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1. INTRODUCTION

In this paper we consider the numerical solution of the following Volterra
equations

(1.1) x′ (t) + f (t, x (t)) +

∫ t

0
K (t, s)x (s) ds = 0, t ≥ 0; x (0) = x̃,

and

(1.2) x (t) +

∫ t

0
K (t, s) f (s, x (s)) ds = a (t) , t ≥ 0.

On the kernel K (t, s) we assume that

(1.3) K (t, s) is a symmetric d× d-matrix,

such that the operator

(1.4) K (ϕ) (t) =

∫ t

0
K (t, s)ϕ (s) ds

is a positive operator in L2 (see Definition 2.1). On the function f we assume
that it satisfies

f (·, u) is continuous on R+ for all u ∈ Rd,(1.5a) ∣∣f (t, u)− f (t, v)
∣∣ ≤M |u− v| , for all u, v ⊂ Rd and t ≥ 0(1.5b) 〈

u− v, f (t, u)− f (t, v)
〉
≥ µ |−v|2 , for all u, v ∈ Rd and t ≥ 0,(1.5c)

with some µ ≥ 0.
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It is not necessary to assume that (1.5) holds globally in Rd but it simplifies
the presentation. In (1.5) 〈·, ·〉 denotes a fixed positive definite inner product
in Rd and ‖·‖ the corresponding norm.

It is well known that in compact intervals [0, T ] we can discretize the equa-
tions (1.1) and (1.2) in such a way that, if the discretization parameter, the
step size h tends to zero, then the approximative solutions converge to the so-
lutions of the original problems. However, qualitative estimates obtained for
the global error (=computed approximation - exact solution) typically contain
factors of the form exp(MT ) so that they become meaningless as T →∞, and
can in fact, be “very pessimistic” also for, small T. The essential reason for
this lies in the fact that for each fixed h > 0 the perturbation sensitivity of the
solutions of the discretized equations can be different from that of the original
equation.

In this paper we shall derive bounds for the global errors, which remain
small on the whole half axis t ≥ 0. The bounds depend on local errors in
an efficient way, and since local errors can usually be easily estimated, they
give us good estimates for the upper bounds of global errors. Furthermore,
no restriction on the step size h is posed in the whole paper, it can be an
arbitrary but fixed positive constant.

For ordinary differential equations ((1.1) with K (t, s) ≡ 0) some error
bounds were given by Dahlquist G. [3], and further sharpened in [10]. For
(proper) Volterra equations no earlier results are known to us.

In chapter 2 discretizations to (1.1) are considered. The main subject is to
show that the error bounds derived in [10] for the special case K (t, s) ≡ 0
still hold with one modification, if K in (1.4) is suitably discretized. As in [10]
we assume that the differential part of (1.1) is discretized using a G-stable
method [3]. On the discretization of K we need that the resulting discrete
operator is still positive, now in e2. This happens for al K if and only if the
quadrature itself is a positive operator, then called a positive quadrature. In
chapter 2 we assume that K (t, s) is continuous on 0 ≤ s ≤ t < ∞, while the
weakly singular case is discussed in chapter 5. All the bounds we give for (1.1)
are independent on the (possibly very large) Lipschitz constant M .

In chapter 3 we investigate equation (1.2) under discretization with a posi-
tive quadrature.

In chapter 4 we consider the relationship between A-stability of a multistep
method [2] and the positiveness of an associated “convolution quadrature”.
As a corollary we get an error bound for the ordinary differential equation
x′+f (t, x) = 0 assuming only A-stability on the method, which is the weakest
possible assumption we have to make, if nothing additional is known on f . (It
is known that G-stability is properly stronger than A-stability, [3]). As an
other application we consider a second order differential equation discretized
using a G-stable method.
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In chapter 5 we show how we can discretize K without destroying the pos-
itivity, if K is weakly singular in the form K (t, s) = a (t− s)B (t, s) . Here
B (t, s) is a continuous matrix on 0 ≤ s ≤ t < ∞, and a ∈ L1

loc is a scalar
function satisfying some monotonicity conditions.

In chapter 6 we give a result concerning discretizations to (1.1), which
guarantees that the approximative solutions tend to zero at infinity. Generally,
if (1.5) holds with µ = 0, {f (nh, 0)} ∈ e1 and K is a positive operator, then
the use of a G-stable method and a positive quadrature guarantees that the
solutions are bounded, but they need not tend to zero at infinity. However, if
K satisfies a stronger condition so that the solutions of (1.1) tend to zero then
the same holds for the discretized equation.

2. VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS

Here we shall derive some error bounds for the numerical solutions to the
following Volterra integro-differential equation

(2.1) x′ (t) + f (t, x (t)) +

∫ t

0
K (t, s)x (s) ds = 0, t ≥ 0; x (0) = x̃ ∈ Rd.

When doing this we use the following concepts and notations. Let H be a real
Hilbert space and K a densely defined operator in H.

Definition 2.1. K is a positive operator in H if

(2.2) (ϕ,Kϕ) ≥ 0 for all ϕ ∈ DK.

We denote by L2 and l2 the Hilbert space defined by the inner products

(ϕ,ψ) =

∫ ∞
0

〈
ϕ (t) , ψ (t)

〉
dt

and

(ξ, η) =

∞∑
k=0

〈ξk, ηk〉 ,

respectively. Throughout this chapter, let K (t, s) be a symmetric d×d-matrix,
which as a function of t and s is continuous for 0 ≤ s ≤ t <∞. We define an
operator in L2 by

(2.3) (Kϕ) (t) =

∫ t

0
K (t, s)ϕ (s) ds.
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Given a quadrature formula

(2.4) (Wξ)n = h
n∑
k=0

wnkξk,

which we consider as an operator in l2, and an operator K in L2 we define an
operator WK in l2 setting

(2.5) (WKξ)n = h
n∑
k=0

wnkK (nh, kn) ξk.

In (2.4) h is a positive real and the weights wnk are reals (which can depend
on h).

Definition 2.2. A quadrature formulaW is called positive ifW is a positive
operator in l2.

Note that the positivity on W does not depend on the dimension d. The
following theorem is basic to our considerations.

Theorem 2.1. WK is a positive operator in l2 whenever K is a positive
operator in L2 if and only if W is a positive quadrature.

A proof of this theorem in the scalar case can be found in [11]. Since
K (t, s) is a symmetric matrix for every (t, s) , the proof generalizes easily. In
fact, assume that K is a positive operator andW a positive quadrature. Using
the identities

(2.6)

∫ T

0

〈
ϕ (t) ,

∫ t

0
A (t, s) ds

〉
dt = 1

2

∫ T

0

〈
ϕ (t) ,

∫ T

0
Ã (t, s)ϕ (s) ds

〉
dt,

(2.7)

N∑
n=0

〈
ξn,

n∑
j=0

Anjξj

〉
= 1

2

N∑
n=0

〈
ξn,

N∑
j=0

Ãnjξj

〉
,

where

Ã (t, s) =

{
A (t, s) , t ≥ s
A (s, t)τ , t < s

and

Ãnj =


Anj , n > j

Ann +ATnn, n = j

ATjn, n < j,

and a suitable sequence of functions {ϕm} approximating
N∑
k=0

δkhξk + δ0ξ0 +

δNkξN , where δ denotes the Dirac measure, we first obtain the positivity of
the operator

(Lξ)n = h
n∑
k=0

Lnkξk,
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where

Lnk =

{
1
2K (nh, nh) , n = k,

L (nh, kh) , n > k.

The operator WK is then a “Schur product” of W̃ and L, where W̃ is defined

by (2.7) with Anj replaced by wnj . The positivity of W̃L then follows using

the symmetricity of W̃. That W itself must be positive is obvious since K
with K (t, s) ≡ I is a positive operator.

It was shown in [11] that there does not exist any explicit positive quad-
rature and that the quadrature Wθ are positive for θ ∈

[
1
2 , 1
]
, where Wθ is

defined by

w00 = 1−θ
4 ,

wn0 = 1− θ, n > 0,

wnk = 1, n > k > 0,

wnn = θ.

In the following we shall use a positive quadrature when discretizing the in-
tegral operator K occurring in the equation (2.1). In the discretization of the
differential part of the equation we shall use the so called one-leg methods [3].

Consider the Volterra integro-differential equation

(2.8) x′ (t) = g (t, x (t) , y (t)) , y (t) =

∫ t

0
k (t, s, x (s)) ds.

This can be discretized using a linear k-step method (ρ, σ)

(2.9)
k∑
j=0

αj x̂n+j = h
k∑
j=0

βjg
(
t̂n+j , x̂n+j , ŷn+j

)
,

and a quadrature W

(2.10) ŷn = h

n∑
u=0

wnµk
(
t̂n, t̂µ, x̂µ

)
.

In (2.9) the generating polynomials

ρ(ζ) =
k∑
j=0

αjζ
j , σ (ζ) =

k∑
j=0

βjζ
j

are assumed to have real coefficients and no common divisor. We also as-
sume that the method (ρ, σ) is consistent (ρ (1) = 0, ρ′ (1) = σ (1)) , stable
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(no root of ρ (ζ) lie outside the unit circle, and those on the circle are simple),
and normalized so that σ (1) = 1. The corresponding one-leg method for (2.8)
is then defined by

(2.11)
k∑
j=0

αjxn+j = hg

(
k∑
j=0

βjtn+j ,
k∑
j=0

βjxn+j , yn

)
,

where

(2.12) yn = h
n∑
µ=0

wnµk

(
k∑
j=0

βjtn+j ,
k∑
j=0

βjtµ+j ,
k∑
j=0

βjxµ+j

)
.

Using the shifting operator E : Eξn = ξn+1 the approximations {x̂n} and
{xn} satisfy the equations

(2.13) ρ (E) x̂n = hσ (E) ĝn + p̂n, ŷn = h
n∑
µ=0

wnµk
(
t̂n, t̂µ, x̂µ

)
and

(2.14)


ρ (E)xn = hg

(
σ (E) tn, σ (E)xn, yn

)
+ pn

yn = h
n∑
µ=0

wnµk
(
σ (E) tn, σ (E) tµ, σ (E)xµ

)
,

respectively, where we put ĝn = g
(
t̂n, x̂n, ŷn

)
and p̂n, pn denote local pertur-

bations which exist in real computations. It turns out that the error bounds
are simpler to derive for the one-leg methods than for the linear multistep
methods. However, due to the following theorem results obtained for one-leg
methods can be transformed to results for the corresponding linear multistep
methods.

Theorem 2.2. Let x = {xn} satisfy (2.14) and put t̂n = σ (E) tn, x̂n =
σ (E)xn, p̂n = σ (E) pn. Then {x̂n} satisfies (2.13).

Conversely, let x̂ = {x̂n} satisfy (2.13) and define tn, pn by solving
σ (E) tn = t̂n, σ (E) pn = p̂n. Let P,Q be two polynomials of degree not ex-
ceeding k − 1, such that for some integer m, 0 ≤ m ≤ k,

P (ζ)σ (ζ)−Q (ζ) ρ (ζ) ≡ ζm,

and, for n ≥ k put xn = E−m{P (E) x̂n − hQ (E) ĝn −Q (E) pn}.
Then σ (E)xn = x̂n and {xn} satisfies (2.14) for n ≥ k.

For ordinary differential equations this theorem is due to G. Dahlquist
[3]. Here we have chosen yn and ŷn in such a way that yn = ŷn, which reduce
the theorem into that original form.
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Because of this result we shall here consider one-leg methods only. Let {un}
be a sequence in Rd, then we define another sequence {Un} by

Un = (un+k−1, . . . , un) .

For a k × k-matrix F = (fij) we denote

F (Un) =

k∑
i=1

k∑
j=1

fij〈un+k−i, un+k−j〉.

Definition 2.3. Let G = (gij) be a real symmetric positive definite matrix.
The method (ρ, σ) is said to be G-stable, if for arbitrary {un} we have

(2.15) G (U1)−G (U0) ≤ 2
〈
σ (E)u0, ρ (E)u0

〉
.

Using the fact that for symmetric matrices

(2.16) F (Un) ≥ 0

if the matrix F is nonnegative definite (e.g., [3, Lemma 2.2]) we observe that
the G-stability does not depend on the dimension d. All G-stable methods are
A-stable (Definition 3.1) but the converse does not hold. However, every A-
stable k -step method of order k (or more) is G-stable for exactly one matrix
G, see [3].

Specifying the discretization (2.14) to (2.1) yields
(2.17)

ρ (E)xn + hf
(
nh, σ (E)xn

)
+ h2

n∑
µ=0

wnµK (nh, µh)σ (E)xµ = rn, n ≥ 0,

when x0, . . . , xk−1 are given.
(Observe that we put in (2.17) for notational simplicity σ (E) tn = nh). We

shall first give a result on the existence and uniqueness of the solutions of
(2.17).

Theorem 2.3. Assume that f satisfies (1.5) and WK is a positive operator
in l2. Then, for all {x0, . . . , xk−1} (2.17) has a unique solution {xn}.

Proof. Put σ (E)xn = ξ and assume that we know the existence of
x0, . . . , xn+k−1. Then (2.17) can be written as

Aξ
def
= αk

βk
ξ + hf (nh, ξ) + h2wnnK (nh, nh) ξ = η

where ξ is the unknown vector in Rd. We shall use the following fact from the
theory of monotone operators: If A is continuous, monotone (i.e 〈u− v,Au−
Av〉 ≥ 0 for all u, v) and coercive (〈u,Au〉 ‖u‖−1 →∞ as ‖u‖ → ∞, uniformly)
then it is onto. Since WK is a positive operator in l2, h2wnnK (nh, nh)
is a nonnegative definite matrix. Hence, using (1.5) 〈u − v,Au − Av〉 ≥(
αk
βk

+ µh
)
‖u− v‖2 , where αk

β + µh > 0, which gives both monotonicity
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and coerciveness. Since f is continuous so is A and the existence of ξ follows.
Uniqueness follows form

0 =
〈
ξ1 − ξ2, Aξ1 −Aξ2

〉
≥
(
αk
βk

+ µh
)
‖ξ1 − ξ2‖2 .

In practical calculations, the local perturbation rn consists of roundoff error
and truncation error in the iterative solution of the algebraic equation de-
termining σ (E)xn. Let then x (t) be a solution of (2.1) and define another
sequence of local perturbations {τn} by

ρ (E)x (nh) + hf
(
nh, σ (E)x (nh)

)
+ h2

n∑
µ=0

wnµK (nh, µh)σ (E)x (µh) = τn,

(2.18)

n ≥ 0.

Put zn = xn − x (nh) , qn = rn − τn, then (2.17) and (2.18) imply

ρ (E) zn+ h
{
f (nh, σ (E)xn)− f (nh, σ (E)x (nh))

}
+(2.19)

+ h2
n∑
µ=0

wnµK (nh, µh)σ (E) zµ = qn.

Assume the operator K in (2.1) is positive and that f satisfies (1.5) with a
fixed µ ≥ 0. Let a and b be reals such that

(2.20) ‖σ (E)u0‖2 ≤ aG (U1) + bG (U0) .

�

Theorem 2.4. Assume that (ρ, σ) is a G-stable method and W is a positive
quadrature. Then, for µ = 0 we have

(2.21) G (Zn+1) ≤ e
{
G (Z0) + (2a+ b)

[
n∑
j=0
‖qj‖

]2}
,

and for ν > 0

(2.22) G (Zn+1) ≤ G (Z0) + 1
2µh

n∑
j=0
‖qj‖2 .

If we assume in addition that α = max |ζν | < 1, where ζν is a zero of σ (ζ) ,
then the bound in (2.22) can be essentially improved. This is based on the
following.

Lemma 2.1. (see [10, Theorem 1]). If α < 1 then for every ε > 0 such
that α2 + ε < 1, there exists a positive definite matrix H, independent on the
dimension d, satisfying

(2.23) ‖σ (E)u0‖2 −
{
H (U1)−

(
α2 + ε

)
H (U0)

}
≥ 0

for all sequences {un}.
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Let λ be such that G (U0) ≤ λH (U0) , so that we can state

Theorem 2.5. Assume that (ρ, σ) is a G-stable method with α < 1 and
that W is a positive quadrature. Then, for µ > 0,

(G+µhH) (Zn+1)+(1−θ)
n∑
j=0

(G+µhH)(Zj) ≤ (G+µhH)(Z0)+(µh)−1
n∑
j=0
‖qj‖2,

(2.24)

where θ =
(α2+ε)µh+λ

µh+λ , α2 + ε < 1 and H satisfies (2.23).

Proof of Theorem 2.4. Multiply (2.19) by σ (E) zn and sum from 0 to N

N∑
n=0

〈
σ (E) zn, ρ (E) zn

〉
+(2.25)

+ h
N∑
n=0

〈
σ (E) zn, f

(
nh, σ (E)xn

)
−f
(
nh, σ (E)x (nh)

)〉
+ h2

N∑
n=0

〈
σ (E) zn,

n∑
µ=0

wnµK (nh, µh)σ (E) zµ

〉
=

N∑
n=0

〈σ (E) zn, qn〉.

Using G-stability, (1.4), and the positivity of WK, (2.25) gives

(2.26) G (Zn+1)−G (Z0) + 2hµ
n∑

m=0

‖σ (E) zm‖2 ≤ 2
n∑

m=0

‖σ (E) zm‖ ‖qm‖ .

Consider the case µ = 0 first. If qm = 0 for m = 0, . . . , n then (2.21) clearly
holds. Assume therefore that for some m, 0 ≤ m ≤ n, qm 6= 0. First observe
that by (2.20) we have for every η > 0

(2.27) 2 ‖σ (E) zn‖ ≤ η + 1
η ‖σ (E) zn‖2 ≤ η + 1

η ‖aG (Zn+1) + bG (EZn)‖ .

Choose η to satisfy max
0≤m≤n

a
η ‖qm‖ < 1. Then (2.26) and (2.27) yield

G (Zn+1) ≤
(
1− a

η ‖qn‖
)−1
{
G (Z0) + η

n∑
m=0
‖qm‖+ bG (Zn) ‖qn‖+(2.28)

+
n−1∑
m=0

[
aG (Zn+1) + bG (Zm)

]
‖qm‖

}
.

Let us define a sequence of reals {ζm}n+1
0 by setting ζ0 = G (Z0) and
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ζm+1 =

(2.29)

=
(
1− a

η ‖qm‖
)−1
{
G (Z0) + η

m∑
k=0

‖qk‖+ bζm +
m−1∑
k=0

(
aζk+1 + bζk

)
‖qk‖

}
.

Then by a simple induction ζm+1 ≥ G (Zm+1) . But ζm+1 satisfies

ζm+1 =
{

1− a
η ‖qm‖

}−1 {(
1 + b

η ‖qm‖
)
ζm + ηqm

}
and hence

ζn+1 =

{ n∏
m=0

1+ b
η
‖qm‖

1− a
η
‖qm‖

}
G (Z0) + η

n∑
j=0

( n∏
j=0

1+ b
η
‖qm‖

1− a
η
‖qm‖

)
‖qj‖

1+ b
η
‖qj‖

≤
{
G (Z0) + η

n∑
j=0
‖qj‖

}
exp

[ n∑
m=0

a+b
η
‖qm‖

1− a
η
‖qm‖

]
.

The choice η = (2a+ b)
∑n

j=0 ‖qj‖ now yields (2.21).

Assume then µ > 0. In (2.26) we estimate

2η
1
2 ‖σ (E) zm‖ ‖qm‖ η−

1
2 ≤ η ‖σ (E) zm‖2 + η−1 ‖qm‖2

and get

(2.30) G (Zn+1) ≤ G (Z0) + (−2hµ+ η)

n∑
m=0

‖σ (E) zm‖2 + η−1
n∑

m=0

‖qm‖2 .

The choice η = 2hµ gives (2.22), and completes the proof. �
Proof of Theorem 2.5. In (2.30) choose η = µh and use (2.23) to obtain

(2.31)

G (Zn+1) ≤ G (Z0)− µh
n∑

m=0

{
H (Zm+1)−

(
α2 + ε

)
H (Zm)

}
+ 1

µh

n∑
m=0

‖qm‖2 .

By the given choice of θ

G (U0) + µh
(
α2 + ε

)
H (U0) ≤ θ

{
G (U0) + µhH (U0)

}
,
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and we can write

(2.32)

n∑
m=0

(G+ µhH) (Zm+1) ≤ θ
n∑

m=0

(G+ µhH) (Zm) + 1
µh

n∑
m=0

‖qm‖2 ,

which yields (2.24). �

Remark. Observe that when deriving error bounds we need the positivity
of a quadrature only in the form

n∑
n=K

ξn

n∑
j=K

wnjξj ≥ 0

if we may assume that xj−x (jh) vanishes for j = 0, 1, . . . ,K−1. The ordinary
trapezoidal rule clearly satisfies this condition but in order to be positive in
the sense of Definition 2.2 a modification is needed (see, e.g., the quadrature
W 1

2
, given in this chapter or the quadratures given by (4.7) and (5.9)).

If K ≡ 0, (2.1) reduces to an ordinary differential equation. The sharpness
of these bounds in that special case is demonstrated in [10]. Note also that
these results can be applied to perturbed equations

x′ (t) + f (t, x (t)) +

∫ t

0
K (t, s)x (s) ds = u (t, x (t) , y (t)) ,(2.33)

y (t) =

∫ t

0
v(t, s, x (s))ds,

assuming that u is small in some suitable sense. This only introduces a new
term into the local perturbation qn in equation (2.19).

In [1], [9] the following test equation

(2.34) x′ (t) + αx (t) + β

∫ t

0
x (s) ds = 0

is considered. The problem studied is whether the asymptotic stability of the
solutions of (2.34) is carried over to the solutions of the discretized equation.
In [1] α and β are assumed to be reals while [9] considers the complex valued
case. One notes immediately that the technique used in this chapter can be
applied to (2.34) only if β is real. Correspondingly, the class of quadratures
studied in [9] are of a very special type, in fact essentially our convolution
quadratures (4.7). �
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3. VOLTERRA INTEGRAL EQUATIONS

Here we consider Volterra integral equations of the form

(3.1) x (t) +

∫ t

0
K (t, s) f (s, x (s)) ds = a (t) , t ≥ 0

where K satisfies (1.3), is continuous for 0 ≤ s ≤ 1 ≤ ∞ and such that K is
a positive operator in L2, and f satisfies (1.5) with u > 0. We discretize (3.1)
using a quadrature W

(3.2) xn + h
n∑
j=0

wnjK (nh, jh) f (jh, xj) = a (nh) + rn,

where rn denotes a local perturbation. Let x (t) be a solution of (3.1) and
define the local truncation error τn of this discretization by

(3.3) x (nh) + h

n∑
j=0

wnjK (nh, jh) f (jh, x (jh)) = a (nh) + τn.

Put as before, zn = xn − x (nh) , qn = rn − τn, then we have the following

result, where the seminorms ‖·‖N are defined by ‖ξ‖N =
{∑N

n=0 ‖ξn‖
2
} 1

2
.

Theorem 3.1. If f satisfies (1.5) with µ > 0 and WK is a positive operator
in l2, then (3.2) has a unique solution {xn}. Furthermore, for all N ≥ 0

(3.4) ‖{zn}‖N ≤
M
µ ‖{qn}‖N .

Proof. First note that (1.5) with µ > 0 implies, using the argument given
in the proof of Theorem 2.3, that f (t, ·) has a (Lipschitz-continuous) inverse
f−1 (t, ·) . Assume the existence of x0, . . . , xn−1. Put ξ = f (nh, xn) and write
(3.2) as

Aξ
def
= f−1 (nh, ξ) + hwnnK (nh, nh) ξ = η.

We show that

(3.5) 〈u− v, Au−Av〉 ≥ µ
M2 ‖u− v‖2 ,

which implies the existence and uniqueness of ξ and hence of xn, too. To show
(3.5) observe that hwnnK (nh, nh) is a symmetric nonnegative definite matrix
and so it has a square root H. Further〈

u− v, f−1 (nh, u)− f−1 (nh, v)
〉
≥ µ

M2 ‖u− v‖2 ,
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and so

〈u− v,Au−Av〉 ≥ µ
M2 ‖u− v‖2 +

〈
H (u− v) , H (u− v)

〉
,

which gives (3.5).
To obtain (3.4) first write

zn + h
n∑
j=0

wnjK (nh, jh)
[
f (jh, xj)− f (jh, x (jh))

]
= qn.

Multiplying by f (nh, xn) − f (nh, x (nh)) , summing from 0 to N and using
the positivity of WK this gives

N∑
n=0

〈
f (nh, xn)− f (nh, x (nh)) , zn

〉
≤

N∑
n=0

〈
f (nh, xn)− f (nh, x (nh)) , qn

〉
.

(3.6)

But by (1.5) this further implies

µ

N∑
n=0

‖zn‖2 ≤

{
N∑
n=0

‖f (nh, xn)− f (nh, x (nh))‖2
} 1

2 { N∑
n=0
‖qn‖2

} 1
2

(3.7)

≤M
{

N∑
n=0
‖zn‖2

} 1
2
{

N∑
n=0
‖qn‖2

} 1
2

,

which finally gives (3.4).
For f (t, x) = x (3.4) gives ‖{zn}‖N ≤ ‖{qn}‖N .
Putting K = 0 we have zn = qn and hence ‖{zn}‖N = ‖{qn}‖N .
As in the case of integro-differential equations earlier results exist only for

the test equation

(3.8) x (t) = x̃+ α

∫ t

0
x (s) ds,

(see, e.g., [5], [6], [9]). �

Definition 3.1. A discretization method for Volterra integral equation is
said to be A-stable if it yields an approximation {xn} such that xn → 0 as
n→∞, whenever applied with a fixed h to (3.8) with Reα < 0.

In the definition of A-stability for ordinary differential equations we replace
the test equation (3.8) by

(3.9) x′ = αx.
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Note first that W ≡ 0 is formally a positive quadrature but certainly not
A-stable since xn = x̃ for all n. On the other hand, by redefining one element
in such a way that it breaks the positivity one can find A-stable quadratures
which are not positive. There is an important case where these concepts equal
and this is the main subject of the next chapter.

4. ORDINARY DIFFERENTIAL EQUATIONS

In this chapter we consider numerical solutions to the ordinary differential
equation

(4.1) x′ (t) + f (t, x (t)) = 0, t ≥ 0; x (0) = x̃,

where f satisfies (1.5). We discretize (4.1) using an A-stable linear multistep
method (ρ, σ) , write the solution of the discretized equation using an associ-
ated quadrature and show that this quadrature is positive. Then the error
bound given in Theorem 3.1 can be used.

An application of a multistep method (ρ, σ) to (4.1) yields.

(4.2) ρ (E)xn + hρ (E) fn = rn,

where rn is a local perturbation and fn = f (nh, xn) .
The solution of (4.2) can be written as

(4.3) xn+k = ϕn+k +
n∑
µ=0

an−µ
{
rµ − hρ (E) fµ

}
,

where {ϕn} is a sequence which depends only on ρ and the initial values
x0,. . . ,xk−1, and {an} is the solution of

(4.4) ρ (E) an = 0, αka0 = 1,
k∑

j=k−r
αjar−k+j = 0, for r = 1, . . . , k − 1.

Since we assume that (ρ, σ) is stable the sequences {ϕ} and {an} are bounded.
We can rewrite (4.4) as

(4.5) xn+k = ϕn+k +
n∑
µ=0

an−µrµ − h
n+k∑
µ=0

wn+k,µfµ,

where

wn+k,µ =

min{k,µ}∑
j=max{0,µ−n}

βjan−µ+j .

Put

wm =
k∑

j=max{0,k−m}

βjam−k+j and write (4.5) as
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(4.6) xn = ψn +
n−k∑
µ=0

an−k−µrµ − h
n∑
µ=0

wn−µfµ,

where {ψn} is a bounded sequence depending on ρ, σ, xn, . . . , xk−1, f0, . . . , fk−1.
In this way we have associated with a multistep method (ρ, σ) the convolution
quadrature Ω

(4.7) (Ωξ)n = h
n∑
µ=0

ωn−µξµ.

Note that Ω is well defined even if the method (ρ, σ) is not stable.

Theorem 4.1. A multistep method (ρ, σ) is A-stable if and only if the cor-
responding convolution quadrature Ω is positive.

In the proof we need the following results.

Lemma 4.1. Ω is a positive quadrature if and only if {ωn} is bounded and

(4.8) Re

∞∑
n=0

ωnr
neinτ ≥ 0, for τ ∈ [−π, π] , r ∈ (0, 1) .

Lemma 4.2. [2] A multistep method (ρ, σ) is A-stable if and only if ρ(ζ)
σ(ζ) is

regular and has a nonnegative real part for |ζ| > 1.

Proof of Theorem 4.1. A straightforward calculation shows that

(4.9) σ(ζ)
ρ(ζ) = ω0 + ω1ζ

−1 + ω2ζ
−2 + · · ·

If the method (ρ, σ) is A-stable, then it is stable [2].
Hence {an} and {ωn} are bounded. But by (4.9) and Lemma 4.2 also (4.8)

holds and so Ω is positive.

Assume then that Ω is positive. By (4.8) and (4.9) we note that Re σ(ζ)
ρ(ζ) ≥

0 for |ζ| > 1. But Re σ(ζ)
ρ(ζ) is harmonic on {|ζ| > 1}, nonnegative and not

identically zero, hence Reσ(ζ)
ρ(ζ) > 0 for |ζ| > 0, and the method (ρ, σ) is A-

stable. �
Proof of Lemma 4.1. Since the positivity of Ω implies 2hω0 ≥ h |ωn| , {ωn}

is bounded. The proof of (4.8) is carried out in two steps. We first note
that {ωn} defines a positive convolution quadrature if and only if {ωnrn} does
for every r ∈ (0, 1) . But {ωnrn} ∈ l1 and the second step is to show that
{νn} ∈ l1 defines a positive convolution quadrature if and only if Re ν̂ (τ) ≥ 0
for all τ ∈ [−π, π] .

Assume {ωn} defines a positive quadrature. Let Pr denote the Poisson
kernel, then we can write

rn = 1
2π

∫ π

−π
Pr (τ) e−inτdτ = 1

π

∫ π

0
Pr (τ) cos (nτ) dτ.



46 Olavi Nevanlinna 16

Since Pr (τ) ≥ 0 we have

N∑
n=0

ξn

n∑
j=0

ωn−jr
n−jξj = 1

π

∫ π

0
Pr (τ)

{ N∑
n=0

ξn

n∑
j=0

ωn−j cos (n− j) τξj
}

dτ

= 1
π

∫ π

0
Pr (τ)

{ N∑
n=0

cosnτξn

n∑
j=0

ωn−j cos jτξj+

+
N∑
n=0

sinnτξn

n∑
j=0

ωn−j sin jτξj

}
dτ ≥ 0.

Hence {ωnrn} defines a positive quadrature. The converse follows easily since

N∑
n=0

ξn

n∑
j=0

ωn−jξj = lim
r→1

N∑
n=0

ξn

n∑
j=0

ωn−jr
n−jξj .

Assume then that {νn} ∈ l1. Define ν̃ = {ν̃n}∞−∞ by

ν̃n = ν|n|, n 6= 0

ν̃n = 2ν0, n = 0.

By (2.7) ν defines a positive quadrature if and only if

(4.10)
∞∑
n=0

ξn

∞∑
j=0

ν̃n−jξj ≥ 0

for all real sequences {ξn}∞0 with compact supports.

Using Parseval’s identity we notice that
∞∑
n=0

ζ̄n
∞∑
j=0

ν̃n−jζ is real even if {ζn}

is a complex sequence.
Hence (4.10) is equivalent to the condition

(4.11)
∞∑
n=0

ζ̄n

∞∑
j=0

ν̃n−jζj ≥ 0

for all complex sequences {ζn}∞0 with compact supports.
But

∞∑
n=0

ζ̄n

∞∑
j=0

ν̃n−jζj =

∞∑
n=M

ζn−M

∞∑
j=M

ν̃n−jζj−M , for all M ∈ Z

which shows that ν defines a positive quadrature if and only if ν̃ is a positive
definite function on Z. Since ν̃ ∈ l1 (Z) , this happens if and only if ˆ̃ν(τ) ≥ 0
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for all τ ∈ [−π, π] (see e.g [4, 12.13.3]). Hence the lemma is proved because
Re ν̃ (τ) = 1

2 ν̃ (τ) .
We now apply Theorems 3.1 and 4.1 to obtain an error bound for the

numerical solution of (4.1). It has been an open problem whether A-stability
(which is connected to the test equation (3.9), only) implies some stability
properties for the difference equation (4.2) in more general cases. Let, again
x (t) be a solution of (4.1) and define τn by

(4.12) ρ (E)x (nh) + hσ (E) f̃n = τn,

where fn = f (nh, x (nh)) , and put, as before zn = xn−x (nh), qn = rn− τn.

Corollary 4.1. Assume that f satisfies (1.5) with µ > 0. If the multistep
method (ρ, σ) is A-stable then there exists a constant C = C (ρ, σ) such that
for all N > k
(4.13){

N∑
n=0
‖zn‖2

} 1
2

≤ CM
µ

{
(N+1) max

0≤j≤k−1

[
‖zj‖+

∥∥fj−f̃j∥∥]+[ N∑
n=k

( n−h∑
µ=0
‖qn‖

)2
] 1

2
}

Proof. From (4.6) we get, for n ≥ k,

zn + h

n∑
µ=0

ωn−µ

(
fµ − f̃µ

)
= ψn − ψ̃n +

n−h∑
µ=0

an−k−µqµ
def
= pn,

where
∥∥ψn − ψ̃n∥∥ ≤ C max

0≤j<k≤l

{
‖zj‖+

∥∥fj − f̃j∥∥} and |an| ≤ C.

By Theorem 3.1 ‖{zn}‖N ≤
M
µ ‖{pn}‖N which gives (4.13).

Note that if the method (ρ, σ) is also G-stable one can obtain a better bound
using (2.22) and Theorem 2.2

As another application of Theorem 4.1 we consider the system

(4.14)

{
x′ +A (t)x+ y = b (t)

y′ −B (t)x = 0

under the assumptions

(4.15) µ ‖u‖2 ≤
〈
u,A (t)u

〉
≤M ‖u‖2 , for all t ≥ 0, u ∈ Rd,

(4.16)

{
B (t) is symmetric, positive definite an

B′ (t) is nonnegative definite, for all t ≥ 0.
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Assume (4.14) is discretized using a G-stable one-leg method (ρ, σ)

(4.17)

{
ρ (E)xn + hA (nh)σ (E)xn + hσ (E) yn = hb (nh) + rn

ρ (E) yn − hB (nh)σ (E)xn = 0.

Let (x (t) , y (t)) satisfy (4.14) and define τn, ηn by

ρ (E)x (nh) + hA (nh)σ (E)x (nh) + hσ (E) ηn = hb (nh) + τn(4.18)

ρ (E)nn − hB (nh)σ (E)x (nh) = 0.

Put xn − x (nh) = zn, yn − ηn = wn, tn − τn = qn, then we first have

ρ (E)wn = hB (nh)σ (E) zn and ρ (E)σ (E)wn = hσ (E)
{
B (nh)σ (E) zn

}
.

This can be written as

σ (E)wn = ψn + h

n∑
µ=0

ωn−µB (µh)σ (E) zµ,

where ψn satisfies ‖ψn‖ ≤ C max
0≤j≤k−1

{
‖σ (E)wj‖+ ‖B (jh)σ (E) zj‖

}
.

Hence we can write

(4.19) ρ (E) zn = hA (nh)σ (E) zn + h2
n∑
µ=0

ωn−µB (µh)σ (E) zµ = qn − hψn,

which is of the form (2.19). Since (ρ, σ) is G-stable it is A-stable and the
quadrature Ω in (4.19) is positive.

Therefore, if the operator

(4.20) (Bϕ) (t) =

∫ t

0
B (s)ϕ (s) ds

is positive in L2 then all the bounds given in chapter 2 for (2.19) apply to
(4.19). But, by (4.16),∫ T

0

〈
ϕ (t) , (Bϕ) (t)

〉
dt =

= 1
2

〈
B−1 (T ) (Bϕ) (T ) , (Bϕ) (T )

〉
− 1

2

∫ T

0

〈 [
d
dtB

−1
]

(Bϕ) (t) , (Bϕ) (t)
〉

dt,

which gives the positivity, since when B (t) is positive definite so is B−1 (t)
and − d

dtB
−1 (t) = B−1 (t)B′ (t)B−1 (t) . �
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5. WEAKLY SINGULAR KERNELS

In applications one often meets equations where the positive operator K
has a kernel which is continuous on 0 ≤ s < t < ∞ but weakly singular on

s = t. For example, K (t, s) = (t− s)−
1
2 B, where B is symmetric and positive

definite. We shall here give discretizations for some weakly singular kernels
and study the positivity of the resulting quadratures.

We consider operators K which are of the form

(5.1) (Kϕ) (t) =

∫ t

0
a (t− s)B (t, s)ϕ (s) ds,

where

(5.2) a ∈ L1 (0, 1) ∩ C (0,∞) ,

and B (t, s) is symmetric and continuous on 0 ≤ s ≤ t <∞.
We associate with a (t) a product integration quadrature P = {wnk} and

approximate K by PB where B is defined by

(5.3) (Bϕ) (r) =

∫ t

0
B (t, s)ϕ (s) ds

and PB by

(5.4) (PBξ)n = h
n∑
j=0

wnjB (nh, jh) ξj .

The problem then is to find results of the form:
if the operator

(5.5) (Aϕ) (t) =

∫ t

0
a (t− s)ϕ (s) ds

is positive in L2 then P is a positive quadrature, since when this is the case,
all the error bounds in chapters 2 and 3 are applicable.

Given a (t) we define sequences {αk}, {βk} by

(5.6) αk = h−1

∫ h

0
a
(

(k + 1)h− s
)
ds, k = 0, 1 . . .
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and

β0 = h−2

∫ h

0
sa (h− s) ds,

(5.7)

βk = h−2

∫ h

0

{
sa
(

(k + 1)h− s
)

+ (h− s) a (kh− s)
}

ds, k = 1, 2, . . . ,

and the corresponding convolution quadratures

(5.8) (P1ξ)n = h
n∑
j=0

αn−kξk

and

(5.9) (P2ξ)n = h

n∑
j=0

βn−kξk.

Let us at first observe that the positivity of A does not generally imply
the positiveness of these quadratures. When P1 is positive, α0 ≥ 0, but for
a (t) = cos t we have α0 = h−1 sinh. On P1 we shall assume that

(5.10) a (t) is nonnegative, nonincreasing and convex for t > 0.

Theorem 5.1. If a satisfies (5.2) and (5.10), then the quadrature P1 is
positive.

Proof. By (5.10) {αk} is bounded and nonnegative and satisfies

αk+1−2αk+αk−1 = h

∫ h

0
s
{
a ((k+2)h−s)−2a ((k+1)h−s)+a (kh−s)

}
ds ≥ 0

(5.11)

since the integrand is nonnegative by convexity. Forming a new sequence
{αkrk} where r ∈ (0, 1) , we still have

αk+1r
k+1 − 2αkr

k + αk−1r
k−1 ≥ 0, but now also {αkrk} ∈ l1.

By [7, Theorem 4.1] there exists a nonnegative function f ∈ L1 (−π, π) such

that f (n) = α|n|r
|n|, for all n ∈ Z. Thus

(5.12) Re

∞∑
n=0

αnr
neinτ = 1

2α0 +
∞∑

n=−∞
α|n|r

|n|einτ ≥ 1
2α0,

and the positivity follows from Lemma 4.1. �
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From the proof of Theorem 5.1 we note that also P2 is positive if we have

(5.13) β̃k−1 − 2β̃k + β̃k−1 ≥ 0 for k > 0,

where β̃0 = 2β0, β̃k = βk, k > 0. However, (5.10) does not imply (5.13),

consider, e.g., a (t) =

{
1− t, t ≤ 1

0, t > 1
with h = 1

2 .

We shall therefore impose a stronger condition on a(t):

(5.14) a ∈ C∞ (0,∞) and (−1)i a(i) (t) ≥ 0 for i = 0, 1, . . . ; t > 0.

Theorem 5.2. If a satisfies (5.2) and (5.14), then the quadrature P2 is
positive.

Proof. Since a (t) is completely monotonic it can be represented in the form

(5.15) a (t) =

∫ ∞
0

e−ptdλ (p) ,

where λ (p) is nondecreasing and the integral converges for t > 0 [16, Theorem
12b]. Hence, for r ∈ (0, 1) ,

∞∑
n=0

βnr
neinτ =

∞∑
n=0

(
h−2

∫ h

0
sa ((n+ 1)h− s) ds

)
rneinτ

+
∞∑
n=1

(
h−2

∫ h

0
(h− s) a (nh− s) ds

)
rneinτ

= h−2

∫ ∞
0

{
e−ph

∫ h

0
eshsds

∞∑
n=0

rne−pnheinτ

}
dλ (p)

+ h−2

∫ ∞
0

{∫ h

0
esh (h− s) ds

∞∑
n=1

rne−pnheinτ

}
dλ (p)

= h−2

∫ h

0

{
e−ph

∫ h

0
eshsds+ re−pheiτ

∫ h

0
esh (h− s) ds

}
·

·
{

1− re−pheiτ
}−1

dλ (p) .
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Put
∫ h

0 eshsds = A,
∫ h

0 esh (h− s) ds = B, then

Re
∞∑
n=0

βnr
neinτ = h−2

∫ ∞
0

[
e−phA− r2e−2phB + r

(
e−phB − e−2phA

)
cos τ

]
·

(5.16)

·
[
1− 2re−ph cos τ + r2e−2ph

]−1
dλ (p) .

The integrand in (5.16) is nonnegative since λ (p) is nondecreasing,
1− 2re−ph cos τ + r2e−2ph ≥ 0 and the first term attains its extreme values at
τ = nπ. For cos τ = 1 we have(

e−ph − re−2ph
)

(A− rB) ≥ 0 since A > B

and for cos τ = −1 (
e−ph + re−2ph

)
(A− rB) ≥ 0.

Hence

Re

∞∑
n=0

βnr
neinτ ≥ 0

and the theorem follows from Lemma 4.1 �

6. ON THE ASYMPTOTIC BEHAVIOUR OF THE SOLUTIONS

Besides the error bounds there naturally arises another question whether
xn → 0 as n→∞. We shall consider here only discretizations to the Volterra
integro-differential equation (1.1).

On Volterra integro-differential equations we do not know any results on
this problem (in addition to those on the test equation (2.34)). On ordinary
differential equations some earlier results are known, see e.g [14], [15].

We consider the equation

ρ (E)xn + hf (nh, σ (E)xn) + h2
n∑
j=0

wnjK (nh, jh)σ (E)xj = 0, n ≥ 0

(6.1)

under the assumptions that f satisfies (1.5),

(6.2) WK is a positive operator,
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(6.3) (ρ, σ) is a G-stable method

with

(6.4) α < 1.

This is not sufficient to guarantee that xn → 0 (consider, e.g., x′ = 0).
Therefore we shall impose a stronger condition on WK.

Definition 6.1. The operator WK is said to be strictly positive if there
exists {ωn} = l1 with Re ω̂ (τ) > 0 for τ ∈ [−π, π] such that WK − Ω is a
positive operator.

Here Ω stands for the convolution quadrature associated with {ωn} by (4.7).
The definition is a modification of a concept due to Staffans O.J. [12] on

positive type functions on R+; a ∈ L1
loc is of strictly positive type if there exists

b ∈ L1 satisfying Re b̂ (τ) for τ ∈ R such that a − b is of positive type. (A
function a is of positive type if A in (5.5) is a positive operator). He used
the concept when studying asymptotic behaviour of the solutions of the scalar
equation

(6.5) y′ (t) +

∫ t

0
a (t− s) g (x (s)) ds = ψ (t) , t ≥ 0.

Theorem 6.1. Assume that (1.5), (6.2) and (6.3) hold. If

(6.6)
{
f (mh, 0)

}
∈ l1,

then all solutions of (6.1) are bounded. If additionally (6.4) holds and

(6.7) WK is a strictly positive operator,

then they tend to zero as n→∞.

Proof. Writing (6.1) in the form

ρ (E)xn + h
[
f (nh, σ (E)xn)− f (nh, 0)

]
+ h2

n∑
j=0

wnjK (nh, jh)σ (E)xj =

(6.8)

= −hf (nh, 0) ,

we notice that the first part of theorem follows from (2.21).
To show the second part we first deduce from (6.8) that

G (XN+1)−G (X0) + h2
N∑
n=0

〈
σ (E)xn,

n∑
j=0

wnjK (nh, jh)σ (E)xj

〉
≤(6.9)

≤ 2hS
∞∑
n=0

‖f (nh, 0)‖ ,
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where S = sup ‖σ (E)xn‖ <∞. Since WK− Ω is positive (6.9) yields

G (xN+1)−G (X0) + h2
N∑
n=0

〈
σ (E)xn,

n∑
j=0

ωn−jσ (E)xj

〉
≤(6.10)

≤ 2hS
∞∑
n=0

‖f (nh, 0)‖ .

Hence for some R <∞

(6.11) 0 ≤
N∑
n=0

〈
σ (E)xn,

n∑
j=0

ωn−jσ (E)xj

〉
≤ R, for all N ≥ 0.

Put

ξ = {ξn}∞−∞, ξn = σ (E)xn, 0 ≤ n ≤ N
ξn = 0, n < 0, n > N.

Then by (2.7) and (6.11) we have

0 ≤
∞∑

n=−∞

〈
ξn,

∞∑
k=−∞

ω̃n−kξk

〉
≤ 2R

and, using Parseval’s identity

(6.12) 0 ≤ 1
2π

∫ π

−π
ˆ̃w (τ)

∥∥ξ̂ (τ)
∥∥2

dτ ≤ 2R.

Since 0 < ˆ̃w (τ) ≤ ‖ω̃‖1 we have by multiplying (6.12) by ˆ̃w (τ) and using
Parseval’s identity and the definition of ξ that

(6.13) 0 ≤
∞∑

n=−∞

∥∥∥ N∑
k=0

ω̃n−kσ (E)xk

∥∥∥2
≤ 2R ‖ω̃‖1 .

But then{ ∞∑
k=0

ω̃n−kσ (E)xk

}
∈ l2 (Z) , and so

∞∑
k=0

ω̃n−kσ (E)xk → 0, as n→∞.

Hence, for all {γk} ∈ l1 (Z) ,
∞∑
k=0

γn−kσ (E)xk → 0 by Wiener’s Tauberian

theorem, since ω̃ ∈ l1 (Z) , ˆ̃w (τ) = 2Reŵ (τ) > 0 for τ ∈ [−π, π] , and
‖σ (E)xk‖ ≤ S for all k ≥ 0. Choosing γ0 = 1, γk = 0 for k 6= 0 we get
α (E)xk → 0. (Note that so far we have not needed the assumption α < 1).
By (2.23) we have

H (Xn+1) ≤
(
α2 + ε

)
H (Xn) + ‖σ (E)xn‖2 ,
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which gives

(6.14) H (Xn+1) ≤
(
α2 + ε

)n+1
H (X0) +

n∑
k=0

(
α2 + ε

)n−k ‖σ (E)xk‖2 .

Since α2 + ε < 1 and ‖σ (E)xk‖2 → 0 we finally get H (Xn+1)→ 0.
But H is positive definite and the theorem is proved. �

At the end we give examples on strictly positive operators.

Example 6.1. Let K (t, s) be symmetric and continuous on 0 ≤ t < s <∞
and assume that there exists a bounded nonincreasing function a ∈ L1 with
Re â (τ) > 0 for τ ∈ R, such that

(6.15) K −A is positive in L2,

where K and A are defined by (1.4) and (5.5) respectively. Let Ωθ be the
convolution quadrature associated with the sequence {θ, 1, 1, 1, . . .}. Then ΩθK
is strictly positive for θ ≥ 1

2 .

We show this. By Theorem 2.1 Ωθ (K −A) is positive in l2. Hence it suffices
to show that ΩθA is generated by {νn} ∈ l1 with Re ν (τ̂) > 0 for τ ∈ [−π, π] .
But

(ΩθAξ)n = h

{
θa (0) ξ0 +

n−1∑
j=0

a ((n− j)h) ξj

}

and a (t) =
∫
R e−itsα (s) ds, with α (s) > 0, α ∈ L1 (R) . Since a ∈ L1 and is

nonincreasing,
ν = {θa (0) , a (h) , a (2h) , . . .} ∈ e1. Furthermore,

ˆ̃ν (τ) = lim
r→1−

{
2θa (0) +

∑
k 6=0

a (kh) eikτr|k|

}

≥ lim
r→1−

∫
R
α (s) 1−r2

1−2r cos(τ−hs)+r2 ds

≥ lim
r→1−

h

∫ π

−π
α
(
th−1

)
1−r2

1−2r cos(τ−t)+r2 dt

= 2πhα
(
τh−1

)
, a.e τ ∈ [−π, π] .

But ˆ̃ν (τ) is continuous, α
(
τh−1

)
> 0 for all τ, and so

Re ν̃ (τ) = 1
2
ˆ̃ν (τ) < 0, for all τ ∈ [−π, π] . �
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Example 6.2. If (5.2) and (5.10) hold then P1 in (5.8) is strictly positive
if and only if a (t) 6≡ 0.

This follows directly from (5.12) by choosing {ωn} in the Definition 6.1 to be
the sequence

{
1
2α0, 0, 0, . . .

}
. Thus it follows that P1 may be a strictly positive

operator in l2 even if a (t) is not of strictly positive type: a function satisfying
(5.2) and (5.10) is of strictly positive type if and only if there does not exist a
constant η > 0 such that a (t) is linear on all intervals (nη, (n+ 1) η) , n ≥ 0
[13, Theorem 2.3]. �

Example 6.3. If a satisfies (5.2) and (5.14), then the quadrature P2 is
strictly positive if and only if a (t) 6≡ a (0) .

If a (t) ≡ a (0) then P2 is generated by the sequence
{

1
2a (0) , a (0) , a (0) , . . .

}
and it is not strictly positive since if {ωn} generates a positive quadrature,
one has 2ω0 ≥ |ωn| , n ≥ 1. On the other hand, if a (t) 6≡ a (0) , there exists
α > 0, β < ∞, such that λ (p) 6≡ constant on [α, β] (λ (p) is given by (5.15)

and λ is continuous at α, β. Put b (t) =
∫ β
α e−ptdλ (p) , then a− b is completely

monotonic and b ∈ L1. By Theorem 5.2 P2 associated with a − b is positive.
Choosing Ω in definition 6.1 to be equal to P2 associated with b, the strict
positivity follows, since for p > 0 the integrand in (5.16) (with r = 1) is strictly
positive. �

This work was done during the authors stay at Institute Mittag-Leffler,
Sweden.

REFERENCES

[1] Brunner, H. and Lambert, J.D., Stability of numerical methods for Voterra integro-
differential equations. Computing, 12, 75 (1974).

[2] Dahlquist, G., A special stability problem for linear mutlistep methods, BIT, 3, 27,
(1963).

[3] Dahlquist, G., Error analysis for a class of methods for stiff non-linear initial value
problems. To be puyblished in The Proceedings of the conference on numerical analysis,
Dundee, 1975.

[4] Edwards, R.E., Fourier series: A modern introduction. Vol. II. New York: Holt Rine-
hart and Winston, Inc., 1967.

[5] Garey, L., The numerical solution of Volterra integral equations with singular kernels.
BIT, 14, 33 (1974).

[6] De Hoog, F. and Weiss, R., Implicit Runge-Kutta methods for second kind Volterra
integral equations. Numer. Math., 23, 199 (1975).

[7] Katznelson, Y., An introduction to harmonic analysis. New-York: Wiley Inc., 1968.
[8] Malina, L., A-stable methods of high order for Volterra integral equations. Aplikace

matematiky, 20 , 336 (1975).



27 Numerical Solutions 57

[9] Matthys, S., A-stable linear multistep methods for Volterra integro-differential equa-
tions. To appear in Numer. Math.

[10] Nevanlinna, O., On error bounds for G-stable methods. To appear in BIT.
[11] Nevanlinna, O., Positive quadratures for Volterra equations. To appear in Computing.
[12] Staffans, O. J., Nonlinear Volterra integral equations with positive definite kernels.

Proc. Amer. Math. Soc., 51, 103 (1975).
[13] Staffans, O.J., Positive definite measures with applications to a Volterra equation. To

appear in Trans. Amer. Math. Soc.
[14] Stetter, H.J., Analysis of discretization methods for ordinary differential equations.

Berlin: Springer-Verlag, 1973.
[15] Stetter, H.J., Discretizations of differential equations on infinite intervals and appli-

cations to function minimization. In Topics in numerical analysis, Proceedings of the
conference on numerical analysis, 1972, ed. J. J. H. Miller, New-York: Academic Press,
1973.

[16] Widder, D.V., The Laplace transform. Princeton: Princeton University Press, 1946.

Received 8.III.1976

Helsinki University of Technology,

Institute of Mathematics

http://dx.doi.org/10.1090/S0002-9939-1975-0370081-8
http://dx.doi.org/10.1090/S0002-9939-1975-0370081-8

	1. Introduction
	2. Volterra integro-differential equations
	3. Volterra integral equations
	4. Ordinary differential equations
	5. Weakly singular kernels
	6. On the asymptotic behaviour of the solutions
	References

