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Introduetion. In [1], [2] we have considered direct and converse
theorems for spline approximation with free knots in the uniform metric
(in the space C[0,1]). In this note we shall consider the analogue pro-
blem for spline approximation in L,

We shall denote the get of all spline functions in the interval [0, 1]
With % + 1 knots and of A-th degree with S(k, n), ie, s = S(kn), if s =
C*=1. 10.1] (C’[a,b] denotes as usually the of set all functions which have
r-th continuous derivative in the interval [qa, b]) and there exist n 41
points x,, 7 =0, , 2 0=x,<x <. <%, =1, such that in each interval
(%1 %], 1 =1, -++, #, s is an algebraic polynomial of a degree at most
k. In the case % = 0, S(0,%) coincides with the class of all stepfunctions
with % — 1 jumps. Then we suppose that s is continuous either on the
right or on the left. For the approximation in L, the restriction s = Chit
[0,1] is not essential. For this reason we shall consider also approxima-
tion by means of splines with a defect, i.c. without the restriction s e Ct-1
[0,1]. We shall denote the set of all splines with # -4~ 1 knots of k-th
degree with a defect by S(k, n), ie. s< S(k, n) if there exist 7 4 1 points

X, 0 =0,.00, 1, 0 = g, < ¥1 < ... <%, =1, such that in each interval
(%1, %), = L., m s is an algebraic polynomial of a degree at
most 4,

The best approximation Eu(f)y of the function f « L, by means
of elements of S(k, n) is defined by

Ey(f)e, = inf ||f — lle o,

SE€S(k,n)
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where

1 1

IS = Sllepro ={ {176 — st}

0

and the best approximation ELS )iy of f e L, by means of elemer{ts of
S(k,m) by

ENf)r, = inf |If — sle,m00 .

Cse Sk )
The best uniform approximation Ej(f) is defi.ned by

Eﬁ(f) =inf || — sliciony,

SES(kn;

where

If ~ sllew, 1 = max |f{x) — s()|; f < C[0, 1].

x&[0,1]
The following lemma is valid (see BRUDNII [3]):

Lemma 1. Let f = L,[0,1]. There exists a constant c(k), depending
only on k, such that

ENuy € BN (A, < c®ENS)L,

where m = (n — 1)k 4 n.

This lemma also shows us that the restriction s  C’[0,1] is not
essential for the best spline approximation (see also [1], [2]).

In [1], [2] we introduce the following moduli by means of which
it is possible to obtain direct and converse theorems for spline approximation
with free knots in C[0,1]: ‘

Let V 'be the set of all monotone functions iu the interval [0,1] with
variation € 1, which are continuous either on the right or on the left.
Then we defined :

1) Wfi8)= inf  sup  [ALf(»)], .

QST gl hh) —g(x) (<8

where as usual Ajf(x) denotes the k-th difference of the function fin
the point x with a step 4:

k

' k
Aﬁf(x) = 2 (—1)k+m (m) f(x + mh)

m==0
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and the sup in (1) is taken over all x and » for which lo(x + kh) — o(x))
< 3.

The following theorem is announced in [1] and proved in [2]:

THEOREM A. For every k> 1 there exists constants ci(R) and cy(k),
such that for every f < C[0,1], we have

es(h)v, (f; %)< EEY) < cz(km(f;“ ‘).

n

For every bounded function f we have

The aim of this note is to give an analogue of Theorem A for the
best spline approximation in L,[0,1].

Remark. Direct and inverse theorems for L, — spline approximations
with equidistant knots are obtained in [4], [5]). The case with free knots
is considered in [6], where are obtained some different results, which use
other characteristics of the functions.

L. First we shall introduce L, — analogue of (1). Let V¥ denote the
set of all monotone increasing functions ¢ in the interval [0,1], for which
¢(0) =0, o(1) = 1. For every ¢ € V* we set ¢(x) = 0 for x << 1, @(x) =1
for x > 1.

We define :

1 p(x+8)—kt 1
2) lfi 8)y, = inf {S sup g AX £ |P cix}".
e * >0 F
¢{x—8)
If we set
§—kt 1

olfi ab)z,={sup AL ),

“

we can wright (2) as
W/ 8, = inf Jou(f5 o(x — 8), o + 8)rlley0m.
eV

Let us mention some of the properties of v, (f O)L,

Property 1. v, (f; 8)z, 15 monotone increasing function of 8, i. e.
/5 Ba)e, < vy (5 )iy O 815 8,
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This property is evident. _

Property 2. If k> 7 then v, (f; 8)r, < 2, (f; 3)r,
\

Proof. We have :

1 o(x+8)—kt

Vel S)Lp = inf {fsrgg’
0

e

1
|A} F(u) 1P du d%}’> =

(v —38)

1 @{v-+8)—ht

:¢i££*{sstlilo) S Er (:n) (—1)rom Afﬂf(u + mt) P

o Bl —8) me0

|~

du dx} <

1

1 - G+ 8)— ki 1
AL G L e s mral) o
0

el —

\
Py —8)

Zr P(x+8) - (h—1)t A
<inf Hapz (0 st pas ial” = 2 ifi,
cEp* >0
0 ¢(v—38)

We shall need some lemmas, which may be considered as known
but for more clarity we shall give the full proofs.

Lemma 2, Let the function S has integrable k-th derivative J® in
the interval [a,b]. Then there exists an algebraic polynomial p of(k — 1)-th
degree such that

b — a)®
T

Proof. The Taylor’s formula give us

So) = fl@) + ¥ =2 pa) 4 4 ot

- (v — i
1! - 1)1 /i) +Sf(k)<t) (k—l;! &
where
; 0if <0 :
th {x’“ if x>0
Therefore there exists an algebraic polynomial P of & — 1 -th degree
stuch that :

— it {

at Ly - (k- 1)! “ Shf(k)(t)(x N t)ﬁ-—l

@

If = #lir, = [) f""

k—l)

Lp

SPLINE APPROXIMATION

We have:

“ Sbf“)(t)(x — fyi! ét <| §f"”’(t)(b — @)1y

LP LP

k=14 —

*|§rmta| < o — appmy,

Lemma 3. There exists a constant c(k),

that for every f < [ (@), there exists an algebr
-th degree, such tlmt

= (b —a)

depending only on k, such
aic polynomial g of (k — 1)

b—kt 1

I/ — QHLP( a H’) < clk) {§up S Aﬂf(x)]”dx};,

Proof. Since C(a,b) is dense in Ly(a,b),

We can assume that f = C(a,d).
Let us set % —(z;ka) and let

I 3

hle) = (— 1= S{ F e+ 4)) —
)+

—(7(r+ 5+ 1

(= 1)t 1f(x+Lw,}d¢1...dt
for % E(a,“'z"b).

ks

for % G(a, a’_’_b)-

Consequently,

A0 g 220y = L

Ay 0
&
~n
——
— X
s —
>
3[7*?0-
=
X
+

o+ (=0 )P @} <
3
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On the other hand [%—ﬂ- £ = 1)
7

1
1” <

J

2

i U = Al fozi) ={ § ) = 7112 2

| -

1 z
g{hk”(?_l)s,._gs ;A,’f+___+,kf(x)|f’dxdzl,...d.ek} <
0 a

k

bh— &t

1 1
< {s{g%a S IAf‘f(x}i”dx}P.

From (3), (4) and lemma 2 we obtain that there exists an algebraic
polynomial ¢ of a degree at most k& — 1, such that

W = gl 220y < Il il (a28) W = gl 200) <

2

b—ht i 2"(5 = a}k bkt A
< {sup ! AL sl + h—?ﬁT{up { A1 £ () P ax]? =

a a

=c(k) {?E? b_SM [Aff(x) | dx}% ;

Remark. Lemma 3 is 2 &
WHITNEY [7].

2, Now we shall obtain 2
mation with free knots.

p-analogue of the well-known result of

direct and inverse theorem for L, — approxi-

THEOREM 1. Let f = L,(0,1). Then

1
5 — 2k, Y
°) " (f’4(n n llJf-ﬂ SR D BT
1
(6) E;;:-l(_f}f_,f, s 63(;13}?’5“6 Vk( ,'k—:-‘-—l) s

where the constant c¢y(k) depends only on A.
Proof. According to lemma 1 it is sufficient to prove

®) "), <2 0 R
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1
(6 5 (y < et P (£5 ]

»n
where the constant c¢,(k) depends only on k.

Let us prove (5'). Let ¢ 0 be arbitrary and let s = S(k — 1,n)
be such that

1 S N
) {§17) ~ S(x)l”dx}” < B, + e
0
Let the knots of s are the points %, 4 =0,..., #, 0 = %, < % <

<...< %,=1 We have Afs(x) =0 for x, ¥ & bt (%21, ;).
We define :

. i 4 1 n_+ 1
o(®) =19 1; if x »1
0, if x<0
We have:
o)
fsup 1At Pands=
>0 .
<p(x— 4(u+1))
. . T
2m41) Eflr-r+1)+4(n+1) ‘P("ﬂ—(,,“)) ke
=2 N A} () P du d <
i=o >
(—1 1 AT
(Z(J’L+1)+4(”'_+l)) Lp(i- 4(u+l])
i+1
¢l |-kt
y et (2(”“)) k p
. Sosp 1A du <
2in + 1) 0 >0 ( n )
2z
v —kt
n—1 as
< suwp | AW — s aus
n 4+ 1720 1>0 4
L
okt "l Tt 1

o 2 sup S f() — s(w)|® du = 2%(n 4 1)-1 S f(#) — s(x) [ dx.
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From here and (7) we obtain :

1
1 “’(”4(%1))”‘" 1
, P su k ? I4
’k (f'4<n+1))L,,< {S»? S 47w d”dx} N
0

(*~zwrm)

1
S B+ 1) PESAL, + o).
Since ¢ >~ 0 is arbitrary, (5%

follows.
Let us prove (6")

- Let ¢ & V* be such ‘that

1
qp(x+;)~kﬁ

1 1
{Ssup S fA,kf(u)]Pdudx}Ps vk(f;i) L
- >0 ) n LP
-]
Let 2, =9 (i) Then
n
| :_l q;(x-{-%)—kl l
& wfrl) 4 >{ {sup rAff(u)ududx]" >
"L, i=1 .7 >0 .
—a o(e-2)
% xt-—-ht 1
>{ Ssup S mff(u)wdudx}ﬁ:
=t >0
:1 Vi =3y
x‘~—}|t 1
L )
=n" 713 sup (At du
i=1 >0
%_q

From lemma 3 it follows th

at for every i, i — 1,..
two algebraic polynomials of (&

' ., 1, there exist
— 1) -th degree ¥, j = 1,2 such that
e

2

(V@ =81 ax < ey sup

i1

¥o—kt
S AT f ()" du,

‘(;_1

Q SPLINE APPROXIMATION
xy x".—-M
) =201 dx < (k) sup {18t rw) e au,
>0
o = T mly
2

where the constant c(#) depends only on £.
Therefore for the function s = Sk — 1, 2n) given by

x) if x E[:a:,-_l,i—————“_";_ x")

st} = pP(x) if xe ["*’.ﬂ"____-lz“'" =} x{.J, i=1,....n,
we have:
; ' g oo MW 7
© {510 = st ar)? < 2qn (oo § 1ty r anf”

Since ¢ > 0 is arbitrary, from
Theorem 1 is proved,

Using theorem 1 we shall give

From the results in [9]
M eL, p>1, then -

(10) Ealf)ey < ecolt)n BN (f00), ) ks

= 7.

(8) and (9) we obtain (6").

two properties of vi(f;9)

Lp.
it follows that if / has a rth derivative

From (10) and theorem 1 we obtain, if /) e L, and k> »-

anstl =L g
' —] <2 )7 E*
Y (f’ d(n I)JLP (n+1)7% (f)e,
1
< colk)n 7y ER- l(fffJ)Lﬁ < C-;(k)ﬂ_r\!g,_,(fm A+ 1})

"

r

Lp
i.e,

Property 8. There exist 4 constant c,(k), depending only on k
and a constant co(k), depending only on k, such that of the function f has
r-th derivative fin e Ly, k>, then

Wl 8, < ealk)Svie (f10 ; cg(k)d),,
In [9] (see also [5]) it is shown that

ey < alh) o £ ﬂ;ﬁ

Using heorem 1 we obtain

77
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Property 4. A constant c (k) exists, depending only on k such that
wlf 8, < crol®oglfs 8o,

where

1—kh

olf; ¥, = sup { IAZf(x)I’”dx}%

0<h<d

1s the Ly-modulus of contimuity of the function f of k-th order.
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