L'ANALYSE NUMÉRIQUE ET LA THÉORIE DE L'APPROXIMATION Tome 5, N⁰ 2, 1976, pp. 117-126

trough manday of the seek world and publication of the seek world.

QUASICONFORMALITY AND BOUNDARY CORRESPONDENCE

The transposed region of the good to be Act (almost a continue on Act A

The frequency of the cloud divident post for Land A well as in P. CARAMAN (Iași)

Introduction

and introduction Let D be a domain in the Euclidean n-space R", B the unit ball, $f: D \rightleftharpoons B$ a K-quasiconformal mapping (qc), E the set of points of ∂D inaccessible by rectifiable arcs from D and E^* the corresponding boundary points of B. Under the additional hypotheses that n = 3, f is differentiable and $mD < \infty$, M. READE [6] announced that the (n-1) - dimensional Hausdorff measure $H^{n-1}(E^*)=0$. This result was proved by D. STORVICK [7] for n=3, $f\in C^1$, D simply connected and $mD<\infty$. He gives also (in the same paper) an argument belonging to F. Gehring only under the hypotheses that n=3 and $mD < \infty$.

We shall begin by giving a proof of this theorem for f: D = B qc, without any other additional restrictive condition. Then, we shall prove the E^* is of conformal capacity and even of α -capacity zero for every $\alpha > 0$. Gehring's conjecture is that E^* is even of logarithmic capacity zero: $C_0(E^*) =$ = 0 and M. READE [6] assertion that E^* is of newtonian capacity zero:

 $C_1(E^*) = 0.$

Now we shall introduce a few concepts:

Let Γ be an arc family and $F(\Gamma)$ be a family of admissible functions $\rho(x)$ satisfying the following properties:

 $1^{\circ} \rho(x) \geq 0 \text{ in } R^{n}$.

 $\rho(x) \leq 0$ in R, $\rho(x)$ is Borel measurable in R^n ,

ho(x) is Borel measurable in R^n , $\int\limits_{\gamma}
ho ds \ge 1 \ \text{for every } \gamma \in \Gamma.$

Then the modulus $M(\Gamma)$ of Γ is given as

$$M(\Gamma) = \inf_{
ho \in F(\Gamma)} \int\limits_{R^n}
ho^n d au,$$

where $d\tau$ is the volume element.

A qc according to Väisälä's geometric definition is characterized by

(1)
$$\frac{M(\Gamma)}{K} \leq M(\Gamma^*) \leq KM(\Gamma),$$

which is supposed to hold for every Γ contained in D, where $\Gamma^* = f(\Gamma)$. A function $u:D\to R^1$ is said to be ACL (absolutely continuous on lines) in a domain D if for each interval $I = \{x : \alpha^i < x^i < \beta^i (i = 1, ..., n = 1)\}$ n)}, $I \subset \subset D$ (i.e. $\overline{I} \subset D$), u is AC (absolutely continuous) (in the ordinary sense) on a.e. (almost every) line segment parallel to the coordinate axes.

The p-capacity of two closed disjoint sets C_0 , $C_1 \subset \bar{D}$ relative to D. where C_0 is bounded and C_1 is compact, is defined as

$$\operatorname{cap}_{p}(D, C_{0}, C_{1}) = \inf \int_{C_{1} \setminus C_{1}} |\nabla u|^{p} d\tau,$$

 $\operatorname{cap}_p(D, \ C_0, \ C_1) = \inf \int_{D - (C_0 \cup C_1)} |\nabla u|^p d\tau,$ where $\nabla u = \left(\frac{\partial u}{\partial x^1}, \dots, \frac{\partial u}{\partial x^n}\right)$ is the gradient of u and the infimum is taken over all u, which are continuous on $D \cup C_0 \cup C_1$, ACL on $D - (C_0 \cup C_1)$ and assume the boundary values 0 on C_0 and 1 on C_1 . Such functions are called admissible for cap_p (D, C_0, C_1) .

The capacity of a bounded set $E \subset \mathbb{R}^n$ is defined to be

(2)
$$\operatorname{cap}_{n} E = \operatorname{cap} E = \inf_{u} \int_{\mathbb{R}^{n}} |\nabla u|^{n} d\tau,$$

where the infimum is taken over all functions u, which are continuou and ACL in R^n , have a compact support contained in a fixed ball an are = 1 on E.

The α -potential, $0 \le \alpha \le n$ of a measure μ is denoted by u^{μ}_{α} , where

$$u^{\mu}_{\alpha}(x) = \int\limits_{\mathbb{R}^n} \frac{du(y)}{|x-y|^{\alpha}} \quad \text{if} \quad 0 < \alpha < n,$$

and

$$u_0^{\mu}(x) = \int_{\mathbb{R}^n} \log \frac{1}{|x-y|} d\mu(y),$$

which is called also the logarithmic potential. If $I_{\alpha}(\mu)$ denotes the energy integral of u

$$I_{\alpha}(\mu) = \int_{\mathbb{R}^n} u_{\alpha}^{\mu} d\mu(x),$$

3

$$C_{\alpha}(E) = [\inf I_{\alpha}(\mu)]^{-1},$$

where the infimum is taken over all positive measures μ with total mass 1 and the support of μ contained in E, is called by WALLIN [9] α -capacity. When $\alpha = 0$, E is supposed to have the diameter less than 1. For any arbitrary Borel set $E, \bar{C}_0(E) = 0$ iff $C_0(E \cap B_r) = 0$ for every ball $B_r =$ = B(x, r) centered at x and with the radius r (0 < r < 1), $C_0(E)$ is said to be the *logarithmic* capacity of E.

We shall prove that the conformal capacity of E^* (i.e. the *n*-capacity) is zero, which implies that the α -capacity of E^* is zero for every $\alpha > 0$.

$$1 \cdot H^{n-1}E^* = 0.$$

Proposition 1. If Γ_0 is the family of unrectifiable arcs of R^n , then $M(\Gamma_0) = 0$ (J. VÄISÄLÄ [8]).

THEOREM 1. $H^{n-1}E^* = 0$.

Let $f: D \rightleftharpoons B$ be a K - qc (quasi conformal mapping), let Γ^* be the family of radial segments joining S to $S(r^*)(0 < r^* < 1)$ in A^* and which are images by f of unrectifiable arcs, where $S(r^*) = S(0, r^*)$, S = S(1)and $A_{r^*}^* = \{x^*; r^* < |x^*| < 1\}$ and let $E_1^* \supset E^*$ be the set of endpoints of the segments of Γ^* belonging to S. The preceding proposition implies that the modulus of the arc family $\Gamma = f^{-1}(\Gamma^*)$ is zero (i.e. Γ is exceptional). But, since f is K - qc, it satisfies the double inequality (1) and then $M(\Gamma^*)=0.$

Now, let γ_{ξ^*} be a radial segment with an endpoint $\xi^* \in S$. Then

$$\chi_{E^*}(\xi^*) \leq \left(\int_{\gamma_{F^*}} \rho^* ds\right)^n \leq \left(\log \frac{1}{r^*}\right)^{n-1} \int_{r^*} \rho^{*n} r^{*n-1} dr^*$$

for every $\rho^* \in F(\Gamma^*)$ and, integrating over S, on account of Fubini's theorem, we obtain

$$H^{n-1}(E^*) \leq H^{n-1}(E_1^*) = \int_{S} \chi_{E^*}(\xi^*) d\sigma \leq \left(\log \frac{1}{r^*}\right)^{n-1} \int_{A_1^*} \rho^{*n} d\tau,$$

where do is the superficial element of S. Finally, taking the infimum over all $\rho^* \in F(\Gamma^*)$, yields

$$H^{n-1}(E^*) \le \left(\log \frac{1}{r^*}\right)^{n-1} M(\Gamma^*) = 0,$$

2. E* is closed.

For any two points $x,y \in D$, we shall define the relative distance $d_p(x, y)$ to be the gratest lower bound of the length of all arcs joining x to y and lying in D. It is clear that $d_D(x, y)$ is a metric and that $d_D(x, y) \ge$

5

 $\geq |x-y|$ with equality if x, y lie on some convex subdomain of D. For points $x \in D$, $\xi \in \partial D$, we define $d_D(x, \xi)$ to be the infimum of $\lim_{n \to \infty} d_D(x, x_n)$ on all sequences $\{x_m\}$ tending to ξ . Let us fix $x_0 \in D$ and consider for various t>0 the sets $\sigma(x_0,t)=\{x\in D\;;\;d_D(x_0,x)=t\}$ and $\beta(x_0,t)=$ $= \{x \in D : d_D(x_0, t) < t\}$, which will be called relative spheres and relative balls, respectively. For values of $t < R = d(x_0, \partial D)$, $\sigma(x_0, t)$ is an ordinary sphere and $\beta(x_0, t)$ an ordinary ball. For values of $t \ge R$, $\sigma(x_0, t)$ is more complicated and may be composed of finitely or infinitely many components depending upon the nature of ∂D . Two relative spheres about x_0 with different radii have no points in common. A relative ball is a simply connected domain contained in D and if $t \ge R$, its boundary will be composed of $\sigma(x_0, t)$ and a compact subset of ∂D .

An arc $\gamma \subset D$ with endpoints $\xi \in \partial D$ is called an *endcut* of D from ξ . The distance d_D (E_1 , E_2) between the sets E_1 , $E_2 \subset D$ is the infimum of the length of the polygonal arcs joining E_1 to E_2 in D.

Two endcuts γ_1 , γ_2 of D from the same endpoint $\xi \in \partial D$ are called D-equivalent if for every neighbourhood U_{ξ} of ξ , $d_{D}(\gamma_{1} \cap U_{\xi}, \gamma_{2} \cap U_{\xi}) =$

Proposition 2. Let $f: D \rightleftharpoons B$ be a K-qc mapping $(1 \le K < \infty)$, then $d(E_1^*, E_2^*) = 0$ implies $d_D(E_1, E_2) = 0$, where $E_1^*, E_2^* \subset B$ and $E_k = f^{-1}(E_k^*)(k = 1, 2,).$

Now we shall introduce (according to zorič [11]) the concept of boundary elements (a generalization of prime ends).

A sequence of domains $\{U_m\}$, $U_m \subset D(m = 1, 2, ...)$ is said to be regular if

a) $\bar{U}_{m+1} \subset U_m(m=1,2,\ldots)$,

b)
$$\left(\bigcap_{m=1}^{\infty} \bar{U}_m\right) \subset \partial D$$
,

c) $\sigma_m = \partial U_m \cap D$ (the relative boundary of U_m in D) is a connected

d) $d_D(\sigma_m, \sigma_{m+1}) > 0$,

e) there is at most an accessible boundary point of D, which is accessible boundary point for each of the domains of the sequence $\{U_m\}$.

Two sequences of domains $\{U_m\}$, $\{U_m'\}$ are called equivalent if every term of each of them contains all the terms of the other one begining by a sufficienty great index.

A boundary element of a domain D is the pair $(F, \{U_m\})$ consisting of a regular sequence $\{U_m\}$ and a continuum $F=\bigcap_{m} \bar{U}_m$. Two boundary elements $(F, \{U_m\})$, $(F', \{U'_m\})$ are considered as *identical* iff the two regular sequences $\{U_m\}$ and $\{U'_m\}$ defining them are equivalent. In this way any of the equivalent sequences determine uniquely a boundary element.

Proposition 3. For every K-qc mapping $f:D \rightleftharpoons B$, it is possible to establish an one-to-one correspondence between the boundary points (F, {U,,,}) of D and the points of S, so that, to each boundary point (F, {Um}), there corresponds on S the point determined by the sequence $\{U_m^*\}=f(\{U_m\})$.

(For the proof, see lemma 3 in zorič's paper [11]).

Let us consider the class $\{\xi, \gamma\}$ of D-equivalent endcuts γ from a boun-

dary point $\xi \in \partial D$.

Clearly, to each pair (ξ^*, γ^*) $(\xi^* \in S, \gamma^* \cap B)$ there corresponds a pair (ξ, γ) $(\xi \in \partial D, \gamma \subset D)$, where $\gamma = f^{-1}(\gamma^*)$. In order to see the correspondence is one-to-one, we show first that the images of two endcuts (ξ^*, γ_1^*) , (ξ^*, γ_2^*) by f^{-1} are *D*-equivalent. Suppose $\gamma_1^* \cap \gamma_2^* = \emptyset$. Then $\gamma_1 \cap \gamma_2 = \emptyset$ $=\emptyset$ and, on account of proposition 2, $d_D(\gamma_1, \gamma_2) = 0$. We can assume γ_1^* and γ_2^* have only $\xi^* \in S$ a common endpoint (the other two endpoints x_1^* , x_2^* being different). Then clearly, γ_1 and γ_2 will have $\xi \in \partial D$ as a unique endpoint. Next, let U_{ξ} be a neighbourhood of ξ . Since $d_D(\gamma_1, \gamma_2) = 0$, and the disjoint open arcs γ_1 , γ_2 have ξ as unique common endpoint, it follows that $d_D(\gamma_1 \cap U_{\xi}, \gamma_2 \cap U_{\xi}) = 0$ and then $(\xi, \gamma_1), (\xi, \gamma_2)$ are D-equivalent. Thus, to each ξ^* , there corresponds a unique class $\{\xi, \gamma\}$.

On the other hand, given a class $\{\xi, \gamma\}$, let us consider a pair (ξ, γ) belonging to it. The image $\gamma^* = f(\gamma)$, will have an endpoint $\xi \in S$. Let us show that any other γ' of a pair (ξ, γ') belonging to the class $\{\xi, \gamma\}$ has an image \u00e4'* with an endpoint at \u00e4*. It is enough to show, according to proposition 3, that (ξ, γ) and (ξ, γ') correspond to the same boundary element. Indeed, let us consider a sequence of concentric balls $\{B(\xi, r_m)\}$ and let $\{U_m\}$ be the corresponding sequence of domains, which are the components of $D \cap B(\xi, r_m)$ containing a subarc of γ with an endpoint at ξ . Clearly, such a sequence is regular. Next, let us associate to γ' a regular sequence $\{U'_m\}$. It is easy to see that $U'_m = U_m$ (m = 1, 2, ...). Indeed, let $r < \frac{1}{2} r_m$ and $\gamma_1 \subset \gamma$, $\gamma_1' \subset \gamma'$ be such that the diameters $d(\gamma_1)$, $d(\gamma_1') \leq r$ and ξ is the common endpoint of γ_1 , γ_1' . Since γ , γ' are D-equivalent and then, a fortiori γ_1 , γ'_1 , it follows there is an arc $\alpha \subset D$ joining them and having a lenth l < r, so that $d(\alpha) < l < r$. But then $\alpha \subset B(\xi, r_m)$, hence $\alpha \subset D \cap B(\xi, r_m)$, whence $\alpha \subset U_m$ and $\alpha \subset U'_m$, implying $\alpha \subset U_m \cap U'_m$, and since U_m , U'_m are components of $D \cap B(\xi, r_m)$, we are allowed to conclude that $U_m = U'_m(m = 1, 2, ...)$ and then that (ξ, γ) and (ξ, γ') correspond to the same boundary element. Thus, on account of proposition 3, (ξ, γ) an (ξ, γ) correspond to the same point $\xi^* \in S$, as desired.

Lemma 1. E* is closed.

Let
$$F^* = \bigcup_{n=1}^{\infty} \overline{\{S - \overline{f[\beta(x_0, m)]}\}}.$$

In order to prove that E^* is closed, it is enough to show that $E^* = F^*$. We shall establish first that $E^* \subset F^*$. Indeed, suppose $\xi^* \in S$, but $\xi^* \in F^*$,

then there is an integer m_0 such that $\xi^* \in \overline{S - f[\beta(x_0, m_0)]}$, hence $\xi^* \in S - \overline{f[\beta(x_0, m_0)]}$ and then $\xi^* \in \overline{f[\beta(x_0, m_0)]} \cap S$, i.e. ξ^* belongs to the boundary of the domain $f[\beta(x_0, m_0)]$. Let $\gamma^* \in f[\beta(x_0, m_0)]$ and with an endpoint at ξ^* , then clearly $\gamma = f^{-1}(\gamma^*) \subset \beta(x_0, m_0)$ and will have an endpoint $\xi \in \partial D$, so that ξ is a boundary point of D accessible by rectifiable arcs from D, hence $\xi^* \in E^*$, as desired.

Now suppose $\xi^* \in F^*$. Then $\xi^* \in S - f[\beta(x_0, m)](m = 1, 2, ...)$ and even $\xi^* \in S - f[\beta(x_0, m)](m = 1, 2, ...)$, on account of proposition 2, since $\sigma(x_0, m) \cap \sigma(x_0, m + 1) = \emptyset$, hence $\xi^* \in f[\beta(x_0, m)](m = 1, 2, ...)$. Suppose, to prove it is false, that $\xi^* \in E^*$, i.e. that ξ corresponds to a boundary point $\xi \in \partial D$ accessible from D by rectifiable arcs. (This correspondence is supposed to be give by the preceding proposition). Let γ_0 be such an arc joining x_0 to ξ and let ℓ be the length of γ_0 . Then, clearly $\xi \in \beta(x_0, m) \cap \partial D$ for $m \ge \ell$ and $\gamma_0 \subset \beta(x_0, m)$, $\gamma_0^* = f(\gamma_0) \subset f[\beta(x_0, m)]$ and then the endpoint ξ_0^* of γ_0^* belongs to $f[\beta(x_0, m)](m \ge \ell)$, hence $\xi^* \in F^*$, contradicting so the hypothesis $\xi^* \in F^*$.

3. Cap $\mathbf{E}^* = \mathbf{0}$.

Proposition 4. Let $C_0 \subset \overline{D}$, $C_1 \subset D$ be two non-empty disjoint closed sets, Γ the family of arcs which join C_0 and C_1 in D, $\rho \in F(\Gamma)$, $\rho \in L^n$. Then, given $\varepsilon > 0$, there is a $t(\varepsilon) > 0$ such that $\frac{\rho}{1-\varepsilon} \in F[\Gamma(t)]$ for $t < t(\varepsilon)$, where $\Gamma(t)$ is the family of arcs joining $C_0(t) = \{x \; ; \; d(x, C_0) \leq t\}$ to $C_1(t) = \{x \; ; \; d(x, C_1) \leq t\}$ in D.

(For the proof, see our paper [2], lemma 13).

Le m m a 2. Suppose that C_0 is a continuum contained in the open half space D, C_1 a closed set contained in the plane ∂D and \widetilde{C}_0 the symmetric image of C_0 in ∂D . If Γ is the family of arcs which join C_0 and C_1 in D and $\widetilde{\Gamma}_1$ the family of arcs which join C_0 and C_1 in C_0 a

(3)
$$M(\Gamma) = \frac{1}{2} M(\Gamma_1).$$

Arguing as F. GEHRING and J. VÄISÄLÄ in lemma $3.3\ \mathrm{of}\ [5]$, we obtain that

$$M(\Gamma) \leq \frac{1}{2} M(\Gamma_1).$$

Next, let $\overline{\Gamma}$ denote the family of arcs which join C_0 and C_1 in \overline{D} . Then, by the same argument as in Gehring and Väisälä's lemma quoted above, we conclude that

$$\frac{1}{2} M(\Gamma_1) \leq M(\overline{\Gamma}).$$

To complete the proof of (3), we must show that

$$M(\overline{\Gamma}) \leq M(\Gamma).$$

Now, the fact that C_0 and C_1 are disjoint implies that $M(\Gamma) < \infty$. Fix $a = \frac{1}{1-\epsilon} > 1$ and choose $\rho \in F(\Gamma)$ so that ρ is L^n -integrable. By the preceding proposition, we can choose t > 0 so that $a\rho \in F[\Gamma(t)]$. We may assume, for convenience of notations, that D is the half space $x^n > 0$. Set $\rho_1(x) = a\rho(x + te_n)$ (where e_n is the versor on the axis Ox^n), let $\gamma_1 \in \overline{\Gamma}$ and let γ be the arc γ_1 translated through the vector te_n . Then $\gamma \in \Gamma(t)$ and we have

$$\int_{\gamma_1} \rho_1(x) ds = \int_{\gamma} a \rho(x) ds \ge 1$$

Hence $\rho_1 \in F(\overline{\Gamma})$,

$$M(\overline{\Gamma}) \leqq \int_{R^n} \rho_1^n d\tau = a^n \int_{R^n} \rho^n d\tau$$

and taking the infimum over all such p yields

$$M(\overline{\Gamma}) \leq a^n M(\Gamma).$$

Finally, if we let $a \rightarrow 1$, we obtain (4) as desired.

Corollary. 1. Suppose $E \subset S$ is a closed proper subset of S and $A = \left\{x; r < |x| < \frac{1}{r}\right\}$, where 0 < r < 1. If Γ is the family of arcs which join $|x| \le r$ to E in B and Γ_1 the family of arcs which join CA to E in R^n , then, formula (3) still holds for the new meaning of Γ and Γ_1 .

Let $x_0 \in S - E$ and $x' = \varphi(x)$ be an inversion with respect to a sphere with the center of inversion x_0 . Let us denote by $B(r) = \{\gamma : |\gamma| < r\}$, $C_0 = \varphi(B(r))$, $C_1 = \varphi(E)$, $\Gamma' = \varphi(\Gamma)$ and $\Gamma'_1 = \varphi(\Gamma_1)$. Then, $\varphi(S) = \Pi$ is a plane and $C_1 \subset \Pi$ and we are in the hypothesis of the preceding lemma, so that

$$M(\Gamma') = \frac{1}{2} M(\Gamma_1').$$

But inequality (1) implies the invariance of the modulus with respect to the conformal mappings, allowing us to conclude that

$$M(\Gamma) = M(\Gamma') = \frac{1}{2} M(\Gamma_1') = \frac{1}{2} M(\Gamma_1)$$

as desired.

Proposition 5. If $\Gamma \subset \bigcup_{m} \Gamma_{m}$, then $M(\Gamma) \leq \sum_{m} M(\Gamma_{m})$. (B. FUGLEDE

Let $M(E^*)$ be the modulus of the family of arcs with an endpoint in E^* , where E^* is defined as above.

8

Lemma 3. If $\tilde{\Gamma}^*$ is the family of arcs with an endpoint belonging to E^* , then

$$M(E^*)=M(ilde{\Gamma}^*)=0.$$

Let $\{r_m\}$ be an increasing sequence of numbers $r_m > 0$ such that $\lim_{n \to \infty} r_m = 1$, and $\{\Gamma_m^*\}$ be a sequence of arc families Γ_m^* joining $\overline{B(r_m)}$ to E^* in B. Then, from the definition of E^* , we deduce that the arcs of $\Gamma_m = f^{-1}(\Gamma_m^*)$ $(m = 1, 2, \ldots)$ are not rectifiable, so that, on account of proposition

1, $M(\Gamma_m) = 0$ (m = 1, 2, ...) and (1) yields $M(\Gamma_m^*) = 0$ (m = 1, 2, ...). Let $\tilde{\Gamma}_m^*$ be the family of arcs which join $\overline{B(r_m)}$ and $CB \left(\frac{1}{r_m}\right)$ t_0E^* in R^n .

Then, the preceding corollary allows us to conclude that $M(\tilde{\Gamma}_m^*) = 0$ $(m = 1, 2, \ldots)$. Hence, taking into account proposition 5, $M(\bigcup \tilde{\Gamma}_m^*) = 0$. Next, if $\Gamma_s^* \subset S$ and Γ_0^* is the family of the arcs γ_0^* with the endpoints belonging to E^* and with $\gamma_0^* \cap CS \neq \emptyset$, then

$$M(\Gamma_S^*) = \inf_{
ho} \int_{Rn}
ho^n d au = \inf_{
ho} \int_{S}
ho^n d au = 0$$

and since $\Gamma_0^* = \bigcup_m \tilde{\Gamma}_m^*$, propositions 5 yields

$$M(\Gamma_0^*)=M(igcup_m ilde{\Gamma}_m^*)=\sum_m M(ilde{\Gamma}_m^*)=0.$$

Clearly, $\tilde{\Gamma}^* \subset \Gamma_s^* \cup \Gamma_0^*$, so that, from above, and by proposition 5, we conclude that

$$M(ilde{\Gamma}^*) \leqq M(\Gamma_S^*) \, + \, M(\Gamma_0^*) \, = \, 0,$$

as desired.

Proposition 7. If χ is the set of all continua in R^n that interesect two closed, disjoint sets C_0 , C_1 , where C_0 contains the complement of a ball, then $M(\chi) = \operatorname{cap}(C_0, C_1, R^n)$.

(For the proof, see w. ZIEMER [10], theorem 3.8.)

Corollary. $M(C_0, C_1, R^n) = \text{cap}(C_0, C_1, R^n).$

It is enough to observe that

(5)
$$M(C_0, C_1, R^n) = M(\chi).$$

Indeed, if Γ is the family of arcs which join C_0 and C_1 and C_1 in R^n , then, clearly, $\Gamma \subset \chi$, hence, proposition 5 yields

(6)
$$M(C_0, C_1, R^n) = M(\Gamma) \leq M(\chi).$$

On the other hand, let $\rho \in F(\Gamma)$ and α an arbitrary continuum of χ . Then, there exists an arc $\gamma \in \Gamma$ such that $\gamma \subset \alpha$, hence $\rho \in F(\chi)$, so that

$$M(\chi)\leqslant \int\limits_{R^n}
ho^n d au,$$

whence, taking the infimum over all $\rho \in F(T)$, we obtain $M(\chi) \leq M(\Gamma)$, which, together with (6), gives (5), as desired.

THEOREM 2. Cap $E^* = 0$.

THEOREM 2. Cap $E^* = 0$. If $E^*(r)$ is an r-neighbourhood of E^* (i.e. the set of points within a distance r from E^*), then, clearly

(7)
$$\operatorname{cap} [CE^*(r), E^*, R^*] \ge \operatorname{cap} E^*$$

since the class of admissible functions for cap $[CE^*(r), E^*, R^*]$ is contained in that of cap E^* .

Next, let Γ_r^* denote the family of arcs, which join E^* and $CE^*(r)$ in R^* and $\tilde{\Gamma}^*$ of the preceding lemma, then evident $\Gamma_r^* \subset \tilde{\Gamma}^*$ and the preceding lemma implies

$$M[CE^*(r), E^*, R^n] = M(\Gamma_r^*) \le M(\Gamma_r^*) = 0$$

for all r > 0, hence and by (7), taking into account also the preceding corollary, we obtain

cap $E^* \leq \text{cap} \ [CE^*(r), E^*, R^*] = M[CE^*(r), E^*, R^*] \leq M(\tilde{\Gamma}^*) = 0$, as desired.

H. WALLIN [9] gives the following definition of the conformal capacity: "Let E be a bounded set in R", cap E is defined by (2), where the infimum is taken over all functions $u \in C^1$, which have compact support belonging to a certain fixed sphere $B(R_0)$ which is independent of E and $u|_{R_0} \ge 1$."

Arguing as in F. GEHRING 's paper ([4], lemma 1), it can easily be shown that the infimum appearing in the definition (2) of the conformal capacity of a bounded set E is not increased if it is taken over all $u \in C^1$ in R".

Corollary. Cap $E^* = 0$, where the conformal capacity is taken in Wallin's sense, i.e. with $u|_E \ge 1$ (not $u|_E = 1$).

This is a consequence of the preceding theorem, since the conformal capacity of a bounded set E given in the introduction is not less than the preceding Wallin's conformal capacity.

Proposition 8. Let F be a compact set in \mathbb{R}^n with cap F=0 (the conformal capacity in Wallin's sense). The following conclusions are true:

If n = 2, the logarithmic capacity $C_0(F) = 0$. If n > 2, then $C_{\alpha}(F) = 0$ for every $\alpha > 0$.

For the proof, see WALLIN's paper ([9], theorem B). Corollary. If n = 2, the logarithmic capacity $C_0(E^*) = 0$. If n > 2, then $C_{\alpha}(E^*) = 0$ for every $\alpha > 0$.

REFERENCES

- [1] Caraman, Petru, n-dimensional quasiconformal (QCf) mappings. Edit. Acad. R. S. Române, București 1968; "Abacus Press" Kent and Edit. Acad. Kent and Edit. Acad. R. S. Române 1974.
- p-capacity and p-modulus. Rev. Roumaine Math. Pures Appl. (in print).
- [3] Fuglede, Bent, Extremal length and functional completion. Acta Math. 98, 171-219 (1957).
- [4] Gehring, Frederick, Rings and quasiconformal mappings in space. Trans. Amer.
 Math. Soc. 103, 353-393 (1962).
 [5] and Väisälä Jussi, The coefficient of quasiconformality. Acta Math. 114,
- 1 70 (1965).
- [6] Reade, Maxwell, On quasi-conformal mappings in three space. (Preliminary report). Bull, Amer. Math. Soc. 63, 193 (1957).
- [7] Storvick, David, The boundary correspondence of a quasiconformal mapping in space. Math. Research Center US Army. The Univ. of Wisconsin. MRC Technical Summary Report 426, 1-8 (1963).
- [8] Väisälä, Jussi, On quasiconformal mappings in space. Ann. Acad. Sci. Fenn. Ser. A I 298, 1-36 (1961).
- [9] Wallin, Hans, α-capacity and LP-classes of differentiable functions. Arkiv for Math. 5, 331-341 (1964).
- [10] Ziemer, William, Extremal length and p-capacity. Michigan Math. J. 16, 43-51 (1969).
- [11] Зорич, В. Граничные свойства одного класса отодратений в пространстве, Докл. Акад Наук СССР 153, 23-26 (1962).
- [12] Определение граничных глементов посредством сечений. Докл. Акад Наук CCCP 164, 736-739 (1965).

and the test of the section of the s

The product of the production of the same of the same

Receined 4.VII, 1974.