MATHEMATICA — REVUE D’ANALYSE NUMERIQUE
ET DE THEORIE DE 1’APPROXTMATION

L’ANALYSE NUMERIGQUE ET LA THEORIE DE L’APPROXIMATION
Tome 4, N’ 2, 1975, pp. 179 — 200

SOME OBSERVATIONS CONCERNING THE ALGEBRAIC
TREATING OF THE FORMAIL, LANGUAGES
’l‘EODDOyR RUS
(Cluj — Napoca)

The necessity of a formal device suitable for solving the problems of
relations between programming languages and between them and com-
puting systems, becomes very urgent. The paper is an attempt on this
way. Having in view on one side the form of word free structures of the
programming languages, generated by their data base structures, primi-
tive operations and control sequences, using some syntactical rules, given
by operator schemes, similar to te operations in a word free algebra, and
on the other side the observations, the operations schemes in this case are
concerning the heterogeneous operations, in the paper we have the follo-
wing purposes :

1. Organize a formal language in the form of heterogeneous word
free algebra, on levels.

2. A formal definition of the semantic domain associated to a formal
language.

3. To give a way of formal representation of such a structure in an
other one, which generalises the notion of homomorphism, for a formal
definition of semantic preserving translation algorithms.

The solutions of the above problems are presented in sections 2,3.
Section 1 is devoted to the definition of the formal language by means
of X-categories, used in sequel.

1. A CATEGORIAI, CHARACTERIZATION OF THE FORMAIL
LANGUAGES

I.1. General considerations on the rewriting system

The pair (X, P) is a rewriting system (semi-Thue system) when X is
an alphabet and P is a set of productions. (X, P) is an indexed rewri-
ting system when P is an injection from an initial segment of natural

180 TEODOR RUS §

numbers to X* X X*, In this way every production « — p € P is distin-

guishable by its index, so that P(n) = « — B can be written as « % B. The
relation — can be extended to = by concatenation in the following way :
If 6, € Z* 0= vau, ¢ =vBp and o« > f P then 0= ¢ Let
us consider the tranmsitive reflexive closure of = and denote it by Z,.
For Vy c Z* Vi < 2, the quadruple (XZ*, Vy, V5 P) will be
called grammar and the language generated by G = (X*, Vy, Vi, P)
is defined as follows:

LG)={w = V¥ |36 € Vy, o u}

The extensions of the relations defined by P from — f0o = and fo_%
define a category. Let us denote this category by F.

The objects O of F are the elements of Z*. The set M of morphisms
of F is defined by:

(i). The length zero derivations, «=> o, o & I* are identities in M,
denoted by 1,.

(ii). If p € P then p is considered as a morphism of length 1 and
belongs to M. So, P = M. When P is an indexed set, then (#, « 5 B) €
e Pand « 5 B € M. The domain of « 2 p will be « and the codomain
of % B will be B.

(iii) For every pair of identities in M, 1, 1, and every morphism
v« B e M the morphism 1,%(e 5 B)% 1, & M and is determined uni-
quely by @, v and « 5 B, where » is the concatenation of morphisms.

(iv). For each x, y = M such that codomain of x belongs to the
domain of y is deflned the composition yox, and yox = M.

From this definition it follows that each morphism in M is equivalent
to a derivation in (X, P) from its domain to its codomain. Then, for two
ubjects «, p = 5% Hom (o, B) is the set of all derivations from « to @,
or the set of morphisms from « to B.

Following motrz [1],BENSON[3], ¢rRIFFITHS [2], on the set of mor-
phisms from « to P can be defined a congruence relation ~ and for stu-
dying the syntactical structure defined by (Z, P) in X* the category
F|_ = (Z*,M]_) can be considered. The] category F/_ is an X-cate-
gory as it was defined by morz [1]. From this reason and because X-
categories will be used in the sequel we shall redefine it.

1.2. The neiion of X~categovy

The system X = (0, M, Q, Z, o, %) is a X-catcgory if the following
properties hold :

(i). O and M are sets, ¢ and Z are functions, @, Z: M - 0; Q will
be called domain function and Z will be called codomain function.

3 SOME OBSERVATIONS 181

(ii). o is a partial operation on M, o: M2 - M, called composition;
and is defined in the following way: if (x, y) & M? then y o x is defined
iff Q(y) = Z(x) and the following equalities take place:

Qy e x) = Q(x), Z(y o x) = Z(y)

(iii). o is associative where it is defined.

(iv). For each object « € O there exists a_uniquely determined 1,<
€ M called identity on o, so that for every y,x = M for which xol
and 1,0y are defined and Z(1,) = Q(x), Q(1,) = Z(y) then x01, = P
and 1,0y =y.

(v) The algebralc systems (0, *, A), (M, %, 1) are monoids, Ae
2* is empty string in X* and Q, Z: (M, *, 13) - (0, *, A) are monoid
homomorphisms.

(vi). For every x, %, %1, ¥ €M so that Q(y;) = Z(x,), 4= 12
the following identity takes place:

(1% Y2) o (%1 % %5) = (Y10 %) % (Va0 %)

(vii). For each 1, 1, € M, 1,%1,=1,,

Now, given a rewr1t1ng saystem (2, P) the corresponding X-category
is denoted by D = (Z*, M, Q, Z,o,) where (2%, %, A) is the free monoid
generated by % and (M, #, 1,) is the monoid of derivations. Using
the notation Homy («, B) for the set of all morphisms from « to B in
the category D we have:

1. a:%y B is equivalent to Homp(a, B) # O

2.Vycs 2% V,c Z, G = (X*% Vy, Vi, P) then the language
generated by G is L(G)={w Vi Jx M, Q) €Vy Z(x) = w

3. If B=2* then the syntactical structures of § are U Homp(o, B)

csV N

4. The set of all syntactical structures of the language is

$(X*, Vy, Vi, P) = U U Homy(s, w)

wEV?{‘ oeVN

For the study of some relations between languages the notion of
X-functor is wanted. In order to define that, let X; = (0;, M;, Z;, o, %)
7 = 1,2 be two X-categories. A pair of functions H = (h,, %) will be
called X-functor if the following properties take place:

(A). Ao: Oy %, A) > (04 %, A) and

(i), Tpr: (My #, 15) = (M %, 1,)

are monoid homomorphisms.

182 TEODOR RUS 4
(ii). H:(0y, My, Q, Z, o) > (0y, M,, Qg Z,, o) is a functor, that is
(ili;). o e O then hy(l,) = 1 («)

(iily). For each y, x <M so that yox is defined hy(yox)=hy(y)oly(¥)

(iiiy). The following diagrams commute

il
M{ a2 g | /‘vl "‘-‘—‘—"‘0
fM l 4 4{0 ?":M 0 l ﬁ(j
My, —=2 e (), " A s 52)
Fig. 4

The pair H= (hyr, Fo) is a cofunctor if instead of (iii) and (iiis) we
consider

({iiL). Tag(yox) = Iyy(%)ohy(y), for every x, y <M for which yox is
defined.

(iii§). The following diagrams comute

My —e My —Z Oy
% A
MLZ _QB__,,,};EO q fM ;Lz ___Zi__{L;m
Fig. B

1.3. The notion of interpretation of a language

_ For semantic definition of a language we shall consider the notion
of interpretation [3] of the language in some sets and functions between
these sets. For this purpose the strings which belong toa language will
be interpreted as cartesian products of some sets, which will be associated
with each symbol of the alphabet 3. Derivations will be interpreted as
functions defined on the cartesian product of the corresponding sets.
Let et = (U, F, Q, Z, », X) be a X-category, where U is an univers
(cony [4]), F is a collection of functions defined on the membres of
U, o is composition operation of functions and X is the associative carte-
sian product of the sets. Let now D = (Z%, M, Q, Z, o, *) be the X-

5 SOME OBSERVATIONS 183

category associated to a rewriting system (%, P). Then an interpretation
of D in 8et is a X-cofunctor I: D — et so that for every a € I,
I(a) # & and I(a) # A where A is the identity set according to the
operation X. '

Because D is freely generated by (Z, P) a particular interpretation
I is determined by the following conditions : ,

(i). For each a€ X, I (a) # 9, I(a) = U.
(ii). For each a »p < P, I (o — B): I(B) LI(a), feF

The above considerations were made by BENSON [3] using HOTZ 's
paper [1]. Now we can observe that for an effective definition of seman-
tics on this way, (i) and (ii) above are not enough, This follows from the
fact that not every a € X belongs also to the language, and there is
1o method to treat these cases when something like that appears in [
(« — B). That is because the category D =(Z*, M, Q. Z, o, %) charcte-
tizes the syntactical structures in Z*, but the langnage L(G) generated
by G = (Z¥*, Vy, Vi, P) is generally not a subcategory of D. We can
use D to define the language but mot for an internal characterization
of the language.

Let now w,, w, € L(G) be given. What kind of relations can we

- *

define between w, and w,? Of course, if ay=>w, and, g,=>w,, then a rela-
tion is that, that both belong to the same class of language. But this
class can only be defined using the derivations from M. On the other
side, the morphisms from M do not belong to the language. In this way
we have here the question of the language and metalanguage. The lan-
guage is our subject to study and especially its internal structure. We
are able to do that only by means of metalanguage, or by means of
morphisms from M.

The internal structure of the language, supplied by the grammar
G = (Z*, Vy, Vy P) can be studied only by a detailed study of the
role of symbols from V; during the generation of the language. This
will lead us to an overlapping of the language on more levels, so that
a level will be the set of generators of the next one. This overlapping
must follow the natural way of language definition, which is pointed out
by every natural or artificial language. The principles in this overlapping
are the following:

(i). There is a first level of the language called dictionary. In the
case of natural languages the dictionary is just the dictionary of the
language and in the case of programming languages it is its basic data
structure, primitive operations and control sequences.

(ii). Let the levels 0,1,..., ¢ — 1 be built. The level ¢ (if it exists)
will be built from the elements of levels 0,1,..., 1 — 1in a recursively
way, by the rules specified by the grammar,

184 TEODOR RUS 6

From these observations follows that in the set M of syntactical
structures of the elements of the language must be defined an ordering
relation which will decompose the set M in classes following the princi-
ples (i) and (ii).

The overlapping of the language will show us that we are able to
associate to a language an internal algebrical structure richer than that
of X-category. This structure will be defined using the notion of free -
algebra defined by miceins [5].

2. THE OVERLAPPING OF A FORMAIL LANGUAGE
2.1. The general considerations on the decompesition of P

For the definition of the overlapping discussed above we shall start
with general definition of the language by means of a rewriting system
(%, P). So, for Vy < Z* V; < I we consider the grammar G = (¥,
Vy, Vo P). Our hypothesis will be that ¥V, € % and the grammar G
is a context-free grammar. From § 1.2 we have:

$(X%, Vy, Vo, P)= U U Homy, (o, w)

weV’} oEVy
LG)={w e ViIx € M, Qx) € Vy, Z(x) = «}

The classification of the production set P which will supply an overlapping
of the language will be relating only to the set 8(Z*, Vy, Vy, P) that
is, only to that part of M which can be considered as syntactical struc-
tures in L(G). If this set of morphisms is denoted by M(L) then M(L) <M.
The idea is to define an ordering relation on M(L) so that M(L) can be
considered decomposed in a finite set of classes M, M,, ..., M, and if
%, y € M(L) then if ¥ <y in the early ordering, that means x = M,(L)
¥ & ML), i <j.

For that we consider the grammar G = (Z*, V,, V,, P) not having
just one axiom. Each symbol from V, can be considered an axiom like
in RUS [6]. That does not change the fact that G is context-free in
a classical way, because there exists a context-free grammar G’ with just
one axiom so that L(G) = L(G'). This idea is very natural having in view
the programming language. So, not every expression in a programming
language is a program, but belongs to the language. For instance, the
identifiers are no programs but belong to the language in which they are
defined. In this way the idea of overlapping of the language can be reali-
zed in the following way :

(i). The first level of the language is L,(G) and is defined by the strin-
gs w = L(G) for which we have: if w € L(G) that means that there exists
—>w < P and A EVN,wET/%.

£l

7 SOME OBSERVATIONS 185

Let M, be the set of morphisms from M (L) which are syntactical
ucture for Lo(G).
Stm‘(tﬁl}l.el,ét Fo) 50, 1 ssiy i 1 be built, denoted by Ly(G), L4(6),
.., L;_4(G) respectively. The levelidenoted by L;(G) will be built by that
strings w = L(G) for which we have: if w € L,(G) that means
that there exists A € Vy so that is ¥ € Homp(4, w) then » can be n;pre-
sented like a composition o and concatenation # of morphisms from
s e My, M. _ 1

o {*‘1{2 effect]ilx{é Tealization of (i) and (i) above will be made by an
ordering relation defined on the powerset of P. This lead to a decomposi-
tion of P in classes of subsets. Such classes were cons1dered.by .SALOM_A{;
[7] regarding the problem of a restriction on the set of derivations wit
a context-free grammar, If in Salomaa’s decompositions we shall use a
criterinm like that used in this paper then our grammar can be con{smered
a matrix grammar or an ordered grammar or a time-varying grammar
according to the ordering definition. But we shall not restrict the deriva-
tions.

2.2. The algorithm for decomposition of P

ibi it [dec sition of P inclasses we shall
For describing the algorithm of decomposition of P inc S

use the following notations: if p = P then V =Vy U Ve p= (0 B)
a €Vy B = V* and wesuppose that § # A, where A is the empty string.

By pr we denote « and by pry(p) we denote f. B
¢ j)IflU;'))rz(yb) =B then B=/hAted, ... {40 + 1 where ; € V§ or
bi=A 5=12 ...,n-+1and 4, € Var ©= 1,‘2, .o, no By Cat(p)
ve denote the Set {Ay Ag ..., A,}. I Py Pis a subset of P then

CT(Py) =?UP Cat(p;).
I,em ma 1. If G=(Z* Vy V5. P) and L(G) # @ then there

¢ , ¢ production p < P so that pri(p) € Vy, pra(p) = Vi
mm}fﬁo_fﬁa;ﬁ‘rﬂi %(G) #* 111), follows that there exists at least one w =
e L(G), w # A. Then there exists a syntactical structure or a .derlva.tlon
of w so that A € Vy and A X w. That means that there is p € P,
pro(p) = A, pro(p) = B. If w = p then p is the producnon* from lemma 1.
If w # @ then there exists p, so that p, € P, A= 3 w where B =
—= B,BB, and pr(p,) = B, ?’g(?ﬁz) = Py If By B Ps € VTLt]éeuf ﬁl =
= (B, By) is the production. From the hypothesis of w = L(G) fo lows
that w has at least one finite derivation. That means that in a finite
number of steps as above we shall find the production p. i

Theovem 1. If L(G) # @ then there exists an unique decomposition of
the set P in the subsets P, Py ..., P, so that the following conditions

take place:

(). If p & P and p € P, then Cat(p) =D

186 TEODOR RUS 3

(i}, If p € P, for 1 =1, 2, ..., n then

1
9 Y Pj
§=0

Cat(p) E(U ?71(9)) U pri(p)

"

(). \UP;sP, Pin Pj=0, ¢ #].

1:=0

- (iv). The decomposition Py, Py, ..., P, is the finest one with the
bigest cardinality of the classes Py, Py, ..., P, which has the properties

(i) — (iit).
(v). If we consider the grammar G' = (Z*, Vy, Vi, P') where P' =
= |J P; then it follows L(G) = L(G').
i=0

Proof. The demonstration of this theorem will be made by describing
the algorithm which will decompose P so that (i) — (v) hold. For that
let DEC be the name of the algorithm. The steps of this algorithm will
be denoted by DEC followed by digits.

DECT. Setindex I to zero, I: = 0. It will count the number of classes,

DEC2. Decompose the set P in two subsets P! and P? so that
P =Dty P2 Pl P2=¢J according to the following definition :

Pt={p «P|pr(p) & Cal(p)}
Pr={p = P| pri(p) = Cat(p)}
~ DECS3. The first class of P is Py, P, < P1, and is built by the rela-
tion P, = {p = Plpr,(p) € V1}.
Observation : From lemma 1 it follows that P, # O.

DEC4. Tet P, P, ..., P, be already built. Consider the set C de-

50

fined by C: = P!\ |J P; where by \ we have denoted the operation of
j==0

subtraction on sets.]

DECS5. Verify the condition C = @? If this condition is true, the
glgorlthm continue with DILC7; if the condition is false, the next step
is DEC6.

DECS. Choose an arbitrary element p & C and verify the condition
Cat(p) < U pri(g). If this condition is true then we have obtained

ge U Pj
<0

9 SOME OBSERVATIONS 187

a new element of P;,; (at the begining P; , = @). That means to perform
the operation P, = P, U P and the element p will be cleaned from C.
The next step of the algorithm in this case is DEC5. If the condition
above is false, the next step of the algorithm is DECT.

DEC7. Verify if all the elements of P! are classified. For that set
Ttol -+ 1, I:=1-1, and verify if P, is empty. If so,then all produc-
tons from P! which can be classified are already did. The other productions
can be eliminated from P because they don't generate elements of the
language. In this case set [to I —1, I:= I — 1 and the next step of
the algorithm is DEC9. If P; # @ that means that a new subset has

I
been built. Then perform the operation C: = P!\ \UJ P; and algorithm
j=0

continue with the step DECS.

DECS. Verify the condition C = @? If it is true the next step is DECY
because all elements of P! are classified. If the condition is false the next

step of the algorithm is DECS.

DECY. Set a mew variabile N to I, N: = I and begin the classifica
tion of P2
DEC70. Verify the condition P? = @? If it is true the algorithm is

completed and subsets are Py, P, ..., P, where n is the value of N
If P2 — (J is false it follows the step DECIL.

DEC11. Choose an arbitrary element p € P? and build the correspon-
ding element p* by erasing from pr,(p) all symbols equal with pry(p).

DEC12. Set I to zero, I: =20
DEC13. Verify if Cat (p*) =@ or if

= P]'

Cal(p*) L,) pr:(9)
§]

If at least one of these two condition hold, then Piy: = Piyy U p where
i is the value of I, and p will be erased from P2 Next step of algorithm
is DECI10. If no one of the above condition hold, the algorithm will look
up for a new subset for classifivirg p seting Itol 41, I:=1+1and
choosing the next step to be DIC13. If there are no sets for classifying p,
then is fulfilled I = N and p can be erased from [P?* because there are 1o
elements w = L(G) which can be obtained by using p. In this case the
algorithm continue with DECIO0.

The operations used to DEC description can be easily programmed
in any assembly language or IISP-like language. The flow diagram of
DEC is presented in figure 1.

O O o i D w7, TS

Por=lp) Yo (s) e Vi] }-!

L_ P2 !pépffurr(p)é C&/fﬁ-]j

{

F
Ci= PN U B
4=l

e C =

NG

I

c2 I/

L E U
%

Pig. 1. The flow diagram of DEC

11 SOME OBSERVATIONS 189

Let now P’ = |J P, where # is the value of N, and G'=(Z*, Vy, Vr, P').

=0
From the algorithm described above it results that L(G) = L(G')s The
other properties follows from the algorithm description too.

Example: T = {X,, Xy, a, b, ¢}, Vy=1{X, X, Vo =1{a, b, ¢},

P={X,-> XX, X, aXb X;—>cX;, Xg—>ab X, ¢}
P = {X, —»ab, X, ¢}
P = {X, > XX, X,—-aX X, —>cXy}

In this case we have Py= P! and P, = P% n=1. If G, = (Z*, V),
Ve Po) and Gy = (Z*, Vy, Vp, Py U Py) then L(G,) = {ab, ¢}, L(G,) =
= {a*b"c"n > 0, m > 0} and L(G) = L(G,). For m =0, L(G,) = {a"0"} and
for n = 0 L(Gy) = {¢"}. That means that L(G,) = L(G,).

From the above algorithm it follows immediately.

Lemma 2. If we L(G) and x < Homy(A, w) is a synthactical descrip-
ion of w, so that for a given i, A < {pr(p)|p € P;} then for each sub-
string @' of w, w = w,w'w, so that w' < L(G
there is a syntactical description 'y < Homp(B, w') where

B<fpnplp = Upl:

This result makes it posible to define the overlaping of the language
L(G) as follows:

1. The first level of the language is L,(G) and it is generated by
Gy = (Z*, Vy, V5 Py).

2. The second level of the language is L,(G) and it is generated by
Gy = (2% Vy, Vi, Py U Py g

by G, = (2%, Vy, Vo, Pou Py U ... U P,)

The sets Py, Py, ..., P; ..., P, are the subsets of the set P defi-
ned by the algorithm DEC. Now it is clear that we have

(1) Li(G) € Lipa(G), =0, 1, ..., n—1

(1) L,(G) = L(G)

According to the above relations between the levels of the language
L(G) we can define the relations between the syntactical descriptions of
the strings of the language. Let us denote by M(L) all morphisms of

190 TEODOR RUS 19

X-category D which are syntactical descriptions of the language. Then
we have:

1:. The first class of M(L), denoted by M,(L) is the same with P,

2'. I the classes M (L), M,(L), ..., M,(L) have been built, then
M (L) will be built by all morphisms from 8(X*, V,, V, P) with
the following properties:

(). If x = M;y,(L) then thereexists a decomposition of x according
to o and % so that ¥ =y{J}z, y € Piyy, 2« My u M, ... U M, or
z< P, ysMyu M, u ... UMy where y {3}z means yoz or yxz.

(ii). If l(x) is the length of x, that is, the number of rules from
Py, Py, ..., Py appllied to build x, then i(x) = ¢ + 1.

The study of the morphism classes My, M,, ..., M, will lead to some
methods of syntactical analysis using normal algorithms, rus [8] But

the classes M, M, ..., M, show us a kind of structure which can
be defined on the strings of the language. This structure which is deseri-
bed by My, M,, ..., M, in an indirect way, can be directly considered.

For that we have to define an algebraical structure on L(G), defined by a
set of operations supplied in L(G) by the given grammar G. That is,

i o is :suci} an operation, and if w,, w,, ..., w, < L(G), then .we can build
a new string of L(G) by the operation o, w = o(w,, w,, ..., w,) € L(G)
The string o(wy, w,, ..., w,) can be built by using a free algebra scheme

in a word algebra,

_Such a structure will be definedin the next section using % — algebras
defined by m1ccins [5], for characterizing heterogeneous algebrical
structure. For this reason we shall begin the next section with the defi-
nition of XS-algebras which are suitable structures for characterizing the
internal structure of a language.

3. ZS-ALGEBRA OF A FORMAL LANGUAGE
3.1. ZS-algebras

Let I be a given non empty set and a family &(I) of relations
on /. An (n +)-ary (n 2 0) relation on [, » € &(I) with the properties
that from (4, 4y, ..., 4, 1) €7 and (iy, 45, ..., 4,) =7 follows ¢ = j
will be called an #-ary operation. Such an operation can be considered
as a function I" — I. Let &(I) be the set of all relations on I. Then
@(!? < &(I). The sets O(I) and &(I) can be indexed by the m-arity of
their components, (1) = | o,(I), &) = U R,(I) where .O(I) is the set
of all operations on 1. i

A pair (£,), A < &(I) will be called a relational algebra on I and
a pair (I, A), A < O(I) will be called a partial algebra on 1.

Lt us consider now a non emty set €, Q n [= & so that Q = ua,.

An Q-structure on I is defincd by a function o Q - &([) which ap})lies

13 SOME OBSERVATIONS 191

Q,in&,.4(I), » =0, 1, Inthis wayasymbol acts under the mappi-
ng o« as an (# - 1)-ary relation on I. If each symbolw € Q, % =20, 1, ...
acts under o« as an m-ary operation, then (I, «) is called an Q-partial
algebra. In this case 0 € Q,, va<€ O(I) (1, % ..., 1, ?) € o(a) and we
denote this operation by 46, ... 4,0 O ¢ = %125 ... 7,0,

For a given non emty I and a non emty set Q, and an application
o1 Q — &(I) the pair X = (I, «) is called an Q-scheme or operator sche-

me [5].

Tet now A be a family of sets, 4 = {4;},c; indexed by 1. We suppose
that for each 0 € Q,, n =20, 1, ... and each (i, 45, ..., 7, ©) € o«
is given a function i, .1, 4, X 4; X ... X Ay, — 4,

The family A = {A;};=r together with all functions given by a X-
scheme will be called an Q-algebra with the operator scheme 2 or shortly,
Z-algebra

In this way the notion of algebra is defined by using heterogenecous
operations defined by a given operator scheme 2. For that two things
must be precised:

(i). A function I* ~ I with the role of domain selector of operations
defined by the scheme.

(ii). A composition law for the elements of the selectedsets by (i).

For algebrical porposes (i) and (ii) are quite enough to charracterize
the structure defined by operator scheme X = (I, o), on a family of
sets A = {4,}ic;. That because the problem is not tosee how the opera-
tions defined by operator scheme are computed, but it is enough to say
that for each @ € Q, wa will select the domain and codomain of operation,
so that

(). (5, €5 «vus 2y 1) € 0x
(2) (al, Ao, oo, an)m,,-liz._,q-”,; = A1g 0o AuWi. iy for each a, = A'.k‘
=12 ..., n and aa, ... @ .. 55 € A;

For the algorithmic point of view this definition must has a comple-
tion in the sense of indicating how the operations w,,. . ;; are computed.
That means, that from the algorithmic point of view it is not enough
to say that n-tuple (ay, @, ..., 4,) belongs to the domain of ©ij,. iy
Tt is necessary also to indicate the way of depending of the building
process of aja,, ... 4,0, 4y DYy the values of a,, a, ..., 4, That
can be better seen considering this process as an algorithm described by
a sequences of steps. The order of the execution steps is given by the
values of a;, @, ..., @, which are data of the algorithm.

In the usual cases of operation in the numerical structures, this aspect
is not very clear beacuse the numbers have two different determinations,
On one side as symbolic names and on the other side as values of these
names, The value of a number is predicated by its symbolic form, or in
other words, the value of a number is implicitely given by its symbolic
representation. If we consider that speaking about sets we use the name
of their elements, considered as variable on these sets, then this double
aspect of the name and of the value arise immediately.

n

199 {EODOR RUS 14

' § The above observations lead us to a generalization of the notion of
operator scheme. That arises by determining an operation under the follo-
wing conditions : . _
(). A function I* — I which will select the domain and codomain of
operations. |
(ii). A composition law for the elements of the selected sets by (i).

(ili). A state word of the operation which will indicate the way in which
the process of building the resultis depending by the value of the operands.

For clarifying this condition (iii) let us take an example. Suppose
that A is a set of predicates, B is a set of operation names and C is
a set of operation names too. In the programming languages often we have
constructions of the form if A then B else C. Let us denote the type_ of
A by 1, types of B and C by 2 and the type of the above construction
by 3. ‘Then one element of an operator scheme as (1, 2_, 2, 8) is not enough
for showing what we expect from our operation. This element of operator
scheme should be written (if 1, then 2, else 2, 3) or in other form ((1,
2, 2), (if, then, else), (3)). This is not only an example in programming
languages. But we try to indicate a general scheme for this kind of operations,
using on one side the context-free grammars and on the other side X-alge-
bras defined by mIceINs [5].

By an operator scheme XS we mean a pair (I, «) whete ais a function
o:Q - O() X ST, where ST is a given set of words,” charracterizing the
selected operation by e, and called semantics selectors or state words.
In this way to each o = Q, will correspond by « a triple (iy, 45 ..., ,)
in the domain of we, (i) in the codomain of we and s € ST of wa.

Let now A = {A};=; be a family of sets indexed by / and a S
scheme as considered above. Then for o = Q, we have the followings
If (44, 45 ..., %,) € Dlwo), (1) € Rloa), (si, Sy -« Sup1) € ST(0a),
where by D, R, ST we have denoted respectively domain, codomain and
state words of the operation wa, then for each a,< 4, (S111, Salta -)

Sy, Spy1) O% == S;A1Sely ... S,d,Sn11 belongs to A,

In this definition w is not explicitely represented in the result because
sometimes it is represented by one of the semantic selectors or state words.
But sometimes it is necessary to explicit them in the form of the ,,name
of operation” or ,,name of result”. In this case & will be a label of ‘Fhe
result and we shall be able to define operations on these names too, being
able in this maner to have an algebraical description of the algorithmic
processes. The form of representing of these labels, when used, will be
O $101S385. . .S,a,Su41 OF avoiding any ambiguity in the form wiqg,...2,2:
$10155@5. .« .S,4,Sx+1. In this way the labels becom themselves operands of
thef type 7. .

A family of sets A = {4,};<;indexed by I together with all operations
defined by a ZS-operator scheme, XS = (I, «), where «: Q — O(I) X S1
will be called a XS-algebra.

When ST = ¢ then ZS-algebra is just a X-algebra.

15 SOME OBSERVATIONS 193

3.2. 1.S-Algehra assoeiated to a grammar

Let G = (Z¥% Vy, V5 P) be a given context-free gramnmar, supplied
by a semi-Thue system (%, P) and D = (2%, M, Q, Z, o, %) be X-cate-
gory generated by (X, P). The language generated by G is defined by
LG)={we Vildxs M, Q(x) € Vy, Z(x) = w}. As we have shown there
is an unique decomposition of P in the stbsets Py P, ,..., P, so that
theorem 1 hold. Using this dccomposition we shall define now in L(G)
a structure of XS-algebra. For that, let us use the following notions :

By the index of G we shall understand the set V, indexed by its
elements. For avoiding any misunderstanding we denote the index of G

by I;, supposing that /;is a set of gatural numbers so that the following
hold :

(i). If + I; then there exists 4; & V;

(@3). If 5, j =15 4 #j, then there exists 4, 4, € V,, A, # Ay
Given a production p € P, p = (a ,B) then pri(p) = o, pro(p) = =
=5:418,45. . .5, 4,80, 8 € Viors,=A A, €V, i=1,2,...,5n n+1

By pry(p) we shall denote the sequence (s, Sp ..., S, Syq1) and by
Pryy(p) we shall denote the sequence (A, A4, ..., 4,). By I(pry (P))
we denote the scquence (4, 4, ..., 4,) where 7, is the index of 4, in
I, for k=12 ..., n

For the decomposition of P in the subsets Py, P, ..., P, let us

consider the following sets :

Si=\ rya(8), O = U Tprvy (). Ts = I(pri(2)

PP,

It is clear that to each p & P; we can associate a triple (0;, s; t;) where
0,€0;, ;= S;, t; € T;. The triple (0;(p), si(p), ti(p)) will be called ope-
ration scheme supplied by p - 0,(p) is called domain of the operation,
ti(p) is called codomain of the operation and s;(p) is called state word or
semantics selector of the operation. Iet now

Z; = {(0i(p), si(p), L(P))] 0ilp) = Oy, s;(p) € S, L(p) = T}

be for a given subset P;,, and we call it operator scheme of the subset
P;. For the grammar G we can consider

called respectively domains of operations supplied by G, state words or
semantics selectors of operations supplied by G, codomain of operations
supplied by G and operator scheme of operations supplied by G.

6 — Mathematica — Revue d’'analyse numérique et de théorie de l'approximation — Tome 4, No. 2/1975

194 FROPOR RUS 16

Exemple: Let G be the grammar from the example in 2.2, where
we consider for X, the index 1 and for X, the index 2. Then we have:

Io={1, 2}, So={ab, ¢}, Sy={(A A A). (& b), (o A)}
Op={() ()b O:={(1 2, () @} To={1) @)}
Ty = {(1), (1), @} Be=A((). (@), () (().). @)
2 = {1 2, AAA) (1) (1. (@ 8), 1), (@) (A), 2}

Using the notion of XS-scheme defined by a grammar G, we shall
define the operations in the language L(G). In this way the structure of
the language will be described by a structure of XS-algebra, XS-algebra
associated to the language will be in the this way a characterization of
both, syntactic and semantics structure of the language. This will be a
result of the procedure by which we build XS-algebra of the language L(G)
in the form of free £S- algebra of words, by considering some interpretations
(or realisations) of this structure in some 3S-algebras defined on the
sets.

An operation described by anelement o € Zg will be defined as follows :
let X = {X}icr be a family of sets, indexed by the index I; of the
grammar. A pair (X, 1), ¢ =g will be called a set of the type ¢ If
forc € X, 0= (0, s,), then o = (i, 7, ..., %,), $ = (Sy Sos + v vy SpeSuats
l=(),iyelak=12 ..., mn1t <l €S, k=12 ..., n nt+l,
then the operation defined by ¢ in X = {X,}ieryis defined as a _composi-
tion law @, it S1 % Xpy XS X X X 8, % X;, — sy1 * X; where s, are
semantics selectors of the algorithm steps in the process of evaluating
of @i i If all s;=A, i=12 ..., 7 n—+1 the operation is defined
as an usual heterogeneous operation, that is, the corresponding algo-
rithm steps of its evaluation are sclected in a standard way. A standard
selection of the algorithm steps can be defined on some components
of the operation and a non standard selection (which depend of the selected
semantics for operands) can be defined on onther components. The first
will correspond to s; = A and the second will correspond to s; # A. The
symbol * was used to ditinguish by the symbol X of the cartesian product.

Given a grammar G and X, the 2S-scheme associated to G, a family
of sets indexed by I; X = {Xi}ic,, together with all operations supplied
by % in X will be called XS-algebra associated to G and will be denoted
by ZS(G, X) = (X = {X}ie;er Z¢)-

Let now define the XS-algebra defined by G in the language L(G)
For that we shal build XS(G, L(G)) as a frce XS- algebra of words as
follows : Let L(G) be considered as the set of all strings of the language.
Then we have:

€L

1CI

17 SOME OBSERVATIONS 195

(1) So € L(G) being considered as individual constants of XS(G, L(G)).
(ii). Let now be w,, w, ..., w, < L(G) of the types #;, 15, ..., %,

ando € Z, 72 1. Ho=1(0 s f)andif o = (4, %5 ..., 1,) then we can
write _c(wl, Wy, ..., W,) = S1W;SWs . .. S,W,S, 1 0T using the operation name
iy Iy $1W1S5%W5 . . . S, 0,841, Of course, o(w,, w,, ..., w,) bclongs to the

language and has the type ¢, where #= (7). Now, because L,(G) =5,
and because L,(G) < L;.4(G), 1+ =0, 1, ..., n, L,(G)= L(G), we can for-
mulate the following theorem:

THEOREM 2. For cach 4, 0 < i < n the language L;(G) 7s a free ZS-
algebra of words, generated by LyG) U Ly(G) u ... U L; 1(G), with the

operator scheme X;. = O X; and will be denoted by
=0

]

Li{G) = ES(L,(G), Zy).

_ In this way the free T -algebra of words supplied by Gin L(G)can be
written as the pair

2S(G, L(G)) = IS(L(G), =)

This tesult was obtained by considering only operations of the n-arity
0, 1, and 2, that is by reducing the grammar to a Chomsky normal form
in the paper rRUs [6].

~ From the above theorem it followst hat we have on one side the overlap-
ping of the language and on the othef side the XS-structure definedon
each level of the language. Also, theorem 2 show us the relation between
levels from the generation and structure point of view.

We can define now the semantic domain of a given language in the
follo.wmg way: Let X = {X}ier, be a given family of sets indexed by
the index I of the grammar. ZS-algebra (when is defined) ZS(X, G) =
= (X = {Xi}ic1p Zg) is called an element of the semantic domain of
L(G). Because the XS-algebra of the language L(G) is ES(L(G), G) =
= (L(G), Zg), it is similar to £S(X, G), we can define an homomorphism
H:L(G) - ZS(X, G), called semantic homomorphism in the following
way :

(i). First we define H on the structure associated to L(G), which is
generally a finite set (or denumerable set). For that let w < L(G) be
an element of the type ¢ € I; Then H(w) will be the injection of w in the
set X; which has the same type as w.

(ii). Let us suppose that /I was defined on the levels L,(G), L(G),....Li{G).
For extenison of H to L,,;(G) we proceed as follows: If w = L, ((G),
because Lo(G) U Ly(G) U ... U L;(G) is the set of generators for L;y(G)

there exist the strings w,, w,, ..., w, form |J L;j(G) and ¢ € g4
j=0

196 TEGDOR RUS 18

so that o(w,, ©,, ..., W,) = W, OT W = G4, iy $1W15:Ws - - . S,¥,S.11. Then
we have

H(w) = Wy, iyt - SlH(w1)52H(w2) e wnH(wn)SN+1

In this way the semantic homomorphism defined on the first level of
the language will be homomorphic extend to all the language. The homo-
morphism H is in fact an interpretation of the language in the XS-algebra
defined by G in the family of sets X = {X;}ic I This interpretation is
given by a constructive method and describealso the role which state words
have,

The set of all XS-algebras defined by a given grammar G will be called
semantic domain of the language generated by G. It is quite clear that
a language has a family of semantics, but each element of this family
has a structure similar to that of language, because it is defined by the
same grammar. It should be interesting to study the classes of lan-
guages defined by some identity relations defined in XS-algebras. We should
obtain in this way the varieties of the languages.

3.3. Relations between languages

In the last part of the paper we shall define the relation of transla-
tion between two languages. For that let two grammars G and G’ be
given and the languages L(G) and L(G') generated respectively by G
and G’'. We suppose that G and G' are context-free and that operator
schemes defined by them are respectively X, and Zg. First of all we
shall define the notion of representation of Z,-scheme in Zg-scheme. For
that we define a structure on g using some composition law in g as
in coun [4]. Let for that I be the index of G'. If ¢’ € Zg then ¢ =
= (0, s, t'), 0 € I, s €Sg, ' € 1; Let N be the set of all n-aryties
of operations from O(I¢)). As we have observed O(I) can be indexed by
the set N, O(Is) = {0,({¢)}nen, and if I¢ is not empty then N is not
empty too.

A function B:N* » N will be called an operation scheme on O(/g) if
the following conditions hold:

(i). For each (uy, %, ..., #,) =K' which belongs to the domain
of B there exists in O(l) the operations oy, 05 ..., 0, of the n-aryties
Ry, gy o ovy My _

(ii). There exists a function 0,: I X172 X ... X]Z& — I, where n ==
= B(ny, My ..., %)

(iif). There exists an operation 0, € 0,(I¢) so that the composition
0,(0, 05, ..., 0,) is defined in O({s/). ‘

19 SOME OBSERVATIONS 197

(iv). There exists an operation o & 0,(Is), o0:I¢ — I denoted by

0%0,;,6 6,), where n = B(n,, ny,, ..., m,) and I¢ belongs to the codomain
O d-

(v). The following diagram of operation composition in O(I¢) commutes

ny s _n, 3
IG', x fG‘?’“ x 1 ¥ j;,‘ wu_f:‘:’ o ‘[G’:’
01] oy O o{8:,6,)
¥
I x [Gr X ___ X ‘IG' e
Fig. C

TLet now ® be a set so that ® n N=¢ and a function : @ —
— O(N) where O(N) denotes the operation scheme as above. In this
way we have defined on the set O(Ig) of operations on Is a Z-algebra
Because Xe is a subset of O(/¢) the restriction of this structure to the
set of operations defined by ¥; will be called a Z-structure on X4 and
will Dbe denoted by 3¢ = (6, Ng). The effect of some operations
0 e ¢ is described in the following way: let 4 = {A;}ic1,, be
a family of sets indexed by I and 0 = . 30 is an operation in O(N).
Let this operation be 6:N* — N. Then the operation supplied by 0
in 4 = {A}ier,, is described by the diagram

Ao . 2y, 2 A &,
(Acl X/lczx.._ P ’4%].,’\ x \/AL{ X/]/,zg -‘f»--K,-A,a;.; Jx_x Ak Fhegh XX .v’«,’/,';,_ff,) j—d'*/flg],x—--x/un
o0 wy ocg)z’ ey ’ & wp
; . , . &
Ag{ " 432 Py ,.43&. ST R

Tig. D

The process which is described by this diagram is as follows :

(). The operations oy, 0y, ..., 0, defined by X on the family 4 =
= {A.-};.EIG, are determinad by ow,, ow, ..., «w, . To these operations
are corresponding in 3¢ the operation cw = 0(0,, 6,) where §; and 6, are
described by the diagram of operation composition.

(ii). The domain of aw (aw), aw, ..., cw,) where aw, is given by the
operation 0,, is given by the codomain of 0, and the codomain of aw,
(ewy, aw,y, ..., aw,) is given by the codomain of 0,

(iii).. The effective construction of the result is made by a special
composition of awmy, aw,, ..., aw, indicated by aw,. In this composition
sometimes we must use a state word which is determined by the state
words of given operations from the composition,

198 TEODOR RUS 20

Let now Z5(4, G) and XS(B, G') be two XS-algeb i

_ a , gebras defined b
% and .ZG, in the families 4 = {4,}ic;, and B = {B;}ies, and a pai};
of functlo‘ns (F, 9), F:4—-B, :1; »>I,, F = Filier, Fi: Ai = By .
An operation o defined by 3X; is called representable in X(Z¢, S¢) if
there exists in ¢ the operations 65, 65 ..., 05 and 6 € 3 so that the
transformation of the effect of ¢ on the family 4 = {4}ier, by (F, o) is

equal to the effect of 6(sy, o), ..., 05) on the transformation of the family
A = {4}jer, by (I, @) In other words, ¢ € X; is representablein Z¢ if
the following diagram commutes :

s AL XX A, L . A
1 (%) l(az #)](Fin) (7,9)
BP(,) x BPGy) % x BP(i) —Cr e Bpw)
0 7 G T O, -0)

A,)
(Bo,.x_..xag,’;lh({i;f g, Nﬁ/.':'z} ® (Bi,"szL; X.. X&g,:;l _(9:{,,__&4 x..x Bip

Fig. E

Of course, here is implicitely postulated that the result types of

o, 0y - o Oh is @), @), ... 9(5).

If ¢ = X; is representable in ¢ for every family 4 = {4};c; and
B = {B]-},-GIG, for which the structures X; and Zg exist, then we say
that o is completely representable in 2.
~_The operator scheme X; is respresentable (completely representable)
in %G' if each element o € s is representable completely representable)
m G’
' qu a given ¢ € X; even there exists a representation in X, that is
not unique. If we shall denote by R(s) the set of all representations of
c in X¢ sometimes we can defline an ordering relation on R(s), having in
view either the criterium of minimal number of operations ¢’ - X which
contribute to the representation or the minimal n-aryties of these operations
In the programming languages the first criterium leads to so called transla-
tors which generate programs with high speed and the second criterium
leads to trauslators which generate programs with an economical use of the
memory space.

Let now G and G’ be given, We shall define a traunslator T: L(G) —
— L(G') for a given representation of X; in X;. For that we shall use
the structure of free XS- algebras of words of the languages L(G) and L(G)
respectively XS(L(G), %) and XS(L(G'), Z¢) Because these structures can
be considered on the levels we have:

Lo(G) = ZS(Lo(G), o), Li(G') = ES(Ly(G). Sop)

21 SOME OBSERVATIONS 199

Yor 6, € I, let #(ag) = 0(cy, oh ..., o), 6i € g, 1=1, 2, ..., n
be a given representation. Because o, = ((), (s), (t)) using the representation
functions we have F(s) € Sg, ¢(t) = I and oy = ((), (F(s)), (@(?)). In this
way we have for every 6, € 2o, a representation by only on operation gg in

2o Let us suppose that T is defined for all L. (G) as above. Because

L4(G) is a finite set, T can be easy build for L,(G). For the programming
languages T : Ly(G) = Ly(G’) can be represented by the algorithm of scann.

Let now L;(G) = ZS(Ly(G), Zi) be given. We know that L,(G) is freely
generated by Lo(G) U L(G) U ... L;_1(G). Supposing that T has been
defined on these levels we can build T on L;(G) as follows: let
w,, W, ..., W, generators and ¢ € Zfo so that o(w, w, ..., w,) belongs
to L;(G)and 7(c) = 8(s}, o5, ..., o) the given representation of ¢. Becau-
se w,, W, ..., W, are generators they can be supposed that have already
translations T(w,), T(w,), ..., T(w,). Then the translation of o(wy, Wy, ..., W,
will be the expression

0(ol, of ..., on)(T(wy), T(wy), ..., T(w,)) = L(C)

Because L(G) = L,(G) the translation T defined above is well defined
on the language L(G).
THEOREM 3. Let G and G’ be two contexi-free grammars and L(G)

and L(G') the languages generated by G and G'. For every given vepresentation
of Z¢ in T tramsiation T: L(G) — L(G') defined above is semantic preser-
ving.

Proof. In order to proove.this theorem we shall consider an element
of the semantic domain of L(G), ZS(4, G) = (4 = {d}ic1,. %) The
semantic as it was defined is a homomorphism H : L(G) — Z£S(4, G) For
the sake of demonstration we shall consider now the diagram

(55(L(6)),5,) —X—w (55(L(6)),5¢)
|H LHl
35(A,6) — o (F(A), R(Z4))
Fig. F

If this diagram commutes then the theorem is proved. T, and H, ate
induced functions by T and H. Having in view that R(Ze) € e it
follows that ZS(F(4), R(Zg)) is an algebra similar to a subalgebra of
TS(L(G'), Z¢). In this way H, is a homomorphism. In the same way T,
is a bomomorphism. If T,H = H,T on the set of generators then by exten-
sion the equality holds for all algebras. Choosing now I the identity on

200 TEODOR.RUS . - 29

I

the family 4 = {At’}iefc the relation T,H = H,T on the “set of generators
is obviously from the definition of the semantic and of the representation.

Observations 1. For the programming languages, when L(G)
is the source language and L(G') is the object language the translation
can be built as follows :

(i). Define the structures on L(G) and L(G").

(i1). Choose the representation of 2 in 2.

(iii). Define the translation on data base structures, pimitive operations
and control sequiences, that is on Ly(G).

(iv). Translation of a program is built having in view its representation
in L(G) by means of the generators on one side, and on the other side the
corresponding representation in L(G') by means of representation of 2
in Zg, and using the function defined by (iii).

In this case the syntactic analysis problem and semantics anaylsis pro-
blem are solved together.

2. Theory of representation of an operation set X; in an other opera-
tion set X has as origin so called clones of operations defined by coun [4].

3. The translation T of two languages L(G) and L(G’) is a relation
because the representation of X; in ¥, in not unique. But, for a given fixed
representation, T becomes a function described by means of an algorithm,
whose program is called compiler,

REFERENCES

1] Hotz, G., Lindeutigheit und Mehvdeutigheit formaler Sprachen. EIK 2: 4, 235-.246
(19686).

(2] Griffiths, T.V., Some vemarks on devivations in general rewriting systems., Information
and Control, 12, 27 —54 (19G8).

[3] Benson, D. B, Syntax and Semantics : A’ categorial vicw. Information and Control, 17,
145—160 (1970).

[4] Cohn, PM., Universal Algebra. Harper and Row, New York, 1965,

[6] Higgins, Ph. J., Algebras with a Scheme of operators. Mathematische Nachrichten,
a7, 115132 (1963/64),

[6] Rus, T. Algebra limbajelor formalizate. Studii si Cercetiri Matematice (Bucuresti),
183, 9, 1309 — 1324, (1967).

[7) Salomaa, A, Lectures i Avhus. Danemark, January 1972.

B8] Rus, T., Tratarea algebvici a limbagelor formalizatc. Studii si Cercetdri Matematice
{Buenresti), 19, 2, 259—272, (1967).

Received 1, XI. 1973,

Institutul de Tehnicd de Calcul
Filiala Cluj-Napoca

