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The purpose of this note is to cxtend results in scHERER [7] on
the characterization of generalized Lipschitz spaces by best approximation
by means of polynomial splines to the more general case of Chebyshevian
splines. Thereby results of RICHARDS-DEVORE [5], [6] in the case of
approximation in the C[q, b]-norm are completed and further extended to
approximation in the Ly(a, b)}-norm, 1< p < oo,

The procedure is the following : first a direct theorem is proved by
extending a corresponding result of jErROME [2] in the Cla,b] case to
the Ly(a,b) spaces: then, by the methods in [7], it is shown that a4
converse theorem holds with respect to moduli of continuity introduced
in [6] via generalized divided differences. In the third section relations
between these moduli of continuity and the ordinary ones are established.
A combination of all these results then yields the desired characterization
of generalized Iipschitz spaces,

1. A direct theorem

Let C™[a,0] be the space of m-times (m =0,12,...) continuously
differentiable functions on [, 0], and L} (a,b), 1< # < oo, be the space
ol functions on (a, b)) whose (m — 1)th derivative is absolutely continuous
and whose m-th derivative belongs to L,(a,b). The splines in question
are defined as the elements of the classes

(1) Sp(L, A, m) ={S e L%(a,b): LS(x) = 0, x (%i-1, %), 1Si< N

where A is a partition of the interval [a, b], i.e,

]



88 KARL SCHERER 9

(2) Ata=xy <2, <...<2y=0A=min (x,—x_1), A = max (%, — %;_1),
L is a differential operator of the form (0K m< n — 1)
(3) LD . ok

where D;f(x) =d [dx[f(x)]w;(x)] with strictly positive functions w;(x)
(" '[a,b]. Then there exists a basis of the null space of L of the form

(%) = wo(%)

(4)  w(x) = (%) Swmal)dal

a

x Ey E’il
U1 (%) = @, (%) Swl(al)g S @y r(En_i)dEy s ... dE,,
The system (u,, ..., #,_;) forms an extended complete Chebyshev (E.C.T)
system on [a,b] (RARLIN [4, p. 276]), in particular the Wronskian
W(ng,uy, ..., #,_1) is strictly positive on [a,b], ie.,
Uo(%) oo Up—1(%)
(5) : >0 (x = [ab])
Drug(x) .. ... D"y, _1(%)
Denoting by #} the elements of the last column of WY g, 4y, .., thy_s )
one sets
_ B(x, &), x = &
O(x, &) =
0; wr%asS E,

n—1
where 6(x, £) = D> u,(%)u] (£). Then by definition
=
©) D, &) I=8.  0<j<n—1

so that for f € C*[a, b] the generalized Taylor formula
) f(0) = wix) + {00z, HLAE)O(E)E

holds, where ®(&) = w,(&) w,(8) ... w,_1(€) and (%) satisfies Lu{x) =
=0 on [a,b] and Diu(a) = Dif(a), 0< j< n — 1. By taking a sequence
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of functions {f,} in C"[a,b] which converge in Li(a,b) to an element
f € Ly(a, b), it is seen that (7) holds more generally for functions in
L} (a, ), 1< p < o0,

The linear approximation method of jEroME [2] (defined more
generally for an arbitrary nonsingular linear differential operator with
suitable constants) is now described as follows :

For each & < [a,b] let the points #(), ..., £,(E) be consecutive points
of the mesh (2) satisfying

A< |H—EIS28; |t — | <[ty — E| < ... < |t, — &,
and let B,, ..., B, be any (non-trivial) solution of the system

Bouf (fo) + ... + Byut (t,) =0

Boty (t0) + - + Bag (6) = 0.
Setting £y(€) = &, the approximating spline S(x) = S( f;%) is defined by
®) S(x) = w(x) + { v(x E)LA(E) dt

with #(x) being as in (7) and

(%, €) = 8(x, £) — (1/8,) 2 BiB(x, 2,).
Obviously S(x) belongs to Sp(L,A,%#) by (6). JEROME (2] has shown
that 2 (3,-6\(;5, tj) has compact support in (£, £,] and that B;/B,< C
=0

for 1 < j< » independent of the choice of {t.} provided AJA remains boun-
ded. By the Taylor expansion (see (6)) one has furthermore

O(xy) = (x — )47/ — 1)1 + O((x — 3)%),
so that one may estimate
b
©) ) = S(f3)1 < (ul, €)1L£(8) 18
where y(x, £) > 0 has support in|x — £ < (# 4 2)A and satisfies %%, ) <
< CpA,_y, the constant * being independent of x and f
From this one easily concludes (with constants Cy,Cy)

* The constants will be denoted successively by C,, C, i v



90 KARL SCHERER 4 5 BEST APPROXIMATION 91
If = S(Hllo < CLAYILA o (f € L(a, b)), | 2. An inverse theorem
- " Following kaRLIN [4, p. 523] the generalized divided difference of f
If — SNl < CAYLA, (f = Li(a, b)). | at %, ..., %, is defined by
|
By arguments of the theory of interpolation of Banach spaces these #o(%y) v U1 () f(x)
inequalities imply :
(1) Ilf — S(f)lp < CAMLA,, (f = Ii{a,0), 1< p< o). (14 Pl s i) = LDt Ot
Uy cae Uylag
Indeed, by definition of Peetre’s K-functional one has for f = Li(a, b) :
K6, f=S(f); Lala, b), Lo (0, B) < inf (IS(f — )~ (/—g)lh+-UIS(e) —glle) < | W) (i)
e e where #,(x) = wo(%) [ wy(&) ... 1 w, (5,)dE, ... A%, with w,(x) = 1.
S max (C), Cy)A" i’?f UL/ — &)l + AILglle) < | The generalized divided difference has the property
EE_Loo(a. b) | (15) Lf =L O:f(x’_, . ., xH_”) = 0.
S max (Cy, CIAK(, Lf; Ly(a, b),Le (a, b)) In generalization of (13) one defines (see [6])
But smceS (L= VPK(, fiLy, L) 1dtft is a norm equivalent to (Ifllp (see Oﬁﬂzt{xw;ﬂe(a'b)f S flx) P}, 1< p < oo
0 16 ¢ =
(1, p. 185]), there follows (10). 16) or S

sup ess. sup | 8% f(x)], p=
. 5 ] 0 < <t vrtnhe(ab
From this one obtains in a standard manner for the best approxi- d & ISt =@

mation ER{" (f;p) = inf |f—s|, the Jackson-type inequality with
G (17) Sif() = W f(x, % 4 by ..., x4 uk).
E‘L "(fip) < K, f; Lp(a, b), Lp{a, b)). Since f(¥,, ..., %;,,) is linear in f, the generalized modulus of continuity
. . . ) } wor(t; f)p 'is sublinear in f, ie.,
Using an estimate in [3] therefore establishes the direct theorem
(18) wp (E5 fy + oy S o fi)p + op (¢ o
THREOREM 1. Under the condition that the ratio AJA yemains bounded For the following the relation
there holds for each f e Ly(ab), 1< < oo (or f & Cla,b] if p = o)
1 4
L, An 19 o == Rt Ar—r Y B, b F
(12) EX (5 8) <Co[Bflly + (5 A)y]. (19) ) = Sy &g W A S o B (1, )
Here w,(f;4), is the » th modulus of continuity defined by | together with (see RICHARDS-DEVORE [6])
T (20) 1B, (x, £}/ B(x, t)]|.. < C, O<r<n; 0 <t ),
Anf(x)|Pdx'"?], 1< p < o
- s ofﬁit{ /S [ []I U ? | (21) IBo(x, )/B(x, )l > Cy (0 << 1),
W, )tp: v bahe{a, b . .
sup  ess. sup |ALf(x)], b = o, 13 essential.
0= BISE5ET% S unSTa, o] A consequence of (19), (20) is

Here Ajf(x) is the # th (forward) difference of f(x) with increment J. (22) or(t; e < Collflp.
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With the help of the properties (15), (18) and (22) the following converse
theorem can be proved
THEOREM 2. Let EL™(f; p) denote the best approximation Egl:"}( £ b)),

where Ay is the equidistant partition of [a, b] into segments of lengths
(6 — a)/N. Then one has Jor feLy(ab), 1<p < oo or f=Cla, b] if
P = ©, N being odd and N > 3,

(23) op (N711 /), < ColBED (£ ) + EE0)(f; p)1.

Proof. Since it is very similar to that one of the corresponding theo-
rem in [7] for polynomial splines only a brief sketch is given.

Let S denote an element of best approximation of Sp(L, Ay, 0) to f =
€ Ly(a, b). By (18) one has for 0 < f< 1

orlt; fly < Cyllf — Slly + o (£ S),.

By (15) and {22) one may estimate further (0 <t< CpN-t with suitable
small constant Cy;, the points %;,ny being the knots of Ay) i

N—1 %N 1/p
ort; S)y< sup {ZZ Io13Sn(x)e dx} <
o<hst Li=1 % y—rh

N—1 %N 1p
<C13{Hf—5!|+sup { f_mla;:ﬂx)ldx] }

O<hst | 1=

But the last term can be estimated by EEO (f:p) in exactly the same
manner as in [7] using property (15).

3. Connections hetween moduli of continuity

The following theorem is proved:

THEOREM 3. There exist constancs Cy, Cyp and a 8, 0 < 8< 1, such
that for every f < L, (a, b) and O < t< 8 there hold the inequalities®

(24) wrlt; fo) < CultIfll + @, (¢ £)],

(25) Ot F)p < CslE1flly + wilt; £,

Proof.] By relation (19) 'and the estimates (20), (21) there follows
immediately

N Y | ST S 2 €]

* In general the term lIfllp cannot be dropped since this would imply that the nul-
space of D" is contained in that of L, or conversely.
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and

@) o (6 f)y < Gt max (1,6 [P Ul + 2 (), + 55 #on 3 1) |

It remains to estimate the sum in (26) or {(27) in a suitable manner. By
Marchaud’s inequality (see e.g. [3]) one has

(28) 2 Ponr (¢ fly < cz 2|1l + (w10, (1), | <

1

< Gy [z~ s +  { =, (o ;f)pdu] ;

¢

Splitting up the integration from ¢ to & and from § to 1, and observing

b0t £y < 20, ) ),
one obtains

O<t<u<),

1 8

@9 f u~ e, f), du< t"[ S w=" o, (u; f), du -+ s lu—n—l o, (f; #)p du]<

‘ 5
< 200,05 /) (3 — ) + 2 Iflly n(3~" — 1)]<
S 2w, (E;1)p8 + n" 8" f,1.
Now one takes 8 = 2--1[C,,Cy" max (1, C;)17*. Then (26) and the esti-

mates (28), (29) establish the first inequality (24) of the theorem. Further-
more, inserting (28), (29) into (27)¥yields with this choice of §

0t5f)y < 5 0ult: s + Cuo I Iflls + o (¢ )

whence (25) immediately follows,

4. Characterization "of generalized Lipsehitz spaces
The generalized - Lipschitz spaces in question are defined by
J 000, w00 @, 159 < w

Lip (®,q,n;p) ={f = Ly(a, b); ©
sup Q) w, (¢; £ g= o

0<rg1
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for 1< p< (in case p = oo one assumes / € Cla, b] instead of L (a,b)),
where @(f) is a positive non-decreasing function on (0,1] with limy o, D) =
= 0. Combining the previous results one arrives at the following charac-
terization theorem for these Lipschitz spaces (in case @ (f) = ¢« they are
the familiar Besov spaces on the interval [a, b]) in terms of the best

approximation Eg™ (f; 4):
1

THEOREM 4. Let © be as above and satisfyS(D(t)"lt”—‘ dt < oo. Then

Y
under the above notations the following assertions are equivalent for 1< g < oo:

1) f = Lip (D, q, n; p),
i) {S (D) twr (¢; f), )7 dEfEPe < oo,

1q

i) |5~ @B (75 )0 ] < e

N=1
In case g = oo and t" = O(®(¢)) the following are equivalent :
1)) f = Lip (@, w0, n; ),
1) o (£ /) = 0(®()),
ifi)’ B¢ (/; p) = 0(@(N™)) | |
If limyyo inf @ ()77 = oo, assertion 1) implies that f is a polynomial of
degree n — 1, whereas assertion i)’ or iti)’ smply that Lf =0, 1 < P < oo
1
Note that (:ondi‘cionS(I)(t)-lr/‘”—1 df < co implies a smaller decrease

0

of ®(¢) for £ —+ 0 + than condition #* = 0(®(¢)), since from the boundeflness
of the integral it follows that #* = 0(@(#)). On the other hand, D) =
= 0(1) means a smaller decrease than lim, . inf ®@)~"%" = co which is
just the saturation case since f being a pplyn.omlalmo% degree # — 1 or
Lf = 0 imply that the quantities in assertion i)’ — iii)’ vanish identically
with respect to ¢ and N, respectively. ] . '

Proof of Theorem 4. The preceding theorems yield the following chain
of inequalitites (0< m< n — 1)

O (N7 flo < Coo[EG™ (5 p) + EE2 (f )] <
< Coo [Nl + @, (N7 f)] <
< Cu[N7"Ifllp + on(N-1; Fl,

from which the equivalences stated above immediately follow. The satura-
tion case is handled by the same arguments as in RICHARDS-DEVORE [6].
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