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1. Introduetion. In this paper we are working with some special systems
of splines, which have been proposedaby ScHONEFELD [13] to form simul-
taneous bases in corresponding Banach spaces of differenfiable functions,
For this let us recall the basic notions. The sequence (f,; n=0,1, ...)
C X is said to be a (Schauder) basis of the Banach space (X, || ||} iff each

clement f X has an expansion (convergent with respect to the norm 1R))

f=3 af.,

n=0

with @, uniquely determined by the element /- We are interested in the
Banach spaces C"(I9of m times continuously differentiable functions f
on the d-dimensional cube 14, where I — 0, 1>, with m 20, d > 1.
SCHONEPELD [13] [14] has introduced the notion of simultaneous basis for
C™(I9), i.e. such a sequence (fu:7m=0, 1, ...) which is a basis in each of
the Banach spaces CH(I%) for all £ =0, 1, ..., m. This notion is very
useful because of the following theorem. (For details see [13] and [14], and
for special cases see also [4]).

THEOREM A. Let F = (fo, f, ...) and G = (8o, 1, -+.) be simulta-
neous bases for C™(I°) and C™(I%) respectively. Then the tensor products
(fo X &0, /i X &0, Jo X g, fi X g1, ...) suitable numbered form a (simultane-
ous) basis for C”([4+¢).

The first example of a simultaneous basis for CYI) was given by
CIFSIELSKI (2] and then used independently by cigsigLskr [3] and
SCHONEFELD [12] to give a basis in CiI9), d=1,2, ... Other examples of
simultaneous bases were given by cmsreLskI and DOMSTA [4] for C™(1)
with any m > 0. One of the examples namely for m = 1 was investigated
Independently by RADECKI [8]. These systems are orthogonal with respect
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to the usual scalar product. They lead to orthonormal (simultaneous)
bases for the spaces C™([4) with any value of m> 0, d > 1 and also for the
corresponding Sobolev spaces W3(I%), with p = (1, <o).

Moreover SCHONEFELD has constructed a simultaneous basis for the
space C*"(T), where T denotes the torus, for any m > 0 [14]. These systems
are interpolating in the sense of sEMADENI [15] with respect to the diadic
rationals, and they lead to interpolating (simultaneous) bases in the spaces
C™(T%) with any m and 4.

The last author has proposed also [13] a construction of interpolating
simultancous bases for the spaces C*(I). The proof given in [13] of exis-
tence of the proposed systems and of their properties depends essentially
on some special sequences of matrices and was given only for 0< m< 4.
Our purpose is to complete the proof for all values of m = 0, (see Theorem 1).
As a consequence we may state that for any M of the form

M= x1T

we have a (simultaneous) interpolating basis in C"(M), for m > 0.

The most interesting property of the considered interpolating basis
in C2#+2 (I) is the order of approxifiation of continuous functions by the
nth partial sum, whichiis estimatedfrom above by the modulus of smooth-
ness of order 2m -4 3, i.e. by Way 4 ([ l) . It appears that a slight modifi-

1
cation of the Schonefeld construction leads to interpolating basis of splines
for C?12 (I) which approximates with the order wem 4 {f, i). It should
v 7
be noted that analogous results were obtained by sunBorIN [16] for the
interpolating spline bases in the periodic case and by crEsIELSKI [5] for
orthonormal spline bases on the interval.

Here we are interested only in the property ,,to be a simultaneous
basis” for the systems proposed by Schonefeld and therefore their approxi-
mation properties are not considered. This will be discussed together with
the modified system of interpolating splines in another paper.

The main result of this paper concerns the mentioned above family
of matrices and is contained in Theorem 1. It should be noted that this
theorem is very important for all investigations of the interpolating splines
on the interval (non-periodic case). '

2, Spline funetions. Tet S ={s,:7 €2}, with Z={0, £1, .. B
be a set of reals numbered as an increasing sequence: ... <TSi1 <C$§; <
< $i41< ... without limit points. The tunction f = C"(R) the mth deriva-
tive of which is continuous, m > 0, is said to be a spline function of order
m (degree m - 1) iff it is polynomial in each of the intervals I; = <Is;_y,
sj). The clements of S are called knots of the splines. The set of all spline
functions of order m, m > 0, with the same set S of knots is a linear space

and is denoted here by CY¥(R), R = (--o0, o). In the sequel we shall be

each
| ‘Dme-l

; denote the jump of this derivative at s; for 7 € Z, ie.

3 INTERPOLATING SPLINE BASES 7

1nte1}ested also in the spaces C§<a, b}, of splines restricted to the interval
{a, :})1C R. Obviously this space depends only on the set SN (a b)
ot he properties.of splines have been investigated firstly by SCHOENB’ER[‘-
st ([1‘]111[511&111{! of their works. We s_hall use only these which are cmntaineti
m —11] and [6]. The most interesting for us concern the B-splines

¢ define them as follows. Let [sy, sy, ..., s,: f(+)] denote the divided

difference of order » tak t i :
and for 1’? 1 en a pOIH'tS sﬂl 31, ey Sr! 1.e. l:sl]; f( ')] :'_f(su)’

1 coon 81 f(0)] — 5o, oo

s, — 5,

[So, - 0,8 f(1)] = b Sreas SN

the points being different. For each ; € Z w ] .
; 2 e define the 7th B-spli
order m, corresponding to the set S of knots by the formeulza Brspline of

P [€D)]

(2.1) N = (ssomer — sic)) [Sica, ooy Sipmpr; (-—8)"F'] for
i

where x, = (max{0, x})! for I =1,2, ... Obviously, the fonction N{™

'defined by (2'.”1+)1 is a spline function for each i € Z because the functions
Jll) = (s — %" are such whenever s = s, = S, for some i < Z.

te R

Lemma B (cf. [6] and also [10]). For ;
we have the following relations : LR g ook Tl

(2.2) NM@#) > 0 and supp N — $Sicty Sipmar),
(2.3) SN?") (Bt = (Siomsr — s;20)/(m + 2),
and for t € (—o0, o) we have moreover

(2.4) 2, NM@B =1

The finite system (N{"; supp NI ) (a, b)# @) is a basis in the

finite dimensional space C¥(a, by of splines restricted to the interval

{a, by C R,

In particular the functions N™, i = —m n, form a basis in the
5 W 5 a

(# + m 4 1) — dimensional space Cy'{so, 5,0 = C§<(s,, s,>.

Itm}s 1Z:lrbvigus that th:{e (m 4 1) st derivative of a spline is constant in
e intervals Ii = (s;_,, 5;), and therefore we can denote by

i th@ version \«']lC 1 l I I[ I,e oreove 1)
m he
g .

m42 " " -
D= D" f(sg) — D (i),
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Lemma 1. For ecach f € CY(R), the sequence D}'™* satisfies the follo-
Wing equations :

25) T Ns;) DI = (1 4 1) Wsimer — Sicm ) [522, -

j=z

vy Sidmtt :f( )]

This lemma is equivalent to the formulas (7) and (8) of [1], but it seems

to have a slightly simpler form. Also the proof is very simple. For this

let us motice that it is sufficient to prove it for f(s) = f,u(s) = (s — )% "

for any k € Z. But it is trivial in view of (2.1) and the following identity

D= (m + )13 whenever k, j < Z

The B-splines corresponding to the case of equidistant knots, i.c.
whenever
$; — Sjoy = h = const. for j €%,

possesses very interesting properties. For completness we recall them

here. Therefore we denote by M!" the original B-splines of SCHOENBERG,
ie.

(2.6) MY = (m + 2T — 1, ..., i 4m+1; (=81,
for 1t € Z, { « R. For cach m > 0 we have the following identity

27) M™M= MU0 44 = MP (=t ford, je7,

~J

t = R,

which denotes the translation invariance and the symmetry of the B-spli-
nes in the case of equidistant kuots. The general case of # > 0 is connected |
to the case of knots at the integers with a help of the formula '

(2.8) N = MEP() with £ = s, + A’ 4 ©) for £ = R.

Moreover, the scalar products have the following representation (cf. [11]):
°2 2 |
(2.9) S MM GMM(dt = MP730( — 1) for i, § < Z.

= ¢}

According to the last three formulas and Lemma B we can state that the
numbers
V=N /

(2.10) GI" = MZ(1)  for
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satisfy the conditions

(2.11) G™ =G >0 and G = 0 iff 1] > m + 1,

E G(lm) =

leZ

(2.12)

A non-trivial property of the numbers Gl

following may be expressed by the

Lemma C. (cf [11], Lemma 8 of. also [17)

. The rools ™, § =
=x 1 ..., & (m 4 1) of the function It

m—+1

g = 3 Gl

l=—m—1

(2.13) for zs (

are all simple and negative. Moreover we may enumerate them as follows

(2.14)

) (s

(m) P
Mh <<l < —1<y® <<y, <0

In this case we have also

(2.15) Y = (y")~Tfor i = £+ 1, ..., d(m + 1),

Applying the notation (2.6) and the following ones D — D f1(s)
_ f [ ;

Dm +1 == m+1 -y - m : ‘
| | ; D f(sj ) = D Flf(sj—l)’ D] +2 D]?_I-l:il __ D;‘MTI,
for j & Z we can obtain from T,emma 1 the following

Lemma 1’ In the case of equidi i
. -y quidistant knots, ie. s; — s, = i
7 € Z, we have satisfied the Jollowing equations : S Spin = Al

2.16 () (NDm+2 —

(2.16) ,;;M"' (NDy*2 = (m + 2) s, , ... ., et gl 7 )
21 L (m 9 m- .

( 7) j; A[f )('7)])/ = (111 + 1) ' [S'i»—l’ o sl"‘k!”" f()];
(2.18) ZMgm)j ngn =mlls, ..., Sibas 1l () s

i€

Jor all i = 7 and f e Cr(R).

Proof : The equations (2.16) follow i i 5

N ) s .16) Immediately from (2.5) — (2.8

For ‘Fhe ‘];)roof of (2.17) let us restrict to the tunctions f, (s) — £, ( (s)) (se(e th)el

proot ofil.emma 1) for which Dr = (m 4 1) 1.5 e tl‘fglright hand
fik+12

side of (2.17) equals (m + 1) M (k 4+ 1). On the other hand we have
(m + 1) I[s.

A S st'+m ; v('_—sk),-ﬁrH I ( _—Sk+1+)m+ll] =
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= (m 4+ ! (mn+ Qhfs,_,, ..

q o Siw‘-m—rl ; ( =5 +1)’l+1] =

= (m + I M™ (R 4+ 1), for all ¢, &k = Z.

An analogous proof deals for (2.18).

In the sequel we shall take the order of the splines equal to (2m 4 2),
with fixed parameter m > 0, if nothing else is said. For this the indices m
or 2m + 2 respectively will be omitted very often.

3. Some special splines. Iet us notice that for f = Cz+2 (R) the
equations” (2.17) read as follows

(B1) Y060 Dmis = 2 + 3) L [ —m —2, .., 4w 15 f()]

i<t
for ¢ € Z, where the notations are used
(3.2) D¥its = D3 f(j-) — Dt f(j — 1+) for | < Z,
3.3) G o= MEEB(1) = (M, M{™) for | = Z,

(cf. (2.9) and (2.10)).

Let us denote by C2+% = C24+2 (0, n) the space of splines of order
2m 4 2 on the interval (0, »), with knots at the points 0,1, ..., #n, » >
= 2m +- 3. To investigate the Schonefeld construction of the spline basis
in C**+2 (1), let us consider the subspace C wt?of €232 defined as follows.
The spline f belongs to Cﬁ:’é“ iff the , boundary conditions” are fulfilled

(3.4) D8 =0 for j=1,...,m+ 1L, n—m ... 5

It is obvious that this space Cuo 1s at least (# + 1)-dimensional. According
to (3.1) each f = C,, satisfies the equations (3.1) for 1 =m + 2, ...,
n—m-—1, if we take into account (2.11) and (3.4). Let us notice that the
matrix (G5 4, j=m+2, ..., n—m—1) 1is non-singular as the
Gramm matrix for the linearly independent system of splines (M, i =
=m-+2 .....,n—m—1), (cf. Lemma B and (3.3)). Therefore the
equations (3.1) give us a one-to-one correspoudence between the values
D]?’”'*"’, J=m+2 ..., n—m—1, and the values of the differences

(3.5) APt = [i —m — 2, ..., id+m+1;f()],

with ¢ = m 4 2, ....,némw Il

Further, let us consider the mapping o, : C,o —» R#+1, where (e, f); =
= f(z). According to the above remark the kernel Ker o, of this mapping
is trivial. Indeed, let fi) =0 for ¢ =0,1, ..., u Then, according to
(3.1) and (3.4) the (2m + 3)rd derivative D> +3 f of this function equals zero

7 INTERPOLATING SPLINE BASES 11

in each point of the interval <0, #). But the unique polynomial of degree
not exceedlpg 2m + 2 with 1 4+ 5> 2m + 4 roots 0,1, ...., # equals zcro
too. As a simple corollary we obtain the following

Lemma 2. The space Cint2 of splines of order 2m + 2 on the in-
terval (Oﬂ, ny, which satisfy the boundary conditions (3.4) s (n 4 D-dimen-
stonal. Each function f < CIet2 s wmiquely determined by als wvalues f(i),

withi=0,1, ..., #n Jor wz=2m + 83, m> 0.
Our further burpose is to investigate the inverse matrices for the
matrices (Gy_;; 4,7 = m 2, oy H— o — 1) with any value of » >

2 2m + 3. In the proof of our main result (Theorem 1 of See. 5) we shall
deal with the notion of diagonally exponential matrices. The corresponding
for{l'lahsm, mtroduced in [7], Sees. 5 and 6, we recall here in the next
section. '

4 Diagonally exponential matrices. We begin with the basic dfini-
tions given in the following

Detfinition D. The Jamily {M,:n =0, 1, ., .} of matrices M, =
=(My.;;47=0 1,1, n) 1s said to be

Ly. diagonally exponential (d.c.) i or all n the follow: 11
.o dzmgm? Pl b (d.e.) #ff for all n the Jollowing estimates of

(4.1) M5 1< Cglisil, for 4, 7=0, ..., 5 n>0,

with some constants C ~ 0, g = (0, 1).

2, of almost null rows (a.u.r.) (or almost null columns (a.n.c.) respec-
tively) if for all w the numbers of clements of the Jollowing sets are uniformly
eshmated by a constant, i.c, .

4.2 # My #20 <K Jor i =0, ... 0 nx0
(or
(4.2 A {0 M, # O} < K for j=0, ., Lo, =0,

respectively), with K ~ () independent of i (or 7) and n.
3. of l-shape of the second kind, with / e {0, 1, ...} iff for all » >0

(4.3) Myj= 8i; for i =141, . o —1—1,7=0,... n
4. almost diagonal (a.d.) iff for all n we have
(4.4) Mij =0 whenever |7 — j| > i,

wh some constant I independent of n.
'Note that ‘(4.3) implies (4.2} and that (4.4) implies (4.2') and (4.2").
The following lemma is not difficult to be proved (cf. [7])
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Lemma E. Let {M,} and {N,} be two d.e. families of matrices with
the same set of indices n = 0,1, ... and for each n let them be of n + 1 rows
and columns, i.e. M, = (M, ;:4,7=0,...,n) and N, = (Ny,;; 5 =0,
coo,n) for nz 0.

(T.1) If moreover {M,} is of am.r. or {N,} s of an.c., then the family
of products {M,oN, :n> 0}, where

(M”ON“);'/; i El‘ln;i,j i Nn;o',h for 17, k= 0, Lo, R,
=0

1s diagonally exponential too.

(T.2) If the family {M,} s of the I-shape of the second kind, with 1> 0,
and with some positive constant b > 0 independent of n, the following estimate
holds

(4.5) |det (M) 2 b6>0 for all n 2 0,

then the inverses {(M,)='} form a diagonally exponential family loo.
The detailed proofs of the above theses are contained in [7], Lemmas
11.13 and Theorem 2.

It is useful to introduce also the notion of rotatively symmetric ma-
trices, which means for the matrix M = (M;,; ;14,7 =0, ..., n) that

(4.6) M= M, ;o forall i,5=0,1, ..., %

Obviously, the product of two rotatively symimetric (».s.) matrices is
a r.s. matrix too. Indeed, for any pair (4, #) we have then

ZZV[;',J' : Nj,k = EMu~¢,n~j 1 Nn—-j,nfk = (M ON)IL—i,n—h,
j=0 §=0

whenever the matrix N = (N;.; j, k=0, ... ,n) is also 1.s.

Note also that the d.e. property (4.1) leads to the following uniform
estimate of the sums

(4.7) Y5 IM,,il2C-(1—g)tfori=0,....,n #n=0.
g

As a simple corollary of (4.7) we casily obtain the following esti ates of
the matrix norms
jnax i 2 Jun; i, ij‘
i j

(4.8) 1M,]| = sup "< C (1 —¢g)
X#0

max | X/
i

for all %> 0, whenever (4.1) is satisfied.
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5. The inverse matrices for G, Our purpose is to investigate the follo-
wing 1nverse matrices

(5.1) MY = (G for n=0,1, ...

where the matrices G™ are given as follows

(5.2) G = G, = CE for ij =0, ..... n

]

and the numbers GV are given in Sec. 2 (cf. also (3.3)). "

According to the properties of the numbers G gi ! .
ven i
Lemma B) we can state the following 8 G

Lemma 3. The family {GS"; n> 0} is almost di i
_ ; m2 X . agonal (cf. (4.4
and hence of almost null columns and of almost wull rows. Their e.le(mmt(s m)'c)’
umfomgf)y bounded and hence the family is diagonally exponential, Moreover
each Gy, n> 0, is non-singular, symmetric and rotatively symmetric.
Now we are ready to prove the main restul.

THEOREM 1. The inverse matrices MY = (G) ™ with fi
. ) ' . n =G, with fixed m =0, form
« diagonally exponential family, i.e. (¢f. (4.1)) with some consmng Cf> 0

0 < ¢ < 1, independent of #», the followin timat e i
-y ek g estimates hold for the inverse,

(5.3) |M5) < C it for 4,5 =0, .....n n> 0.

- Proof : It is obvious that the d.e. property does not depend on a
finite number of elements of the family {M{"}. Thus it is sufficient to pro-

ve (5.3) for large enough n. For this let us take # > 2m 1 1 i
. gh n. > . Let
moreover the following matrices C, = (C,,;4; 7, k =+O, Le ;11)5 llxlrl(;(‘l;l =

(y™,_)} whenever k =0, ..., m,
(5.4) C,,;» = ¢Hj»= Hy_jwhenever k = m +1, .., n—m—1
(Ys‘m_)m;k_l),wj whenever R =un —m, ..., .

In this formula Y™, 1= —1, -2, ..., m — 1, denote the roots of the

function g (z) (see Lemma C). The numbers H{” are the coefficients of
the Laurent expansion

sl

(5.5) J ) (Z) = E flgm) P

-0

of the function
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(5.6) W (z) = (gom ()

defined in the annulus 7 < |z| < 1, where 7 < (v, 1) (see (2.14)).

Lemma 4. The family of matrices {C,:n> 2m + 1} 1s d.e.
‘The proof of this lemma is based on the following estimate for the

Laurent coefficients H{"”, which may be obtained from the Cauchy formula
|H| < Cp-qll, for all I € Z,

with constants C, > 0 and g4 = (0, 1) depending only on 7.
Now let us apply the Cauchy’s formula for sums of products of two
absolutely convergent Iaurent series. We obtain then from (5.6)

2 Gyi)ng{L_)j = §;,, for any pair 4, & € Z,

j€L .

(5.7)

This leads to the first part of the following
L emma 5. The matrices D, defined as follows

(5.8) D, =G, C, for nz2m4 1,

form a d.e. family, which is moreover of m-shape of the second kind (see (4.3)).
For large enough n, the determinants ave estimated from below

(5.9) |det (D,)| = &> 0,

by a constant b > 0 independent of n.
Proof : The required property (4.3), i.e.

(5.10) D;;; ik 8/,)»’

for 4, bk =m -+ 1, ..., n —m — 1 follows from (5.7) and for ¢ == m + 1,
oo —m-—1,k=0,...,mn—m ...,mn, it follows from the defition
of the roots y{” and the relations (2.15). The d.e. property of the family
{D,} follows now from Lemmas 3,4 and (T.1) of Lemma E.

Now we are going to prove that (5.9) holds for large enough values of .
First let us notice that D, is rotatively symmetric and therefore

(5.11) det (D,) = det (Du;a)?® + Olgp)

i|

as 71 — oo where g € (0, 1) is this number which expresses the d.e. property |

of the family {D,}. Moreover we have used the following convention of
notation for the submatrices

Dyaigy = (Dusigs © €4, j € o) for o, p=a, b, ¢

with §,=1{0, ..., m}, J,={m+ 1, ..., n—m—1}, I, ={n—m, ..., n}.

|

(5.13)
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It should be noted that in the detail 1 i
fact that {D,} is of m-shdpe of the ?eggngrli?éd(_)f (5.11) we have used the

On the other hand for each n22m 4 1 we can state the following

5.12) D,y = —
( ) Ma;a) D2m+1(“ ) — GZm+1(a ) O CZ;,L-’-I(a ) Gé::l,).u(ﬂ ) O C2m+1

(c;a)-

i bhus, according to (5.11) we are needed to prove only that the subma-
o ]23“"11(?1"] 1s non-singular, For the convenience we shall deal with c‘c
subindices 2m 4 1 to the end of this lemma, i

Ob“'lﬂusls’ t}.l(-.‘ Sllbllld‘ tl’lX C 1:q) 15 1101~ lIlg llal as tlle ball(lel lll()llde
{a ;a) S U
ermina t :h)l I.[f €1 t 1 111}.) 2T ) l&l (6] t}l(f [1§8)§ atl 1IX

C . - C‘J . 2 m—1r "
{c:a) m+1(c;e) 18 mon-singular because of the formula

Cein = By 0 Clasm 0T,

where the notationes are used

E(C;ﬂ) = .(Sj—»;;—l,k} ] =m 4 1, e, 2m LI VSN m)
P B (( I(e”i)m-»l)m»lil : 8‘,"/6 : ,7., k == O, ey, 7%).

The property (see Lemma C for definition of ')’(-"'))

41
Ggm) »(YEM))I = 0 for ¢ = _1, i

=Sy ey I — 1.

may now be written as follows

5.14 b ;
(5.14) (Ee;a)" 0 Gie;y0 Cpayay 0 (1)1 - Glas;a) 0 Cla;qp -+

0 G(“;_C) OE(c;a) OC(a;a) ol = 0,

where 0 denotes the null matri , 7
e 1X (0;; = 0 =
(i, j) th element of the left hand sige’]mat?i’x%eéualso, ity tadeed the

L, = , o
¥ E Sp—m—],, Gq 4 (Y"’“—l)q LB 8',.{ s ZGq—i (Yf—m—l)q i
q

gy r

-+ E Gp_,'SP_m—l,q (Yr—m —1)q+m+1 8,,]‘ =0

P '
lorg, j € J, = {0 m}, the indi i
e =10, ..., m}, ces g, » runming over J, and the i
over J, = {m + 1, ..., 2m + 1}. Comparing (5.12), (5.13) ande 22%64‘3:

We obtain that the submatri i
e C'n that ¢ 11X Dy, sy may be written as a product of non-

Diwia) = —= (Ete;)" 0Gpeay 0 Cpay 0 (1)1,

becayse ¢ i i
(c;a) 18 a trigonal matrix with iti 5 o)
gonal (comp. Lemma B for Nen+2) ango?fgt_lf 16))elzn:}e(rilts on the main dia-
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As a simple corollary of Lemma 5 and (T. 2) of Lemma ¥ we get
that for large enough values of n the inverses (D,)~! exist and they form
a diagonally exponential family which is moreover of the m-shape of the
second kind. For these values of # we can write (cf. 5.1))

M = C,0(G 0C,)™ = C, o (D,)%

Applying to the obtained formula the properties of the matrices C,
given in Lemma 4 and the properties of the inverses (D,) ! given above we
get with a help of (T.1) of Lemma E that the family {M{"} = {(G, ")~}

is diagonally exponential too, q.e.d.

2m -+ 3 let us de-

6. Construction of the bases. For ecach N =2 p >
+ 2 (degree 2m 4 3)

note by C2#.+2(I) the space of splines of order 2m
with knots at

. i .
Syy == for1=0,1, ..., N,
N

and satisfying the boudary conditions (cf. (3.4))

om4+1, n—m, ..., n,

ij"‘” =0forj=1, ..
where the notation is introduced
D}‘%m-}—:i = DQ!H L3 f(sl\"_,') fOI ] — 1, s ]\]_

It is not difficult to obtain the correspondence between the just intro-
duced spaces C%'2 (I) and the spaces C%.t? investigated in Sec. 3. In

particular the formula (3.1) and Lemma 2 deal if some suitable changes are
made, e.g. there is a one-to-one correspondence between the elements f of
Cirgr? (I) and their values f(s, ), + =0, ..., N. Moreover the equations

N—m—1

Z GJ(',Z)‘D' 'Z).?”H-3 = »(27/” + 3) ![SN,:'—m—T i

J=m+2 'n SN,;'+m+1 ; f( )]-

are satisfied with ¢ =m +2, ..., N —m — 1, for Nz 2m + 3.

Applying the above notations we can define the #th diadic point of the
interval I as follows

(6.1)

#n for » = 0,1,

. =
" San,2v—1 for n = 2, 3, W

where we define N and v as the unique numbers satisfying # = N + v
N = 2% with integers p. 2 0, 1< v N, for w2 2.

Following Schonefeld we can define now the proposed bases. Let the
parameter 7 be a fixed non-negative integer. The functions ¢ & C2»+2 (I)

are defined as follows
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1° For 0< »< 2m + 2 im
exceeding n such that ”

P () = 8

is the unique polynomial of degree not

(6.2) for 4 =0, ..., n, 0< n< 2m 4 2,

1,

2° For n> 2m - 3 Qim
13
values

(6.2')

Is the unique element of Core2 (1) with the

<P,(,M) (L) — 3[,,, {for P OJ s, 24\’, n > Din + 3

Now we are ready

to complete
all values of . prex

the proof of the tfollowing theorem for

THEO
» FEM 2. For cach m> O the sequence (@0, n 2 0) forms an inter-
polating simultaneous basis for the Banach space Cinee (), d.e. it 4 bast
o each of the spaces C* (D), with any k = S 2m +é Fr e
We shall repeat here only the proof originaly given by Schonefeld [13]

for m =0, 1, and proposed for oth !
OmCTR . er values of m. Therefore w i
some details, for which we refer to [13] usL(erOl[lﬂi1 Tigrelaye e shall omit

Let us denote by

S, f= Z:U a; (flot for n =01, ...

the nth partial sum of the expansion with coefficients

{f(fo)
f(tu) i Sun]_f(t,,)

fo ; :
coléf?iﬁi;{tsf(fﬂ).'l.t 1s obvious that (a,, n> 0) is the unique seqiierice of
(Heents for which the necessary condition fim S J(t) = f(t,) for any
for n> . Thiss the s e U0 10 (62) and (6%)"S, /(] S, (o)

7 o S HNS Lheie artial sum S,f inter nd ks == Dy
of the diadic sequence sz Ry (?lggrliltg_b{;llatcs [ at the first points
mcregsl.liilt; e;e(l;{léic(;h:;_il_-ﬂus t_ha:;_the gl)e_mtors S, defined as above form an
N —onc '2m i projections defined on C(I). The image of S, for

= 1S _]Il!‘it the space (22 I). Th £ O RLULE : N

Now that the sum of subspaces v () erefore we want to prove

S‘Qm—“—‘l (I) — U (;-»_)\C)'luf

Nzu

a, (f) = for n =

for n> 1,

2 ([)

Where N = 2¢ is dense i
N o= cnse in the Banach space (272
b e nach space I). Indced, tI
Contiif;gits,l‘,fes oi ‘the elements of Sz +2 (I) form a Sle)nse set in tllfe%m;(je; ﬁ%
unctions as all polygonals with a dense sct of break-%oints

2
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L T S
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Therefore we can approximate any f & C*"+2 (I) by the following element
of S*+2 (])

2m+1 Dkf(O) ”
= 3 T e g,

where g is the polygonal which approximates the derivative D?"+2 f, and

Hg(?) =Sg'(s)ds for t = (0, 15.

0

As a further consequence we obtain that $2#+2 (I) is dense in each of
the spaces C* (I) with 2 =0, ..., 2m 4+ 2. Now, it is sufficient to prove
that the norms of the projections S, are uniformly bounded for » > 0, if
we consider them as operators defined on the spaces C* (I) with any & = 0,
oo, 2m + 2. In the case of w = N = 2* > 2m + 3 it is sufficient to prove
that the following estimation
(63) ID* Sy i< K max |fswe .. swivss /()]
holds for each f = C(I), 2k =0, ..., 2m + 2, with a constant K depen-
ding only on #. But in fact this statement concerns the spline Sy f, because

Ssn,i) = Sy flsw,i) for © =0, 1, ..., N. By a standard computation presen-

ted e.g. by Schonefeld [13] it is sufficient to prove the following

Lemma 7. The norms M| of the inverse matrices for G (see
Sec. 2) are uniformly bounded by a constant depending only on m.

But this lemma is an immediate consequence of Theorem 1 and for-
mulas (4.8).

To obtain the connection between Lemma 7 and (6.3) let us rewrite
the equations (6.1) in the form

N—m—1
D]2_m+3 = [)2m+3 SNf (SN,]‘ - ) e 2‘: (2”1, '+' 3) | M%L;)j,iA?"‘+3

t=mn42

where An+3 — [S_N,i»—m~2’ e Syl SN.f(.)], t=m-+2, ..., N —
— m — 1. According to Lemma 7 we obtain that

max | D" | < K max |AY"??) for N =2 > 2m 4 3,
i i

where the subindices 7 and § run over the set m 4 2, ..., N —m — 1,
with a constant K depending only on m. In the proof of (6.3) we need
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= [Sg, ++ 4, S5 f(+)] whenever Sy << 8y =

; o T 5SS 0 e

for S ifhe‘ﬁi EE?H demm}strate E'Je application in the proof of T,emma 8 below
G cases ot w =N 4-v, wher 1<y < N may be r ,

the case of # = NV, but we shall omit the consideration. For detailcsd?t(l:Ed -

der is referred to the works of Schonefeld [13] and [14] ' e

This section we want to finish with the following

<< §;. This should be applied

Lemma 8. For each n>2m 4 3 the ; t) ’ '
L, TR T ol il + 3 the functions $u defined in Sec. §

ken(m) |t —1y, )
[DE¥en(2)] < Cql*=tlp® for all ¢ < LkE=0,..,2m+2 n> 2m 4- 3,

with constants C > 0, ¢ = (0, 1) dependss
s , § ) / g only on m.
Proof : Let us notice that according to (6.1) we can write

) 2N -—-m—1
[)?mrS ey D2m+3 () P P
=| rio— ) = E Mgt 3
] " _(521\,1 ) e (27” —f— 3) ! A,’m t M;(g‘;\lv)] i
== 7
where
A?m+3 —_ . .
3 [s2N,1—m—2p vy, S2N,-;'+m+1 ; (p’('m)( )] for T =m + 2
A ) e it

2N —m — 1, j=m—}—2,..., 2N —m — 1.

A . ’ 2m 438 . . e 1
ccording to (6.2/) A =0 for £ — (2v — Dizm + 2. Applying

(&N
J_h(_()ICIll 1, we can Stllllate t}le lllll]lhels l) as f()ll()“s

i1
D?m +3 < li—4| b
l ] ‘ = 2 Cq A I[S2N,1'—m—-2, ey sZN,o'+m+1 ; <Pi(tm)( )] <

< C/g|2v—1—j] N2m+3 fOI‘ 7 = m _{__2, oy 2N — o — 1,

s;fle;;‘et the Bconstant C" is independ_ent of n and ¢ = (0,1) is independent
00. But the (2m 4 3) rd derivative is constant in each of the inter-

vals (San,_1, Sanvs) and S N
o chodée Ij slech-)l thatmoreovel (3.4) holds. Therefore for each ¢ =1 if

Savg—1 € & < Sa;
a if i
and if we denote the continuous from the right version of the (2m + 3) rd

Ider'v iv
| 1 2m - L 1
| ative by D2m+3 gof:") then according to the estimation

-i v — 1 —jl< ~mit — 4, 4 ¢,

only the generalized Lagrange formula : If D is continuous in the interval [With ¢ independent of # the inequality

(Sy, §p» then there exist a point s € (s, s,> such that% DH(s) = |

)D2m+3 (PSPL) (t), < C‘qnlt— tnl n2m+3
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holds with C > 0, ¢ = (0, 1) independent of #. The lemma follows now
by induction with respect to k. Let us suppose namely that the Lemma holds
for some k=1,2, ..., 2m + 3. Because the (k& — 1)st derivative of

@™ is continuous in I then we have

13
DE=Tpfn(t) = DF-1gtm () +S Dhelm(s)ds,

r
where according to the Lagrange formula # may be choosen in such a way
that

Do) = (b —1) Usaws, - ., Savien 5 @(-)] = 0

and |¢ —¢| < %. By the hypothesis we obtain then

Y

1Dk (5))
[D¥=10 (1)) < k. max -
st N

which leads after a simple reformulation to the thesis for £ — 1.

7. Final remarks. Applying Theorem 1 and Lemma 1 we are able
moreover following e.g. SUBBOTIN [16] to obtain the approximative
properties of the applied splines. We shall not give them here because we
have find that the Schonefeld construction slightly modified leads to SYs-
tems which possesses something better properties (for the order of appro-
ximation cf. Introduction).
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