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Introduction

Iet D be a domain in the Fuclidean n-space K", B the unit ball,
f: D =B a K-quasiconformal mapping (gc), E the set of points of dD inacce-
ssible by rectifiable arcs from D and E* the corresponding boundary points
of B. Under the additional hypotheses that # = 3, f is differentiable and
mD < o, M. READE [6] announced that the (» — 1) — dimensional
Hausdorff measure H*—! (E*) = 0. This result was proved by D. STORVICK
[7] for n =3, fe C!, D simply connected and mD < co. He gives also
(in the same paper) an argument belonging to T. Gehring only under the
hypotheses that # = 3 and mD <.

We shall begin by giving a proof of this theorem for f: D« B ¢,
without any other additional restrictive condition. Then, we shall prove
the E*is of conformal capacity and even of a-capacity zero for every o >0.
Gehring’s conjecture is that E* is even of logarithmic capacity zero: C o(E*) =
— 0 and M. READE [6] assertion that E* is of newtonian capacity zero:
CHE*) = 0.

Now we shall introduce a few concepts:

Iet T be an arc family and F(T') be a family of admissible functions
o(x) satisfying the following properties :

1° o(x)= 0 in R",
2° o(x) is Borel measurable in R,

30 Spdsg 1 for every y el
Y
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Then the modulus M(') of T is given as
M(T)= inf { o,
)

pe(I") .
Ru
where dr is the volume element.

A gc according to Viisdld’s geometric definition is characterized by
! M(T)
(1) s

= M(T*) = KM(D),

which is supposed to hold for every I' contained in D, where T = f(T").
A function #:D — R! is said to be ACL (absolutely continuous on
lines) in a domain D if for each interval I = {x; o < ¥ <P (i=1, ...,
)}, IC CD (ie. ICD), uis AC (absolutely continuous) (in the ordinary
sense) on a.e. (almost every) line segment parallel to the coordinate axes,
The p-capacity of two closed disjoint sets C,, C, C D relative to D,
where C, is bounded and C, is compact, is defined as

capys(D, Cy, C,) = inf [N/ u]Pdr,
D—(COUCI)
where \Ju = ( % i — :—M is the gradient of # and the infimum is taken
¥ Ei

over all u, which are continuous on D C,|J C,, ACL on D — (CoU Cy)
and assume the boundary values 0 on C, and 1 on C 1 Such functions are
called admissible for cap, (D, C,, C,).

The capacity of a bounded sct E C R" is defined to be

(2) cap, £ = cap E = inf sﬁ N7 #|* dr,
Rﬂr

where the infimum is taken over all functions u#, which are continuou

and ACL in R*, have a compact support contained in a fixed ball an
are =1 on E.

The a-potential, 0L « < » of a measure . is denoted by #!, where

du(y) if

ui(x)—S 0< o<,
l# — gl
R"
and
1
ut (x) = ( log —— du(y),
ER
R”

which is called also the logarithmic potential. If I,(u) denotes the encrgy
integral of u

Lp) = | widn(v)

a

i
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then )
Ca(E) T [ulfla(\u“) I
infi i iti vith total mass
‘here the infimum is taken over all positive measures p wi :
?and the support of p. contained in E, is called by WALLIN [9] a-capacity.
When o = 0, E is supposed to have the diameter less than 1. Pﬁ)rBan_y
arbitrary Borel set E, Co(E) = 0 iff Co(E (N B,) = 0 for eveéy ga B, ;1
— B(x, ) centered at x and with the radius 7 (0 <7 << 1), Cy(E) is sa
to be the logarithmic capacity of E. ' iy ‘
b We Sha]]gprove that the conformal capacity .Of. E* (i.e. the n-_capamt}(r))
is zero, which implies that the e-capacity of E* is zero for every o« > 0.

1+ H*-1E* =0,

Proposition 1. If ['y is the family of unvectifiable arcs of K", then
M(PO) =0 (J. VAISALA [8])

THEOREM ], H"-1EF* = (. \ X ;

Let f: D= B be a K — gc (quasi conformal mapping), Let I bei:_{ l]i
family of radial segments joining S to S(r*)(0 < »* < 1) in A'* a]\lSd—wSCl)
are images by f of unrectifiable arcs, where S(r*) = S(0, 7¥), S = S(
and A} = {x*; r* < |x*| < 1}. and let Ef D E* be the set of endpoints
of the segments of I'* belonging to S. The preceding proposition implies th?t
the modulus of the arc family I' = f~1(T'*) is zero (i.e. I' is excepuo‘n:l]i. 3
But, since f is K — qc, it satisfies the double inequality (1) and then
M(I*) = 0. : : ]

( 1\%ow, let yz» be a radial segment with an endpoint £* € S. Then

clearly,

& 1ye=t kyFa—rdy®
we@)s ([ eras)" s (tog 1) [ prrramar
YEH iz

for every p* € F(I'*) and, integrating over S, on account of Fubini’s theo-
rem, we obtain

1y
Hr-i(54) s HED) =  1aeEo s (1o 1) | e

N s
S o

where do is the superficial element of S. Finally, taking the infimum over
all’ p* € I/(I'*), yields

H*-1(E%) < (log })

7—1

M(I'*) =0,

as desired. |

2, E* is elosed.

i i ive distance

For any two points %,y € D, we shall define the relative dist
dp(%, v) to %’e the gratest lower bound of the length of all arcs joining >x
to y and lying in D, It is clear that d,(x, y) is a metric and that dp(x, y) 2
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2 |% — y| with cquality if «, ¥ lie on some convex subdomain of D. For
pomts x e D, £ e 9D, we define dp(x, E) to be the infimum of lim an(x, x,,)
on all sequences {v,} tending to £. Let us fix %,e D and consider for
vatious ¢ > 0 the sets o(%y, ) = f{xcD; dp(xy, %) =1} and B(x,, t) =
= {xeD; dy(x,, 1) < t}, which will be called relative spheres and relative
balls, respectively. For values of { < R — d(xy, 0D), o(x,, 1)

; ) is an ordinary
sphere and B(x,, ¢) an ordinary ball. For values of {> R, o

; , o(xg, t) is more
complicated and may be composed of finitely or infinitely many components
depending upon the nature of 8D, Twy

1, o relative spheres about x, with diffe-
rent radii have no points in common. A relative ball is a simply connected
domain contained in D and if t2 R, its boundary will be composed of
5(%, 1) and a compact subset of &D.

An arc y C D with cudpoints £ € 9D is called an endcut of D from E.

The distance d,, (Ey, E,) between the sets E,, E, C D is the infimum
of the length of the polygonal arcs joining E, to E, in D.

Two endcuts v,, v, of D from the same endpoint £ e 9D are called

D-%gmfmlmﬁ if for every neighbourhood U of dp(yi N Ue, vy N Ug) =

Proposition 2 Let f: D<= B be q K-gc mapping (1s K < o),
then d(EY}, E3) =0 implies dp(Ey, E,) =0, where EY, E} CB and
E, = [V EL)(k = 1, 2).

Now we shall introduce (according to zorit [11])
boundary elements (a generalization of prime ends).

A sequence of domains {Un}, U, CDm =1,2,...) is said to be
regular if

a) Um -1 C Um(ﬂl V: 1: 2; . -);
b)(ﬂ U,,,)C aD,

m=1

the coucejpt of

¢) o, = oU, N D (the relative boundary of U, in D) is a connected
set

b

d) dD(GmJ Gm-l—l) > O,
e) there is at most an accessible boundary point of D, which is accessible
boundary point for ecach of the domains of the sequence {U,}.

Two sequences of domains {Unt, {Us} are called equivalent if every
term of each of them contains all the terms of the other one begining by a
sufficienty great index.

A boundary element of a domain D is the pair (¥, {U,}) consisting of

a regular sequemnce {U,} and a continuum F = N U,. Two boundary
m=1

elements (¥, {U,}), (F’, {Us}) are considered as identical iff the two regular
sequences {U,} and {U;} defining them are equivalent. In this way any
of the equivalent sequences determine uniquely a boundary element.
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: ] o e
g sition 3. Forevery K — qc mapping f: D2 B, 1t is possib
to estgblligkpa% one-to-ome covrespondence between the b.oun;i?ary U]bm)nttsh e(;i , 02%22
of D and the poinis of S, so that, to each boundary ﬁoz*nt S_ 4 U"”}}S
ponds on S the point deteymined by the seqm?ﬁce {UxY =f({Un})-
(For the proof, see lemma 3 in zori®’s paper [11]). 4
Tet us consider the class {£, y} of D-equivalent endecuts y from a boun
dary point £ e dD.
yC{)carly. to each pair (E*, v*) (* € S, v* ﬁ.B) there Efn:};fegdsona-
air (¢, v) (£ = @D,y C D), where y = f~1(y*). In order to Sfi&dlet e p ’
gence"is one-to-one, we show first that the 1mages*0f two cuh cuts (C:} T!:;
(E*, vy#) by f are D-equivalent. Supposeyi Nz = % Then lésum? 7
- i 3CC0U11§‘ OfSPTOPUSltIOIéf , e{ffcgglc;igtz) (Eu? ‘othte::rci:lxﬁo endpoints
5 S €S a comm : _
ilfd :,2;2 blgfgg[’d(i]{]“]fgeﬁt). Then clearly, vy, and v, will have‘_i cadD asa L;L‘LEI'LE)E
eJ;c‘ipoint. Next, let Ug be a neighbourhood of £. Bmccd ci{J(;?,i J;olgwé
and the disjoint open arcs vy, v, have £ as unique common en po;)ric, ui»"tlenf
that dy(yy N Uz, vs N Ug) =0 and then (E 1), (€ va) are quive -
Thus, to each £¥, there corresponds a unique class {&, -y}.‘ e &
On the other hand, given a class {E*. v}, let us cons&lde_r 3 li)aeus(,,L ?;t
beenging o i, The kmage 0 Tihenging to S s 6 3) s
e s i It i h to show, according to
an image y'* with an endpoint at £*. It is enoug ;  Zaosang v
; ition ¢ and (£, ¥') correspond to the same boundary
H:c?};i? Slﬁﬁ?ee%i t}::?:t u(LE c\fo)usidettga A gequence of concentric balls ‘{ B(.;_. ) r;;,ii}é
and let {U,,,},be the correspcmding sequence of domal.]‘nc?, \-'.rl'u{],llt1 ﬂ;i(; A
components of D N B(, #,) containing a subarc of y wi t]= :;n e1 apregular
£. Clearly, such a sequemnce is regular. Ne},:t, let us asscfui (.2 o Y) o
sequence {U}}. It is easy to see that U, =U, (m=12 ...) ;

let # < 27, andy; C v, vi C ¥’ be such that the diameters d(y), d(v1) = 7
g 1

eaditos i copisopiendagiu ol T BE S S e

tiori v, vi, it follows there 1s ‘ .
‘lcljgtililng zja.roi’elfth El-(Y;', so that d(«) <[ < r. Blylj. t!mnja_C B((E__: 1[;,) fi‘;cllj?c
« C D N B, 7,), whence o C U, and o C U, imp yllug a}lu U O s
and since U,,, Ul are components of D () B(E, -r,,,.), we dreg A ; g
clude that U,, = Upm =1, 2, ...) anel\tllen that (£, ) anf (&, ){)sition 2
pond to the same boundary element. Thus, Sn accmudlt 0 &Jml }
(¢, ¥) an (€, y) correspond to the same point t* e S, as desired.

ILemma 1. E* is closed.

Tet

F¥ — U1 {S — fIB(x0, m) I}

* ] it i h to show that E* = F*,

In order to prove that E* is closed, it is enoug ) =
\geoshall estgblish first that E* C F*. Indeed, suppose £* € S, but £¥ e F'*,
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t . . T e
3él;e_nsthere 1s an integer m, such that £* e {S — fIB(xo, m )1, he
theeb(m—df[{ﬂ(x%, ng) | and then E* e f[B(x,, mg)] NS, ie. E* buelé)n sntCe
endpoinl‘-cl gzyg(; T}e domlam'j[{ﬂ(xu, M) . Let yv* e f[B(x,, m,)] and wi‘%h ag
Soha Rl len clearly y = /=1(y*) C @(x,,” m,) and will have a
endr & , 50 that & isa boundary point of D accessible by 3
able arcs from D, hence £* & E¥, as desired. e

b Now iuppose ¥ e F¥*, Then E*e S——j_[fi(*ro, m)](m=1,2 )
e eve —— , ton¢
vl v;:EJx £ mj S — fIB(xg, m)] (m =1, 2, .. -), on account of proposition 2
nce e m) Nolag,m + 1) = 0, hence £ E7Blwg mIjim=1,2,...)
pupLose, Pr‘(cw_e it is false, that £* € E* ie. that £ clorrespon’ds, to a
pouduucg ispo;;lni eda;;) accessible from D by rectifiable arcs, (This cm'resi
e o § .11_056?‘ Qbe give by the preceding proposition). Let Yo be

arc joming x, to £ and let / be the length of vy,. Then, clzau.rl;

€ e B(x,, m) (M 8D for m = | and Yo C B(%q, m), vi — ftvo)C FIB(%, oy

and then the Cndpoint £} 5 O o et
d t endpoint & of y§ belongs t
£* € F'¥, contradicting so the llch?thesis nﬁ& ;0374_[{3(%’ m)] (m z 1), hence

3. Cap E* = ¢,

Proposition 4. Let C,C D ¢

n 4. , C D be ¢ - 'sjoi
closed sets, I" thg Jamily of arcs w(}n'ch join 1C0 and (? 1 ;ZO 5101: :%j)(tf‘y) ?séo}ﬁt
Then, given = > 0, there is a te) > 0 such that ¢ ET®)] for ;‘ < t(s)'
where U(1) is the family of arcs joini — v d ‘ }
— (x5 d(x, C) € tnp? O e Col) = {3 dl Cols o Oy

£For the proof, see our paper [2], lemma 13).

o 1;3 r(r:l ma 2. Suppose t.}mt (,?O 1S @ continuwum conlained in the open half
gl o a ;ﬁo\}fd. set contained in the plane 3D and C, the symmelric image
4 0 U1 If as.t}ze Jamily of arcs which join Cy and C, in D and 1’
the family of arcs which join ColU Cy and C, in R*, then ™

(3) M(T) =~ M(T).

Arguing as r. on A A A
that BUNEAS T GEHRING and J. VAISALK in lemma 3.3 of [5], we obtain

M(T) s - M(Ty).

Next, let I' denote the family of arcs which join Co and C, in D. Then, by

the same argument as i 8 i1
el 1 Gehring and Vaisald’s lemma quoted above, we

L M(TY) < M),

2

A
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To complete the proof of (3), we must show that
(4) M(T) < M(D).
Now, the fact that C, and C, are disjoint implies that M(T) < 0. Fix

! < 1 and choose o ¢ F(I) so that pis L"integrable. By the pre-

a= ‘
1—¢

ceding proposition, we can choose # > 0 so that ap & FF [['(#)]. We may assu-

me, for convenience of notations, that D is the half space "> 0. Set

01(%) = ap(x -+ te,) (where ¢, is the versor on the axis Ox"), let y; el

and let y be the arc y, translated through the vector fe,. Then y € I'(?)

aud we have
S p1(x)ds = s.ap(x)ds = 1,

Yy i

Hence ¢, € F(I'),
M(T) = ( pdr = a" ( o"d=

;Q" Ril

and taking the infimum over all such p yields
M) £ a"M().
Finally, if we let a — 1, we obtain (4) as desired.
Corollary. 1. Suppose EC S is a closed proper swbset of S and

A=lx;r <|x < i}, where 0 < v << 1. If I' is the family of arcs which
4

join |x| < 7 to E in B and Ty the family of arcs which join CA to E in R”,
then, formula (3) still holds for the new meawing of I' and I';.

Tet x, 6 S — E and %' = ¢(x) be an inversion with respect to a sphere
with the center of inversion x,. Let us denote by B(r) = {y; |y| <7}, Co =
= ¢[B(#)], C, = ¢(E), I" =09) and I'{ = ¢(I'y). Then, o(S)y=1is a
plane and C; C ITand we are in the hypothesis of the preceding lemma, so

that

M) = %M(I‘{).

But inequality (1) implies the invariance of the modulus with respect to the
conformal mappings, allowing us to conclude that

M(T) = M(I") =+ M(T}) = 5 M(T)

as desired.
Proposition 5 IfI'c UL, then M(T')< 2 M (U),). (B. FUGLLDE

"

[3].)
Let M(E*) be the modulus of the family of arcs with an endpoint in E*,

where E* is defined as above,
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Lemma 3. If T s the Jamily of arcs with an endpoint belonging 4o
E* then '

M(E*) = M(I'¥) = 0.

Let {#,} be an increasing sequence of numbers 7, > 0 such that lim »,,

w joining B(r,) to E* in B.
that the arcs of I, = f('3)

=1, and {I'},} be a scquence of arc families T
Then, from the definition of E *, we deduce i
(m=1,2,...) are not rectifiable, so that, on account of proposition
1, M(T,) =0 (m =1, 2, ...) and (1) yields MTH) =0 (m = 1,2, i )i

Let T, be the family of arcs which join B(r,) and CB ( _'} LE* in R,

Then, the preceding corollary allows us to conclude that M (T‘;i,) =0

(m=12 ..). Hence, taking into account proposition 5, M IN‘;Z) = 0.
Next, if T'¢ C S and T’ is the family of the arcs vo with the endpoints
belonging to E* and with vo (N CS# T, then

M(T't) = inf S o"dr — inf S o'dr = 0
[ p
Rn 5]

and since [§ = U f‘,’;, propositions 5 yields

"

M(T§) = M(JT3) = 3 M(F3) =0

n il

Clearly, P*C s Iy,

so that, from above, and by proposition 5, we con-
clude that

M@ s M(T%) + M(It) =0

>

as desired.

Proposition 7. If y is the set
two closed, disjoint sets Co, Cy, where C
then M(y) = cap(C,, C,, R").

(For the proof, sce w. zrEMER [10], theorem 3.8.)

Corollary. M(C, C,, R") = cap (C,, C,, R".
It is enough to observe that

of all continua in R" that interesect
o contains the complement of a ball,

(5) M(Co, €y, RY) = M (y).

Indeed, if T' is the family of arcs which join Cy and C, and Cy in R*, then,
clearly, I' C ¥, hence, proposition 5 yields '

(6) M(Co, €y, R") = M(T) s M(y).

C QUASICONFORMALITY 125
9

: bitrary continuum of y. Then,
he other hand, let p € F(I') and « an ar
tohré:rt’e Zxc;stse an arc y € I' such that y C «, hence pe F (x), so that

MG < § i,

Rn

whence, taking the infimum over all ¢ € E(T), we obtain M(y) = M),
which, ,together with (6), gives (5), as desired.
" THE 2. Cap E* =0. _ . kel
{fH IZ(ZO*I({f):Mls an rPneighbourhood of E* (i.e. the set of points within a
distance 7 from E*), then, clearly

@) cap [CE*(r), E* R')z cap E*

since the class of admissible functions for cap [CE*(7), E*, R"]is contained

i g . .. = wlN
n tlﬁixif IE:%PI‘;*E denote the family of arcs, which join E* and CE *(r) in

R* and I'* of the preceding lemma, then evident I'V C I'* and the preceding
lemma implies

M[CE*p), E* R']=M(})s M(@™*) =0

for all #> 0, hence and by (7), taking into account also the preceding
rollary, we obtain . %0 Tl
= capyE*é cap [CE*(r), E* R'] = M[CE*(r), E*, R"] = M(I'*) =0,
as desired. . - L W
ives the following definition of the conformal cap :
HL;\‘EAEL{)IZ ath])ogt?rIneised Set in R”,g cap E is defined by (2), vghe;;ptol;i
. i i hich have compact s
infi is taken over all functions # < C!, which I I
glefllcillgrrigl Stoaa certain fixed sphere B(R,) which is independent of E and
. >Ai.uing as in F. GEHRING 'S paper ([4],}e_mma 1), i;c c;m ee;sflgnlaael
h %hat the infimum appearing in the definition (2) of the C?l .
za;\ggty of a bounded set £ is not increased if it is taken over all u € C
. R(;.or ollary. Cap E* =0, where the conformal capacity is taken in
i e, wi > 1 (wot uly = 1). .
Wallf q\? S('%?S;’ éfﬁs?:étfefi’i of th(c: p:recEeding theore?l, since the conforr;l;11
apa({i‘sl;rs olfb a bounded set E given in the introduction is not lessthan the
capac 1
cedi in’s formal capacity. _ )
pretegj’l;gos\iﬁné& If:;nf;);]fu com?:aot set in R" with cap F=0 g the c'onfm
mal cajﬁmityr W Wailm’s sense). The following conclusions are true.
If w =2, the logarithmic capacily C oI :O 0.
If n> 2, then Ci(F) =0 fml' eveasvlg)erm (?9] o 1N "
B f, see. WALLIN 's paper {|J], th mls
g{).:’:nl't(})ul3 IP;(:'oy. If n =2, the logaritmic capacity Co(E*) =0. If n> 2,
then Co(E*) = 0 for every a > 0.
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