y € X we denote

(15) dyl(x, y) = sup | f(%) — f(9) | !

jevi_goy Mlx

We have the following inequality :

(16) dys (%, y) < d(x, y).
Indeed, for all f € X and for all %,y = X,

If(x) — )] = |fllx 4%, ),
so that, for f# 6,

x’ y
I )
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and
rex¥o(o X
Therefore
doi(x, y) = sup HASEL o gup VW TON < gy )
Y s oy = = h 9
sevl—{6} I fllx ]'EXF-—(O) IHf lx

Proposition 6. Lt YCX and y, €Y, x < X —Y. Then,
Yo € Y is an element of best approximation for x by elements of ¥ if and only

if
(17) dyL(%, Vo) = d(%, ¥o)-

Proof. Let ¥, € Y be an element of best approximation for x. Then,
by Proposition 4 it follows that there exist an element f = Yl such that

Ifllx = 1 and |f(x) — f(y)| = d(%, o). We have

le(x’ yo) N sup [g(%) — g(yo) | > Lf{x) — flyo) | o d(x, yo)’
gevL_(0) lellx If1x

and, because of dyL(x, y,) = d(x, y,) we have (17).
Conversely, if (17) holds, then for all y €Y we have:

| f(%) — £y} ] f(#) —f 1 _

a(x, ¥o) = dyL(x, yp) = sup ——————= sup
fEYJ'—{O) ”f”X nyJ'—{O} "f”X

= dyi(x, y) = d(%, ).
Hence y, € Y is an element of best approximation for x by elements of Y.

Remarks.

1°. Let (X, d) be a linear metric space, the metric & being translation
invariant, and x, = 0 € X. If Y is a subspace of X, then one can choose
the function f in « roposition 1 such that f € Cy, where Cy demnotes the

ccne of subadditive function in X?f [4]. The subadditivity of function f
follows from the proof of Proposition 2.1[4]. If X is a normed linear space,

then X¥ O Cy D X* If Y is a subspace of X, then Proposition 1 holds
with f = X*([1], Lemma 12, p. 64).

29, Simple example show that the inequality (10) in Proposition 2 can
be strict. Let X = [—1, 10] C R with the usual metric d(x, y) = |* —¥|,
Xy =0 € R and

0 x < [—1, 0]
Jlx) =% x = (0, 1]
1 x = (1,10]
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Then f-9(0) = [—1, 0] and for all » € [2,10],

dlx, [=1,0]) > 1 =121,
£l

If X is a metric space, Y a closed subset of X, x, € Y, then for every
function f € Xif of the form f(x) = M(x, Y), A = R, the relation (10)
holds with the sign ,,="".

If X is a normed linear space and f € X*, then (10) holds with the
sign ,,="". (Ascoli’'s Theorem [6]).

30, If X is a normed linear space and f = X*; then the condition (12)
is equivalent to:

(J). There is x, = X such that |f(x,)| = F1 112 ol

Indeed, since X = f=1(0) + Rx,, for every x = X — f=10(0) there is
% € Randy, € f-1(0) such that ¥ = y, & Ax,. Then

(%) — F(r)] = |f (%) — f(x — Axg)| = 1A[ - [f(xo)| = IfIl-Iwoll - | A] =
= Al — (2 — o) [ = llfllx - llx — -

Evidently, if f € X* (:X?)i . the norm (2) agrees with the usual norm of
linear functionals).

The converse implication is obvious.

By a theorem of r. ¢. JaMES [6] it follows that (12) is a necessary and
sufficient condition for f=1(0) to be proximinal.

49, Proposition 4 is analogous to Theorem 1.1, p. 16, [5] and to Pro-
position 2.1, [4], while Proposition 5 is analogous to the Theorem 3.1, p.
96, [5] and Proposition 4.1, [4].
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