MATHEMATICA — REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION

L'ANALYSE NUMÉRIQUE ET LA THÉORIE DE L'APPROXIMATION Tome 5, Nº 1, 1976, pp. 27-30

LINEAR POSITIVE OPERATORS GENERATED BY FUNCTIONS

by

G. A. JÄGERS (Haarlem)

take on (by land the infinite

1. Introduction

BASKAKOV [1] and SCHURER [4] investigated a certain linear positive operator. They used a sequence of real functions of the real variable x, $\{\varphi_n(x)\}\ (n=1,2,\ldots)$ to construct the linear positive operator. We assume that each function has the following properties on the interval [0,b] (b>0):

I.
$$\varphi_n(0) = 1$$
;

II. $\varphi_n(x)$ is infinitely differentiable on [0, b] and $(-1)^k \varphi_n^{(k)}(x) \ge 0$ (k = 0, 1, ...);

III. there exists a positive integer n_1 not depending on k, such that

(1)
$$-\varphi_n^{(k)}(x) = \psi(k, n, x)\varphi_{n_1}^{(k-1)}(x) \quad (k = 1, 2, ...),$$

where

IV. $\psi(k, n, x)$ is such that there exists a positive function Λ (n), monotonically increasing and tending to infinity when $n \to \infty$ for i = 0 and 1 $(n_0 \equiv n)$ uniformly in k.

The operator L_n for $n = 1, 2, \ldots$ is defined by

(2)
$$L_n\{f(t) ; x\} := \sum_{k=0}^{\infty} \frac{(-1)^k \varphi_n^{(k)}(x) x^k}{k!} f\left(\frac{k}{\Lambda^1(n)}\right).$$

In some cases ψ is supposed to be independent of k. For example in theorems 5, 6 and 7 of SCHURER [4] and in theorem 4 of SIKKEMA [5].

3

2

We will show that if $\psi(k, n, x)$ is independent of k it is independent of x as well. And, on the other hand, if ψ is independent of x it is independent of k. Furthermore we will show that if $n_1 = n$ all known examples of L can be generated, viz. : Bernstein's operator, the operator of Szász-Mirakyan, and the operator of Baskakov's (in litterature $n_1 = n - 1$, $n_1 = n$, $n_1 = n$ = n + 1 respectively).

2. Dependence of variables

We suppose ψ is independent of k, $\psi = \psi(n, x)$. We take (1) with k+1instead of k

(3)
$$-\varphi_n^{(k+1)}(x) = \psi(n, x)\varphi_{n_1}^{(k)}(x) \quad (k = 0, 1, \ldots).$$

Now we differentiate (1)

(4)
$$-\varphi_n^{(k+1)}(x) = \psi'(n, x)\varphi_{n_1}^{(k-1)}(x) + \psi(n, x)\varphi_{n_1}^{(k)}(x) \quad (k = 1, 2, \ldots).$$

From (3) and (4) we get

$$\psi'(n, x) = 0$$
 or $\varphi_{n_1}^{(k-1)}(x) = 0$ $(k = 1, 2, ...)$

$$\psi(n, x) = \Phi(n) \text{ or } \varphi_n(x) \equiv 0 \quad x \in [0, b]$$

(where Φ is an arbitrary function of n). In the case where $\varphi_n(x) \equiv 0$ we can say ψ is independent of k and x. Thus we have proved that if ψ is indepen-

Now we suppose that ψ is independent of x, $\psi = \psi(k, n)$. In (1) we substitute k, +1 for k. We obtain

(5)
$$-\varphi_n^{(k+1)}(x) = \psi(k+1, n)\varphi_{n_1}^{(k)}(x) \quad (k=0, 1, \ldots).$$
 Differentiating (1) gives

(6)
$$-\varphi_n^{(k+1)}(x) = \psi(k, n)\varphi_{n_1}^{(k)}(x) \quad (k = 1, 2, \ldots).$$

We find that $\psi(k+1, n) = \psi(k, n)$ $k = 1, 2, ..., k_0$ for some $k_0 = k_0(n)$ and $\varphi_{n_1}^{(k_0+1)}(x) \equiv 0$. It possible that k_0 is infinite. So we have shown that if ψ is independent of x, $\psi = \psi(n)$.

3. The case $n_1 = n$

We now consider the case where $n_1 = n$. We apply (1) to (1) and get

(7)
$$\varphi_n^{(k+1)}(x) = \psi(k+1, n, x)\psi(k, n, x)\varphi_n^{(k-1)}(x);$$

for $k = 1, 2, \ldots; n = 1, 2, \ldots; x \in [0, b]$. Also we differentiate (1) and

(8)
$$\varphi_n^{(k+1)}(x) = [-\psi'(k, n, x) + \psi^2(k, n, x)]\varphi_n^{(k-1)}(x)$$

for $k=1,2,\ldots; n=1,2,\ldots; x\in [0,b]$. From (7) and (8) we obtain the nonlinear partial differential-difference equation

(9)
$$\psi(k+1, n, x)\psi(k, n, x) = -\psi'(k, n, x) + \psi^{2}(k, n, x)$$

We are able to give two solutions of this equation, viz.:

 $\psi(k, n, x)\Phi(n)$ and $\psi(k, n, x) = \frac{k + \alpha(n)}{x + \beta(n)} (k = 1, 2, ...; n = 1, 2, ...; x \in$ \in [0, b]) (Φ , α and β arbitrary functions of n). From $\psi(k, n, x) = \Phi(n)$ we get the differential equation $\varphi_n^{(k)}(x) = -\Phi(n)\varphi_n^{(k-1)}(x)$. Together with the assumption that $\varphi_n(0) = 1$ this gives $\varphi_n(x) = e^{-\Phi(n)x}$ (n = 1, 2, ...). These φ_n characterize the operator of szász-mirakvan [3]. $\psi(k, n, x) = \frac{k + \alpha(n)}{x + \beta(n)}$ together with assumption I yields $\varphi_n(x) = \left[\frac{\beta(n)}{x + \beta(n)}\right]^{1+\alpha(n)}$ ($n = 1, 2, \ldots$). With these φ_n we may define the linear operator M_n by

$$M_n\left\{f(t) ; x\right\} := \left[\frac{\beta(n)}{x+\beta(n)}\right]^{1+\alpha(n)} \sum_{k=0}^{\infty} {\alpha(n)+k \choose k} \left(\frac{x}{x+\beta(n)}\right)^k f\left(\frac{k}{n}\right). \tag{10}$$

The images of 1, t and t^2 are easy to find.

$$M_n(1; x) = 1, M_n(t; x) = \frac{\alpha(n) + 1}{n\beta(n)} x,$$

$$M_n(t^2; x) = \frac{\alpha(n) + 1)(\alpha(n) + 2)}{n^2 \beta^2(n)} x^2 + \frac{\alpha(n) + 1}{n^2 \beta(n)} x.$$

If
$$\frac{\alpha(n)+1}{\beta(n)} = n + O(n)$$
 and $\frac{1}{\beta(n)} = O(n)$ then $M_n(t^i; x) \rightarrow x^i$ $(i = 0, 1, 2)$ as $n \rightarrow \infty$.

Taking $\alpha(n) = n\beta(n) - 1$ we obtain

$$M_n(t; xy) = x, \quad M_n(t^2; x) = x^2 + \frac{x}{n} + \frac{x^2}{n\beta(n)}.$$

With $\beta(n) \equiv -1$ we have $M_n = B_n$ (the Bernstein operator [2]) and with $B(n) \equiv 1$ we have $M_n = K_n$ (the Baskakov operator [1]). It is clear that it is not necessary that β be an integer. We see that the larger we take the absolute value of $\beta(n)$ the closer the image of t^2 under the operator M_n approximates the image of t^2 under the operator S_n (Szász-Mirakyan). We also have $\left(\frac{\beta}{x+\beta}\right)^{n\beta} \to e^{-nx}$ as $\beta \to 0$ $(n=1, 2, \ldots)$.

REFERENCES

- [1] Baskakov, V. A., An example of a sequence of linear positive operators in the space of continuous functions. Dokl. Akad. Nauk, S.S.R., 113, 249-251, (1957).
- [2] Bernstein S. N., Détermination du théorème de Weierstrass fondée sur le calcul de probabilités. Comm. of the Kharkov Math. Soc. 13, 1-2, (1912).
- [3] Mirakyan, G. M., Approximation of continuous functions with the aid of polynomials. Dokl. Akad. Nauk. S.S.S.R. 31, 201-205 (1941).
- [4] Schurer, F., On linear postive operators in approximation theory. Thesis, Delft, 1965.
- [5] Sikkema, P. C., Uber die Schurerschen linearen positiven operatoren. Indag. Matli. (in print).

All the second of the second o

Received 30, VII, 1976,

Subdepartment of Mathematics, Delft University of Technology.