MATHEMATICA — REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION

L'ANALYSE NUMÉRIQUE ET LA THÉORIE DE L'APPROXIMATION Tome 5, No 1, 1976, pp. 23-26 a within an early of the same of the

THE CONVEXITY OF INTERVAL-FUNCTIONS

My aid want , it by the British in the MIRCEA OCTAVIAN GURZĂU

(Cluj-Napoca)

1. In this paper we extend the notion of convexity to functions with interval-values. Denote with $\mathbb R$ the set of real numbers, with $I(\mathbb R)$ the set of closed intervals of \mathbb{R} , with a, b, \ldots the left extremities of intervals, with $\overline{a}, \overline{b}, \ldots$ the right ones. On $I(\mathbf{R})$ we shal consider the usual operations from interval-arithmetics (see [1], [2]), defined by the next formulas:

$$\begin{bmatrix} \underline{a}, \ \overline{a} \end{bmatrix} + [\underline{b}, \ \overline{b}] = [\underline{a} + \underline{b}, \ \overline{a} + \overline{b}] \\
 [\underline{a}, \ \overline{a}] - [\underline{b}, \ \overline{b}] = [\underline{a} - \overline{b}, \ \overline{a} - \underline{b}] \\
 [\underline{a}, \ \overline{a}] \cdot [\underline{b}, \ \overline{b}] = [\min \{\underline{ab}, \ \underline{ab}, \ \overline{ab}, \ \overline{ab}\}, \ \max \{\underline{ab}, \ \underline{ab}, \ \overline{ab}\}] \\
 [\underline{a}, \ \overline{a}] : [\underline{b}, \ \overline{b}] = [\underline{a}, \ \overline{a}] \cdot \left[\frac{1}{\overline{b}}, \frac{1}{b}\right], \qquad 0 \not\in [\underline{b}, \ \overline{b}]$$

Also we shall organize the set $I(\mathbb{R})$ as a metric space, with Haussdorff's metric, which in this case is given by:

(1)
$$\rho([\underline{a}, \overline{a}], [\underline{b}, \overline{b}]) = \max\{|\underline{a} - \underline{b}|, |\overline{a} - \overline{b}|\}.$$

A function $f: E \to I(\mathbb{R})$ ($E \subset \mathbb{R}$) is called I-function (Interval-function). We attach to this function two real functions f and \overline{f} (defined on E):

$$\underline{f}(x) = \min_{t \in f(x)} \{t\}, \quad x \in E$$

$$\overline{f}(x) = \max_{t \in f(x)} \{t\}, \quad x \in E$$

The connection between the continuity of the I-function f, according to the metric (1), and the continuity of the real functions f and $ar{f}$ is given by : 2

THEOREM 1. The I-function f is continuous iff f and \bar{f} are continuous. (The continuity of the real functions f and \bar{f} is the usual one)

On $I(\mathbb{R})$ we consider the following ordering:

(3)
$$[\underline{a}, \ \overline{a}] \leqslant_{\mathbf{I}} [\underline{b}, \ \overline{b}] \text{ iff } \underline{a} \leqslant \underline{b} \text{ and } \overline{a} \leqslant \overline{b}.$$

The notation [x, y; f] and $[x, y; \overline{f}]$ stands for the usual difference quotients on the points $x, y \in E$ (see [3]) of the functions f and \overline{f} .

The difference quotient of an I — function is given by:

Definition 1. The difference quotient of I-function f on the points $x, y \in E$ is an interval, denoted with D(x, y; f), given by:

(4)
$$D(x, y; f) = [\min\{[x, y; f], [x, y; \bar{f}]\}, \max\{[x, y; f], [x, y; \bar{f}]\}]$$

2. In analogy with the classical definition of convexity for the real functions of a real variable by an inequality (see [3]) we give:

Definition 2. The I-function $f:E \to I(\mathbb{R})$ is non-concave on E if for every points $x, y \in E$ and for every $\lambda \in [0,1]$ the following inequalities hold:

(5)
$$f(x + (1 - \lambda)y) \leq_1 f(x) + (1 - \lambda)f(y)$$
.

Using (3) we formulate:

THEOREM 2. The I-fonction $f:E \to I(\mathbf{R})$ ($E \subset \mathbf{R}$, E convex set) is non-concave on E iff the functions f and \tilde{f} are non-concave on E.

For example, the *I*-fonction $f: \mathbf{R} \to I(\mathbf{R})$ defined by:

(6)
$$f(x) = [1, 2](1 + x^2), x \in \mathbf{R}$$

is not a non-concave function.

The disadvantage of definition 2. consists in the fact that simple I-function, like $g: \mathbb{R} \to I(\mathbb{R})$, given by:

(7)
$$g(x) = [1, 2](x^2 - 1), x \in \mathbb{R},$$

is not a non-concave, function on R.

Thus we give another definition of the I-function convexity, similar to that of a real function of real variable, using difference quotients (see [3]):

Definition 3. The I-function $f: E \to I(\mathbb{R})$ is l-non-concave on E if for every $x \in E$ there is a neighbourhood V of the point x so that for every $y_1, y_2 \in V \cap E$ with $y_1 < y_2$ the following relation is satisfied:

(8)
$$D(x, y_1; f) \leq_I D(x, y_2; f).$$

For example the I-fonction g, given by (7), is l-non-concave. A connection between the last two definitions is given by:

THEOREM 3. If the I-function $f: E \to I(\mathbb{R})$, $(E \subset \mathbb{R}, E \text{ convex set})$ is non-concave on E, then it is also l-non-concave on E.

Proof. Let $x \in E$. As neighbourhood V of x we consider the set R. In the set $E = E \cap V = E \cap R$ we consider two subsets E_1 and E_2 , defined as follows:

(9)
$$y \in E_1 \text{ if } [x, y; f] \leqslant [x, y; \tilde{f}]$$

(10)
$$y \in E_2 \text{ if } [x, y; \bar{f}] \leq [x, y; f]$$

We notice that $E_1 \cup E_2 = E - \{x\}$. Let $y_1, y_2 \in E$, $y_1 < y_2$. If $y_1, y_2 \in E_1$ according to the theorem 2.:

$$[x, y_1; f] \leq [x, y_2; f], [x, y_1; \bar{f}] \leq [x, y_2; \bar{f}]$$

Thus, taking into account (4) $D(x, y_1; f) \leq D(x, y_2; f)$. The case $y_1, y_2 \in E_2$ is considered in the same way. If $y_1 \in E_1$, $y_2 \in E_2$ then, according to the theorem 2, the formulas (9) and (10):

(11)
$$[x, y_1; \underline{f}] \leq [x, y_1; \overline{f}] \leq [x, y_2; \overline{f}]$$

(12)
$$[x, y_1; f] \leq [x, y_2; f] \leq [x, y_2; f]$$

From (11) and (12), taking into account (3) and (4), results (8). The following theorem shows the connection between *l*-nonconcavity and continuity:

THEOREM 4. If the I-function $f:E \to I(\mathbf{R})$ is l-non-concave on E, then i is continuous on the interior of E.

Proof: Let $x \in \text{Int } E$ (the interior of E). Then there is a neighbourhood U of x with $U \subset E$. According to the definition 3, there is a neighbourhood V of X where (8) holds. $U \cap V$ being a neighbourhood of X, there is an x > 0 so that $[x - \varepsilon, x + \varepsilon] \subset U \cap V$. From (8) results that for every $Y \in [x - \varepsilon, x + \varepsilon]$ we have:

$$M_1 \leqslant [x, y; f] \leqslant M_2$$

$$(14) M_1 \leqslant [x, y; f] \leqslant M_2$$

with $M_1 = \min\{[x, x - \varepsilon; f], [x, x - \varepsilon; \bar{f}]\}$ $M_2 = \max\{[x, x + \varepsilon; f]\}$ thus, denoting $M = \max\{M_1, M_2\}$

(15)
$$|f(x) - f(y)| < M|x - y|$$
 and $|\bar{f}(x) - \bar{f}(y)| < M|x - y|, y \in]x - \varepsilon, x + \varepsilon[$.

Formulas (15) implies that f and \bar{f} are continuous on x, so that according to the theorem 1. f is continuous.

REFERENCES

- [1] Berti, S., Intervalele și aritmetica lor in analiza numerică G. M. (seria A) LXXV, 8, 309-313 (1970).
- [2] Ortolf, H. J., Eine Verallgemeinerung der Intervallarithmetik, Geselschaft für Mathematik und Datenverarbeitung (Bonn) Nr. 11 (1969).
- [3] Popoviciu, T. Les fonction convexes, Actualités Scientifique et Industrieles, 992, XVII, Paris (1945).

a-official Cir., 1817 and an in Julius, 180 and Geometric Spinish (\$200 and \$111) terrorial

Received 4. IV. 1974.