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0. Definitions and results

If V is a wector space and v; € V, 1 =1, ..., m, we shall denote by
$p (vy, ..., v,) the subspace of V spanned by the elements v, ..., v,.
Denote by C”(]) the vector space over R of the real valued functions
with continuous #-th derivatives on the (open, half closed or closed)

interval J of the real axis.

Definition 1. The n-dimensional linear subspace L, in C*(J])
will be said to be a Chebyshev space (CSp) if any nonzero element in L, has at
most n — 1 dustinct zeros in J. A basts of a CSp is called a Chebyshev
system (CS).

Definition 2. The n-dimensional lUinear subspace L, in C"(]) will
be said to form an wwvestricted Chebyshev space (UCSP) if any nonzero ele-
ment of s has at most n — 1 distinct zeros in J counting multiplicities
and a basis of L, is called an unrestricted Chebyshev system (UCS).

Consider the differential equation

(1) 20 pr(@) 07 + L+ (02 + pu)x =0,

where p; are continuous real valued functions defined on R.
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Definition 3. It is said that the points a, b € R, a < b are con-
jugate for the differential equation (1), if the space L, of soluttons of (1)
forms an UCSp of dimension m on [a, b), but this property fails on [a, b].

Remarks. (i) For a given differential equation (1), each point ¢ = R
has a neighbourhood in which there are no conjugate points (see [57 p. 81,
Proposition 1.).

(i) If @ and b are conjugate points for the differential equation (1),
then the space L, of solutions of it forms an UCSp also on the interval
(a, b] (see [5], p. 102, Theorem 8).

In all which follows we shall consider that a =0 and b =1 are con-
jugate points for the differential equation (1).

From the disconjugacy theory for the linear differential equations it
follows (sce for ex. [5] p. 89, Proposition 5 and pp. 98—99) that the
points 0 and 1 are conjugate points for the differential equation (1) if and
only if there exists a solution of (1) with a zero of multiplicity z » — k
at 0 and a zero of multiplicity = % at 1 for some %, 1 = E<n—1, and
there are no solutions with a similar property for two points a, b in {0, 1)
(or, by Remark (ii), for two points a, b = (0, 17).

Definition 4. The conjugate points 0 and 1 for (1) arc said to
be of type B (1 <k <n— 1), of (1) has a solution with a zero of multi-
plicity = k at 1 and a zero of mulliplicity =z n — k at O, and theve are no
solution with a similar property for | < k.

cHEORIM 1. Suppose that n =z 3 and thai O and 1 are conjugate points
of the type k for the differential equation (1), Suppose that theve exists a single
solution (up to a mulivplicative constant) with zero of multiplicity n — k—1
at O and zero of multiplicity k at 1. Then the space L, of the solutions of
(1) form a Chebyshev space on [0, 1], whose domain of defiwition can be
extended with at most n — 3 distinct points with the preserving of the pro-
perty of L, to be a Chebyshev space.

A geometrical version of a strengthened form of this theorem will be
stated in the paragraph 4 of our paper.

In a recent note [147], starting from a result in [13] we have estabilished
some properties of the space L, of solutions of (1) on the closed intetrval
[0, 1], in the case when 0 and 1 are conjugate points for the differential
equation (1). In [14] we have given between others a Chebyshev space of
the dimension 4 defined on a closed interval, whose domain of definition
can be extended exactly with a single point (with the preserving of the
property to be a Chebyshev space). Our above Theorem 1 constitutes an
extension of the Proposition 4 in [14] and is a contribution to the study
of conjugate points, a study initiated by pH. HARTMAN [7] and A. YU. LEVIN
[11]. The results in the mentioned papers concerns investigations about the
analytical properties of the conjugate points [11], and a classification of
the solutions in the neighbourhood of the conjugate points [7, 11], while
our conjugate point classification is a contribution to the theory of Cheby-
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shev spaces, which in the last time obtains an advance by the results of
v. 1. voLkov [17, 18], s. kARLIN and w. STUDDEN [9], R.ZIELKE [19, 20,
21], ». mADELER [8], vu. 6. aBakumov [l, 2], M. G, KREIN, and
A. A. NUDEL'MAN [10] and the author [12, 13]. By the Theorem 1 and
2 in our paper becomes possible the constructions of some Chebyshev spaces
defined on closed intervals and eventually a finite set of points outside this
intervals, whose domain of definition can be extended with no point.
This property implies other structural properties of the respective spaces
(see [12]). (From these properties it follows that the recent constructions
of R. zIELKE [21] furnish examples of Chebyshev spaces defined on closed
and halfclosed intervals, whose domain of definition cannot be extended
with any point.)

It remains open the problem if the extension of the domain of defi-
nition of the CSp-s in our theorems is evermore actually possible or not.

The method applied by us requires some tesults from the disconjugacy
theory due to ¢. porva [16], . HARTMAN [6], 0. ARAMA [47, A. YU. LEVIN
[11],” for which we have already used the reference monography of
W. A. COPPEL [5]. But the essential step is the use of a classical geometri-
cal machinery which essentially is the same as that of ¥ NEUMAN [15]
and vU. A, AaxUMOvV [1, 2] and more concretly is the extension of our
method in [13] to the differentiable case.

1. Geometrical auxiliaries

The geometrical method which we use is in fact the classical theory
of the differentiable curves. We shall particularize in this paragraph some
aspects of this theory for our special purposes.

1. Tet %, ..., %, be clements of C"[0, 1]. Consider the mapping
®: [0, 17 - R" given by

(2) () = (%), ..., %)

In all which follows we shall consider only the case when the Wronskian
W(xy, ..., %,;t) is different from zero for any ¢ in [0, 1]. In this case
@([0, 1]) will be the curve in R* given in the parametric form

(3) ; et o (A1 AL s i 2

This curve will be said to be the characteristic curve of the space sp (%1, ..., %,)
in C*[0, 1]. Tt is obviously uniquelly determined up to a linear, nonsingular
transformation.

Denote by R* a subspace of dimension £ in R*, We say that the curve
(3) (or ®([0, 1)) has an intersection point of multiplicity / with R* at the
point ®(z,), if

o9 (t) = (#(ts)s - . . #0¢) eRE, =0, ...,1—1
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and

0O (ty) = (1 (to), (b)) & R¥.

If we denote by a;, = (ai, ..., a}), i=1,...,nm — %k a basis of R*~*,
the orthogonal complement of R* in R", then the condition to have (3) ap
intersection point of multiplicity / with R* at ®(¢,) may be interpreted
analytically as follows:

The subspace of the space L, = sp (x,
by the elements

(4) aix,+ ... 4alx, i=1,...,n—F"

., %,) in C"[0, 1] spanned

has the property that any its element has at £, a zero of multiplicity
at least % and it contains an element w1th zero of multiplicity at most
k at i,

From this in particular it follows that the space L, is an UCSp on
[0, 1] if and only if no subspace R"-1 in R* has with the curve @ ([0, 17)
mote than # — 1 intersection points, counting their multiplicities (see
also [15]).

It follows also that the space of all elements in L, which have a zero
of multiplicity at least % at £, is the space spanned by the elements (4)
where a,, ...
the space

)

, @y, spans the space R"~% the orthogonal complement of

RE = sp (D(ty), ..., D= 1(1,).

Then if we want to determine the space of all elements in L, which have
zeros of mu1t1p11c1ty kiatd, i =1, , m, we have to consider the vectors

o0y, ¢ =1, ,m, =0, ... k 1 the space R® spanned by them,
the orthogonal complement Re—v of this space in R”, a basis ¢, = (a,, L. ag)y
i1=1, ,n —v of this space, and to consider the space spanned by
the elements

(5) a,-lxl—}—..—|—a}”xn,i=1,...n——v

2. Let us consider the representation of the vector ®(f) in the form
() :CD() + ®@,(t), where @,(f) = R¥ and ®,(f) € R*—v. Then, if aq

=1, ,m — v are the vectors determined above, we have

(6) aixa(t) + ... aln, () = (a, OF) = (a, O,(), i =1, ... n —v,
Suppose now that a;, ¢ = 1, ..., » — v form an orthonormal basis in R*—,
After a rotation (and a respective change of the basis in L,) we may
suppose that

(7) ;=8 ..,8), i=1,...,n—y,

where & is the Kronecker-symbol,
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Let us denote

(8) %i(t) = (4, @alt)).

In what follows we shall need the characteristic curve spanned by the
functions (5). From (6) and our above assumptions (7) on the vectors a,,
it follows that the characteristic curve W([0,1]) of these functions is the
projection of the curve ®([0, 1]) into R»—v.

3. We need also the following simple fact:

If the curve @([0, 1]) has with R* an intersection point of multiplicity

I at ®(t,) and R’ is a subspace of R* spanned by the vectors ®(Zy), ...

L O6-U(), s <l <k, Rrs is the orthogonal complement of R® in R"

b denotes the projection of R* onto R»~s, R*~* = p(R¥), then the tangent

vector to the arc p(®([0, 1])) in the point 0 = p(D(2y)) 1s contained in R*-s,

To verify this we consider the Taylor formula for the vector function
®(#) in ?, until the term / — 1:

O) = Oty + ZE V) + .+ %@@_I)WJF

L — 1) ¢t — tg)i—1

+< P e (b)) 4 ...+ <(l L QU oot — )~

where oy(t — #,)'~! denotes a vector with all the components functions
of orders o(¢ — #y)'~*. After the application of the projector p we get

PO = TN ey 4 ..+ LR e
sl ¢— 1)1

“Eg) + poo(t — 2o
From this formula it follows that the arc p(®([0, 1])) has at ¢ =7, (in
the point 0) a nonessential singular point. The tangent vector to this arc
in the point O is the first derivative vector which is different from zero,

, in our case will be the vector p®® (¢,). Because @ (¢) = R* we have
jb(D(S)( o) € p(R*) = RF3. We observe also that p®PE (¢,) cannot be the
zero vector.

4. We shall say that a sequence of subspaces in R*, of the dimension
m- tends to a subspace R™ of the same dimension, if there exist bases of
each subspace in the sequence such that the sequence of the corresponding
elements of the bases are tending to the elements of a basis in R™. The
same terminology will be used, when the notion of the convergence of
sequences is changed in the notion of convergence of functions. Using
this terminology we havc the assertion:

Let be to, 8y .o b, 4, # 8t 1 # 4, .,j=1,...,7, »<<n— 1 points
in [0, 1]. Then the space
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is teading to the space
sp (O(te), D'(to), + - .0 PV (E))

as sup [§ — £4| - O.

118y

For verification let us consider the Taylor formula for ®(¢)

D) — ot — to) =D (te) + =2 () + ... + L= ),

11 7!

i=1,...,7 where o;(t; —t,) denotes a vector with all the components
functions of order ot; — t,)7. Considering ®9(f) column vectors, we have

the identity
[| D(to), D(t;) — 01(ty — £o)', « .., @2,) — o,(F, — 20)'I] X

1 1 1 1
b= 1 ty — I Ly — b
0 1 T ey 1 -
B =5
(= t)" (= b =t
0 al vl r!

= || ©to). P'(Eo) - -, POE) |-
This means that
sp (D), @) — 04(ty — Lo)7s .., D) — o,(t, — o)) =
== D (P(to), P'(te), - -0 OVE0)),

which proves our assertion.
5. Suppose that the subspaces R tend for v — oo to the subsp:itce
o in the above sense, and denote by Ry;™™, v=0, 1, ... the respective
orthogonal complements. Then R} ™" tends to R~ ™. If p, denotes the ortho-
gonal projection onto Ry™", then for any ¢ € R” we have p,a -» poa for

y — 00.
Let be Ry =sp (4, .-, 4y,), v=0,1, ..., and a,; - i for v — oo,
1 =1, ..., m. Suppose that a,., ..., a, are vectors in R" such l‘ihat
“sp (a ' [ ici e have
R* =sp (agy, o) Qg @y 10 -+« a,). Then for sufficiently great v we

also

(9) B” =] Sp (avli oo By am i SR an)'
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Denote by p" the orthogonal projection onto R”, v=0, 1, ... . Then
p'a —» poa, if v » 0. We have
(10) g =+ p, v=0,1, ...

from-which it follows that

(11) pya = poa for v — oo.

For v stficiently great p,a;, i = m -+1, ..., n will be a basis of Ry " accord-

ing (9) and (10), which, together with (11) proves that R) ™ tends to R}
as v — ©0.

2. Two dimensional Chebyshev spaces with speeial properties

Consider the functions #; and w, in C2 [0, 11].

1. Suppose that L, = sp (x,, #,) is a CSp of dimension 2 on (0, 17,
and

(i) #:(0) = #x,(0) = 0;

(i) the tangent line in the point 0 to the characteristic curve of L,
coincides with the axis 0x2;

(i) x5(1) # 0, x,(1) =0, i.e., the characteristic curve of L, meets
Ox% for ¢ = 1.

A CSp with the properties (i), (if) and (iii) above has the property
that its domain cannot be extended with any point.

Suppose that x,(1) > 0 and #,(/) > 0 for ¢ = (0, 1). Consider the func-
tion ¢(#) = arctan x,(f)/#,(z). Then we have

(12) ¢(1) = n/2 and ¢(0) = lim () = — =/2.

=0

The first relation in (12) is obvious. To prove the second, we observe
that by (ii) only the cases ¢(0) = -+ n[2 are possible. From x,(f) = 0 it
follows also that — n/2 < ¢(f) < =/2 for any ¢ in [0, 1]. If ¢(0) = =/2,
suppose that £, is the minimum point for ¢. We have — /2 < o(ty) < /2,
because in the case of g(f,) = 4 /2 it would follow that the vectors
(%(1), x5(1)) and (x,(¢,), #s(t;)) are colinear, which contradicts the fact
that x4, #, form a CS on (0, 1]. From the continuity of o(t) it follows that
for any ¢, = (0, #,) there exists a #, = [z, 1) such that ¢(f,) = o(t,). This
means that the vectors (xy(fy), #5(6;)) and "(x,(4,), ¥5(fy)) are colinear for
Iy # ty ty, t; < (0, 1], which is a contradiction (see Fig. 1. a). This proves
the second relation in (12), i.e., the characteristic curve has the form &
in Fig. 1,
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Since ¢(0) = — x/2, it fol-
lows that any straight line pas-
sing through the origin intersects
the characteristic curve of L,
in a point.

: Consider any extension of
AL the domain of definition of L,

with a point, and the characte-

oy ristic c&)rve of the space with

4 - D — X" the extended domain. From the
: above conclusion it follows that

there exists a line passing thro-

VAT : ) ugh the origin, which intersects

N the characteristic curve for two
Fig. 1 distinct values of £ i.e., the ex-
' tended space cannot form a CSp.

2. Suppose that L, = sp (%, #,) is a CSp on (0, 1) and

(1) #1(0) = 2,(0) = #1(1) = x,(1) = 0;

(ii) the tangent lines for the characteristic curve for { — 0 and ¢ — 1
coincide with 0x2.

A CSp with the properties (i) and (ii) above has the property that its
domain of definition can be extended with a single point « and as exten-
sions of x; and x, can be set #;(a) = 0, Xola) = 1.

Suppose that (') = 0 for some #' in (0, 1) and that #’ is the minimal
value of ¢ with this property. We have then %5(t') # 0 and by 2.1 above
it follows that L, forms a CSp on (0, ¢'] whose domain cannot be extended.
From this contradiction it follows that %(t) # 0, say %,(f) > Ofor¢ = (0, 1).
The fanction

¢(2) = arctan x,(¢)/x,(?)

is then well defined and continuous on (0, 1) and — n/2 < ¢(t) £ =2
¢ (0, 1). By a similar argument as in 2.1 we deduce that
; 9(0) = lim o(f) = — lim gft) = — o(1) = L /2.
=0 t—1

From the continuity of ¢({) it follows that

any straight line passing through the origin, ex-
/ cept 0x* intersects the characteristic curve of L,
4 in a point (see Fig. 2). It follows also that we
0 " may extend the domain of definition of L, set-
ting for x, and «x, in the point « & [0, 1] values
such that (x,(«), #,(«)) be on 0% and the do-
main of the CSp obtained in this form cannot be
Fig. 8 extended.
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3. Preparatory lemmas

Lemma 1. Suppose that 0 and 1 are conjugate points of type k for
the differential equation (1). Suppose that there exists a solution % L,
with a zero of multiplicity 1, ¢ < n — b at the point O and a zero of multi-
plicity j = k at 1, and has m distinct 2eros at ty, ..., t, = (0, 1), then there
exists an other solution x, L, with zero of multiplicity ¢ at 0 and zero of
multiplicity § at 1, which has m distinet zeros in (0, 1) and which changes
s sign passing through these zeros.

Proof. By a result of A. YU. LEVIN (see [5], Proposition 11, p. 99),
there exists an element %9 of L with a zero of multiplicity » — £ at 0 and
a zero of multiplicity % at 1, which is positive in (0, 1). Suppose that
Y1, ., by are the zeros at which #%; does not change the sign. Then there
exist [(/ + 1)/2] zeros in the neighbourhood of which %, is of the same
sign, say positive. Comsider the solution x = x, —ex,, ¢ > 0. For ¢
sufficiently small » will have m — J + 2[(l + 1)/2] = m zeros in 0, 1)
at which it changes the sign., .

Lemma 2. If 0 and 1 aye conjugate points of type k Jor (1), then
the vectors ’

(13) ®(0), ..., d—k=1(0), O(1), ..., DU-1)(1)

are linearly dependent, while the vectors

(14) D(0), ..., =E=(0), (1), ..., DE-2(1)

are lineraly independent, where ®UI(t) — =@, ., 20, wy %, being

a fundamental system of solutions of (1).

Proof. From the definition of the conjugate points of type k%, there
exists an element x % 0 in L, with zero of multiplicity = n — % at 0

and with zero of multiplicity = % at 1 and % is the minimal number for
which there exists a such .

Let be

(15) % =a% -+ ... + a"x,.

By our geometrical interpretation (see 1.1) it follows that the vectors (18)
are all orthogonal to ¢ — (@, ..., a") # 0, which proves the first part of
the lemma,

If the vectors (14) would be linearly dependent, then the system of
vectors obtained adding to (14) the vector ©®=h(0) would be also linearly
dependent and would have a span H, a space of dimension < # — 1. Let
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a = (a', ..., a") be a nonzero vector which is orthogonal to H. Then the
element # of the form (15) would have a zero of multiplicity 2 # — & -} 1
at 0 and a zero of multiplicity # — 1 at 1, which is a contradiction.

Lemma 3. Suppose that O and 1 are conjugate points of type k for
the diffevential equation (1). Then the set of functions x im L,, the space
of solutions of (1), with the property that
(16) #¥(0) = ... = x0"D0) = x(1) = ... = xU-1(1) =0,
with 1 £n—Fk, § <k form a CSp L'~ of the dimension n — ¢ — 7 on
the interval (0, 1).

Proof. We prove the lemma by contradiction. Suppose that s, ¢ £ n—#%
is the minimal number for which there exists a j < & and the distinct
points #;, ..., ¢,—i—;j in (0, 1), such that there exists a nonzero solution
% = alx, + ... + a"x,, which has a zero of multiplicity 7 at0, a zero of
multiplicity 7 at 1 and zeros at the distinct points ¢, ..., £,_;_; in (0, 1).
By the Lemma 1 we may suppose that ¥ changes the sign passing through
t1, «v.» bu—i—j. Geometrically the existence of an x with these properties
(see 1.1) means that: the vectors

(17) ' @(0), ..., DE-1(0),
(18) O(1), ..., ®H-1(1),
(19) O(ty), ..., Plta—i—y)

are linearly dependent and the curve ®([0, 1]) is passing trough the hyper-
plane
(20) R*-1={§ € R": ! 4 . 4 a”E" = 0}
at the points (19).

We shall prove that for any m, | £ m < # — ¢ — 7 the system of the
vectors (17), (18) and

N

(21) Oy), ..., O, ..., Oltu—i—y)
(the symbol ~ above a term of a sequence means that the respective term
is omitted) cannot be linearly mdependent Suppose the contrary. Then
for ¢ close to 1, ¢ # ¢, g=1, ,n — 1 — 7 the system of vectors

(22) O(t'), ..., OU-I(Y)

can be arbitrarily close to the system of vectors (18) and the hypetplane
determined by (17), (22), (21) is arbitrarily close to the hyperplane (20)
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(see 1.4 for this notion), which according our hypothesis is spanned by

(17), (18) and (21). Because the hyperplane (20) has an intersection point

with the arc ®([0, 1]) at ®(¢,) and this arc pass through (20) in this

point, it follows that the hyperplane through the origin spanned by (17),

(22), (21) will have, for ¢ sufficiently close to 1, an intirsection point
/\

O(¢") with the curve ®([0, 1]) such that ¢/ < (0, 1)\ {#,, .

But this means that the element 2 RS

Xy = 0%, + ... + b'x,

where b = (b, ..., ") is a normal vector of the hyperplane containing
the vectors (17), (22) and (21), will have a zero of the multiplicity 4 at 0,
N

a zero of multiplicity j at #' and zeros at the distinct points ¢, ..., ¢,, ..
eosbuioj 2, that is, » zeros in [0, 1), which contradicts the fact that 0
and 1 are conjugate points.

We have proved that the system of vectors (17), (18) and ( 21) is
linearly dependent for any m, 1 <m < n — 1 —j For w —¢{—j =1
this contradicts the hypothesis. Suppose n—1—j = 2andletbel £ m; <
< my £ n—1—j. Then from the linear dependence of the respective
systems (17), (18), (21) of the vectors for m = m, and m = m,, it follows

that there exist the constants ¢j, » = 1, 2 such that

(23,)
( mfl nemi_j 7n—2 .
T000) + 5 06) 3 cara@)+ 55 07 =0,
= (‘ ", g=n—j—

n—1

where Z leg) # 0, » = 1, 2. We observe that ¢/ ; #£0, =1, 2, because the
g=0

minimality of ¢. Really, if contrary, say ¢i_; = 0, we would have that
the system of the # — 2 vectors

(24) ®(0), ..., dU-2(0), (18) and (21)
is linearly dependent, i.e., it span a subspace of the dimension < »n — 3.
Complete thls system by two vectors: ®(') and O("), t', ¢t #t, g=

=1, m, ,# — % — j. The obtained system of vectors is contained
in a subspace R*-1 of dimension 7 — 1. Let ¢ = (¢!, ..., ¢") be a normal
vector to R?-1. Then the element

Xp =% 4+ ... + "%,

will have a zero of the multiplicity ¢+ — 1 at 0, a zero of multiplicity
jatland# — 4 — j 4 1 zeros in (0, 1), which is the desired contradiction,

Now, multiplying (23,) by — ¢/, /ci., and adding to (23,), in the
case of |ei Lt A |Cimapm) # O we conclude that the system (24) of vectors
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is linearly dependent which yield a contradiction as above. Hence cf_1+,,,1= 0
for any my, 1 =m; <m — ¢ — 4. This, together with (23,) means that
the system of vectors (17) and (18) is linearly dependent, ¢ < n — &, § < k.
1Bu‘c this contradicts the Lemma 2. This last contradiction proves the
emma.

4. Proof of the theorems
In the conditions of the theorem the vectors
(25) ©(0), ..., - -1(0), O(1), ..., OH-1(1)
are linearly dependent and the vectors
(26) ©(0), ..., dr-+-1(0), O(1), ..., O 2(1)

are lineatly independent (Lemma 2). From the condition that there exists
a single function (up to a scalar factor) in L, with zero of multiplicity
n—k — 1 at 0 and a zero of multiplicity % at 1, it follows also that

(27) ®(0), ..., DO-r=2(0), O(1), ..., OE-1(1)

are linearly independent vectors.

~We observe that according Proposition 1 in [14] or Theorem 1 in
[13], it follows by the linear independence of the system of vectors (26)
or (27) that L, is actually a Chebyshev space on [0, 1].

In what follows we shall consider two cases.

1. The case k = 2. Denote
(28) R"=2 = sp (©(0), ..., d»==2(0), ®(1), ..., D*=2)(1))

and let be R? the orthogonal complement of R"~2 in R”. The set of the
elements in L, which have a zero of multiplicity » — % — 1 at 0 and a zero
of multiplicity £# — 1 at 1 form, according Lemma 3, a 2-dimensional
CSp on (0, 1). The characteristic curve of this CSp may be obtained
according 1.2 by projection of ®((0, 1)) into R% Let us consider the space

(29) R=1 = sp (©(0), ..., DU—*-1(0), d(1), ..., OF=1(1)).

This space will be projected by the projection p on R? in the line R,
Because of the linear independence of the vectors (26) and (27), ®¥—k-1(0)
and ®*-1(1) will be projected in nonzero vectors in R!. This means by
1.3 that the projected curve p®((0, 1)) has the line R! as tangent line
for £ = 0 and ¢ = 1. Because p®(0) = pd(1) = 0, it follows that L, the
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CSp on (0, 1) of the functions in L, having zero of multiplicity » — 2 — 1
at 0 and zero of multiplicity 2 — 1 at 1, is in fact a CSp of the type 2.2.
Suppose that the domain of definition of the CSp defined L, on [0, 1]
may be extended with » — 2 distinct points, say «y, ..., «,_p. Then the
vectors ®(0), ®(1), ®(«y), ..., D(w,_,) must be linearly independent and
therefore at least one of them, say ®(«,) cannot be contained in the space
R"-! defined by (29). Then the projection p®(«;) cannot be in R, the
projection in R2 of R*~1. Then sp (p®@(«,)) will intersect the characteristic
curve Y((0, 1)) = p®((0, 1)) of the subspace L, in a point W¥(¢,), £, = (0, 1).
According 1.4 we may choose the distinct points #, ..., #—s—o in (0, 1)
in the neighbourhood of 0 and the distinct points #, ..., t;_, in (0, 1)
in the neighbourhood of 1 such that the subspace R?~2 = sp (9(0), ®(¢;),
o Ot 0), O(1), @), ..., O(ti_2)) be arbitrarily close to the subspace
R*-2 given by (28). Suppose fy >, i =1, ..., n—k—2, {; < t_i’, 1=
=1,...,k—2, and ¢, € (f, &). It follows from 1.5 that the projection
of ®((t;, t)) into RZ, the ortogonal complement of R»~? will be arbitrarily
close to the projection of @((#, #)) in R? and the same is true for the
line sp (®(«y)). This means that we may realise that sp (®(«,)) proijected
in R? intersects the projection p'®((f, ¢)) in R} in a point p'®(¢). But then
R*-1=p'-1(p" sp (®(a,))) will contain the vectors O(F), ®(x;), ®(0), D), - -
con, O(th—g—2), O(1), @), ..., O(ti_;), that is, n vectors. But this contra-
dicts the fact that L, extended to [0, 1] U {«,} is a CSp.

2. The case k=1. Let us denote R"-2=sp (®(0), ..., ®"3(0))
and let be R? the orthogonal complement of R”~2? in R”. The space L,
of all solutions of (1) with zero of multiplicity #» — 2 at 0 form a CSp of di-
mension 2 on (0, 1). By the linear independence of the vectors (27) (for
k = 1), it follows that the solutions having a zero of multiplicity n = 2
at 0 cannot all vanish in the point 1. Then by Theorem 2 in [13], L,
forms a CSp also on (0, 1]. According 1.2 the characteristic cutve of L,
can be obtained by projection of the curve ®((0, 1]) into R% Let be

(30) R*-1 = sp (©(0), ..., DO—2(0), B(1)).

From 1.3, and from the linear independence of the vectors ®(0),. .., ®-2(0),
it follows that by the projection p onto R? the vector ¢*—2(0) becomes a
tangent vector to p(®((0, 1)) in the point 0. The support of this tangent
vector is R = p(R"-1). But R! contains also the vector p®(1) which cannot
be zero by the linear independence of the vectors (27) for 2 = 1. This
means that the space L, defined on (0, 1] is a Chebyshev space of the
type 2.1.

Suppose that the domain of definition of the CSp L, defined on [0, 1]
can be extended with # — 2 distinct points, say oy, ..., &,_, Then the
vectors ®(0), ®(1), ®(a,), ..., ®(x,_,) must be linearly independent, and
therefore at least one of them, say ®(«;) cannot be contained in R"~?!
given by (30). This means that sp (p®(e,)) will be a line passing through
the origin, which is different from R! = p(R"-3). According 2.1 this line
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will intersect the characteristic curve W(0, 1) = p®((0, 1]) in a poi
F0, 1) = ! point ¥z
for ¢, = (0, 1), W(to) = pP(t). Repeating a similar argument as in the c:(isog
k 2 2 we obtain a contradiction with the hypothesis that L, is a CSp
on [0, 17 U {e,}. This completes the proof.
We observe that the above method of proof works also for the following
generalised form of our theorem:

TEOREMA 2. Suppose that 0 and 1 are conjugate poinis of type k for
(1) and that ®(0) and ©(1) are linearly independent. Suppose thajtt t%fre ex{sts
an s, s 2 0 such that

rank || ©(0), ..., @#==0(0), B(1), ..., QE+s-1(1) || =

= rank || ®(0), ..., d»=+-2(0), ®(1), ..., Qk+s=1(1) || = n — 1
and

rank || ©(0), ..., DU-4-2(0), (1), ..., OF+s-2(0) || = # — 2.

Then the space L, of the solutions of (1) forms a CSpon [0, 1], whose domain
of definition can be extended with at most w — 3 distinct points,

5. Examples

The difficulty to give concrete examples of differential equations
verifying the conditions in Theorem 1 or 2 have two aspects: (i) the
theorems are not of qualitative character and (ii) even in the case when
we have the explicite form of the solutions, the determination of the
conjugate points may be difficult. In what follows we shall give examples
only in the class of equations with constant coefficients and shall illustrate
how is possible in some cases to evit the concrete determination of the
conjugate points.

1. Let us consider the differential equation

(31) & ‘“+12)(di;+22) ...(Z_;erz)x:o.

are | ars
A fundamental system of this differential equation is the following :
(32) 1, ¢ sin ¢, cos ¢, ..., sin mt, cos mt.

By a result of v. I. ANDREEV [3] (see also [10], problem II. 4.1, p. 67)
the system of functions (32) form a CS on [0, 2r] whose domain of defi-
nition cannot be extended to an interval containing this closed interval
as a proper subset. From this it follows that 0 and 2r are conjugate points
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for (31). A direct verification gives that the type of these conjugate points
is k= 2.

For m = 1 we are in the conditions of the Theorem 1. Then it follows
that L, =sp (1, ¢ sin ¢, cos ¢) form CSp on [0, 2x], whose domain of
definition can be extended with at most a single point. In [14] we have
shown that this extension is actually possible.

Tor m > 1 we are in the conditions of the Theorem 2. Reallv, we
have ®#(0) = ®(2r) for = 1,2, ..., and therefore

2m 4 1 = rank || ®(0), ©'(0), ..., dE»-1(0), ®(2r) || =
= rank ||®(0), ®'(0), ..., D@ -1(0), ®(2x), D'(2x), ..., P ~V(2r) || =
= rank [|®(0), ®'(0), ..., ® —3(0), ®(2r), ®'(2x), ..., P ~1(2x) ||,
and
rank ||®(0), @'(0), ..., d@ -2(0), ®(2r), ®'(2r), ..., @ ~2(2x) || = 2m,

i.e., we have the conditions in Theorem 2forn = 2m L 2, k = 2,5 = 2m—2.
We conclude then that:

The space Layi2=sp (1, ¢, sint, cost, ..., sin mt, cos mt), m = 1, is
a CSp on [0, 2n] whose domain of definition can be extended with 2m — 1
points at most. (For m = 1 this extension is effectively possible.)

2. Suppose that we have a differential equation (1) defined on [0, o)
for which we know that 0 has a conjugate point << co. Then, if we can
verify that for any £ in some neighbourhood of this conjugate point (the
exact value of which isn't known) we have

(33) rank || ©(0), ..., ®-1(0), Ot), ..., P—i-N(E) || = n — 1

fori =1, ..., n — 2, then the conditions in Theorem 1 are automatically
verified.
For illustration we consider the differential equation

(34) %(:_#Jr 1)(2— 1) %= 0.

The differential equation which corresponds to the first two factors in
(34) is in fact (31) for m = 1, and has 0 and 2n as conjugate
points. The differential equation corresponding to the third factor is dis-
conjugate on the whole real line. This means according Proposition 8 p. 94
in [5], that (34) has two conjugate points: 0 and a point n = 2n. Because
1,¢ ¢, sint, cost is a fundamental system of solutions, it follows that
n < 0. For 2n £ ¢ < oo we can verify the conditions of the type (33).
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Then from Theorem 1 it follows that there exists an M, 21 £ 7 < oo such
that Ly =sp (1, ¢ ¢, sin¢, cos t) is a CSp on [0, v] whose domain of
definition can be extended with two distinct points at most.
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