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Let X be a normed linear space, M a non-void subset of X and x e X.
We use the following notations:

d(x, M) = inf {||x — y[|:y € M} — the distance from x to M ;

Pyl%) = {y e M:||x — y|| = d(x, M)} — the metric projection;

EM) = {xe X: Py(x) # G}
The set M is called proximinal if E(M) = X and antiproximinal if E(M) =
= M (see [5]) — Following v. k1uE [6], let us denote by N, the class
of all normed linear spaces which contain an antiproximinal closed convex
set, and by N, the class of all normed linear spaces which contain an anti-
proximinal bounded closed convex set. Evidently, N, € N,. As was shown
by v. KLEE [6], a Banach space belongs to the class N, if and only if it
is non-reflexive. The characterization of the Banach spaces of class N,
is more complicated. The first example of a Banach space of class N, was
given by M. EDELSTEIN and A. C. THOMPSON [4]: co€ Np. In [2] it was
shown that the space ¢ belongs also to the class N,. We use standard nota-
tion ; all undefined terms are as in [3]. We consider only real Banach
spaces.

We say that two normed linear spaces X, Y are isomorphic (notation
X ~ V) if there exists a linear homeomorphic bijection ¢ : X — Y. The map
o is called an isomorphism of X onto Y. If further, le(x)|| = ||#]| for all
x e X, then ¢ is called an isometric isomorphism and we say that the spaces
X and Y are isometrically isomorphic (notation X == Y).

Let S be a compact Hausdorff space and C(S) be the Banach space of
all real — valued, contintous functions defined on S. An ideal I is a linear
subspace of C(S) such that xy e for all xe I and ye C(S). If S, is a
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subset of S let Z(S,) = {x e C(S): %(s) =0 for all seS,}. Then, I is
a closed ideal in C(S) if and only if there is a closed subset S, of S such that,
I =2(S,) (see [8], p. 119).

We are now in position to state the main result of this paper :

THEOREM 1. Let S be a compact Hausdorff space such that C (S) s
isomorphic to co. If I is an infinite dimensional closed ideal in C(S) then 1
belongs to Ny. More precisely, T contains a closed bounded symmetric (with
respect to zero), antiproximinal, convex body.

By a comvex body we mean a convex set with non-void interior. We agree
to call convex cell a closed bounded symmetric convex body. It follows that
the Minkowski functional ||-||, corresponding to a convex cell M in a nor-
med linear space (X, [|-]|), is a norm on X equivalent to || ||, and M =
= {x e X: ||x]|;< 1}. Conversely, if [[-1l1 is an equivalent norm on X,
then the set M = {xe X: ||x||;< 1} is a convex cell in X.

In the sequel we shall use some results from the theory of ordinal
numbers following the treatise [9], Concerning topological spaces of ordinal
numbers, see [8]. We denote by @ the first infinite ordinal number, If o, p
are ordinal numbers, then [«, B] = {y:vy is an ordinal number and %<
sys B [o B[ = [, Bl \{B} ete. We shall identify the sets [1, w[ and
N (the set of positive integers). If «,  are ordinal numbers then [e, B] equi-
ped with the interval topology is a compact Hausdorff space. If « is an or-
dinal number, we use the notation C(a) = C([1, «]). We shall use also the
Cantor normal expansion of ordinal numbers (see [9], p. 322) with the diffe.
tence that in an expansion w®-m, 4 ... 4- "k, we admit the numbers
n; to be zero. The occurrence of a number #; = 0, means that the corres-
ponding term misses, e.g. %0 4 w?-5 + ®0 +4 6 =w:5 6.

It is well known that ¢ is isomorphic to ¢y, As ¢ = C(w) and G =
= {* € C(w) : %(e) == 0} is a closed ideal in C(w), from Theorem 1 one gets

Corollary 2. ([4], [2]). The spaces cq and ¢ belong to the class N,
More precisely, they contain antiproximinal comvex cells.

By a result of n. amIr [1], the space C(S) is isomorphic to ¢,, if and
only if there exist the natural numbers &, n, 1 £ k, m < w, such that C(S)
is isometrically isomorphic to C (e - #). It follows that it is sufficient to pro-
ve Theorem 1 for a space C(w* - #). The following lemma shows that it is
sufficient to prove it for a space C(w*). '

Lemma 3. Let k, 1< h <o be a natural number. If every infinite
dimensional closed ideal in C(w*) contains an antiproximinal convex cell,
then every infinite dimensional closed ideal in Clw* - n) contains an anti-
proxivunal comvex cell, for 1< n < .

Proof. Let I be an infinite dimensional closed ideal in C (wk-n). Then

there exists a closed set A < [1, w* %] such that [ — Z(A). Puat
A =[ob (1 = 1)+ 1, o], T, = [1, ot n]\ A,

and
Zy=Z({)for 1 =1,2, .. ., R
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Is Qis a set and I’ < Q we denote by % the characteristic function of the

set I', i.e,
J 1 for ¢ el

te(t) = 10 for ¢ e Q\UI.
Then
i Z; = {xXy,: x € Clo*-n)} =2 C(4,).
Z
are isomeétrically isomorphic). Put A; = AN A; and

" ' o o P
Since A; is homeomorphic to [1, w*] it follows that X__, i (?x)e Z(:.:ep.c( ;?e:y
=0 for a e A}, for ¢ ='1, 2, ..., n
Then X, is a closed ideal in Z;, and
(1) I=X,®...0X%,,
the direct sum holds algebrically and topologically).
%‘oreall xel, x=x,+ ... +=x, x,¢X, +=1,2, ..., n we have
(2) [|%]| = max {|[z]], ..., ||%,]]}.

i i i that
intend to show that without loosing the generality we can suppose
Z;e‘cll?eeir:iealcs) X;, in the direct sum (1), are infinite dimensional. Indeed,
let us suppose that [1, n] = M, U M,, and X; is finite dimensional for
i € M, and infinite dimensional for ¢ € M, The ideal X, is finite dimen-

sional if and only if the set A;\ A; is finite. .
Put A’ =.\J (ANNA), m = card (A7), My={iyie o onn tptindy < viie < B,

M, = {j, i;:}‘»ll g1 < ... <<j, !+ p =mn. Since the set A\ A, is finite
2 — I AN | >

i it f tion points of the
d the set A; is closed, it follows that all the accumula 3
gelzlt A~ebelong to the set A;, so that the sets A, and A, are homeomkorphm.
There}ore, there exist the homeorphisms: ¢;: A; — [m -+ 1, w¥], ...,
05,0 A =By 0 Ny By, e 9t Ay —A,. '
Leltt §: A" — [1, m] be a bijection, and let us define the map

¢:[1, o 0] —[1, wf - n]
P(a), a€d
o0 = {3, ) weAna, =15 n

Then ¢ will be a homeorphism of [1, w* -n] onto [1, o* -], and the map
T:Cl(w* - n) > C{w* +n), defined by

Tx(e) = x(p(a), a€ [1, of - n], x e Clu* - n),

will be an isometric isomorphism of C(w* - #) onto C(w* * #). This isomorphism
maps the ideal I onto an ideal J = T'(I), of the form:

J=Y0..0Y,06Z04.)0 ... ® Z(A,) =
=Y,9...0Y,0{0l®....0 {0},

9 — Mathematica — Revue.d'analyse numérique et de théorie de l'approximation. Tome §, N 2. 1976,
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where Y are infinite dimensional closed ideals il 23 =T w0
Therefore, we can suppose that J is a closed ideal in C (w* -1) of the f:)rrﬁ
% =Y, ?92 &) }/z: Y, being infinite dimensional closed ideals in
o t=1,2, 0

. Let us then suppose that in the expansion (1), X, is an infinite dimen-
sinal closed ideal in Z,, ¢ = 1,2, ...., #. Since Z, ~ C(w*), by hypothesis
X; will contain an antiproximinal convex cell V, i=1,2, ..., n. We will
show that theset V = V, 4 ... 4 V,, is an antiproximinal convex cell in .
Since the sum (1) holds algebraically and topologically, V is a convex cell
in ti'T . To‘co‘mqlete the proof of the lemma, we have to show that V is an
antiproximinal set. Let xe I\ V, eV, x=x% e X, V=

T s s s o W Gl 2L b ﬁ;r@) Lftn

0 < |lx — y|| = max {lz; —»ll:2=1,2, cee, W)
Put Ny = {ie [1, n]:l% — | = |x — yl} and N, = [1, 2]\N,. Then,

N, #4, and for all e Ny, 1% — 9l = |lx — 5]/ > 0, so that if % €V,
the set V; being antiproximinal, there exists 3! e V,, such that I, — »i]l <

<% — . I i€ Nyand % € V,, put ! :%yie V.. Set

y’=2y£+ 23’.’

isN, i€N,

(We agree that 2 Vo= O). Then, putting max & = 0, w‘e have

isQ

£ — | T max (max{ll%; —yi|:7e N}, max {|x —yl:ieN}) <

Therefore, the set IV is antiproximinal, Q.FE.D.
By Lemma 3, it follows that we can suppose

3) C(S) = C(wh).

If Sis a compact Hausdorff space then, the conjugate of the Banach
space C(S) is the space M (S) of all regular Borel measures on S. For © €
e M(S), we have :

el = v(w, S) (the total variation of y)
and
w9 = | x(s) - duls), x e C(S),
S

(see [3], IV. 6.3). (In [3] the space M(S) is denoted by rca (S)). If S.is
countable, then

(4) ]l = Zsesluls)|
and
() w(%) = Zeesx(s) - u(s), x e C(S).

) s b s : jom
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Conversely, every function p:S —R, such that Zjesju(s)] < oo, defines
through (5) a continuous linear functional on C(S), whose norm is (4). If
« is an ordinal number, we denote M(«) = M([1, «]), i.e. the conjugate of
the space C(a).

The isomorphism 4 from the following lemma, was constructed by
M. EDELSTEIN and A. ¢. THOMPSON [4], in the particular case of the space
¢o- The proof given here is the same as in [4]. If S is a compact Hausdorff
space, we denote by 3, the evaluation functionals on S, i.e.

(6) 3,(x) = x(s), x € C(S), se S.

Lemma 4. Let S be a countable and compact Hausdorff space, S,
a closed subset of S, I = Z(S;) a closed ideal in C(S), Sy = S 5% 9, u, €
e M(S), |l <a<l, seS, and g € M(S) defined by

8s = Ss—l_us' S &S,
If for all x e Z(S;) the function Ax defined by
x), s S,
Ax(s) = {gs A

belongs to Z(S,), then A is an isomorphism of Z(S,) onto Z(S,), and its adjoint
A* verifies the relations :

s eSS,

A%, =g, s€S,.
Proof. By the definition of 4, it is clear that 4 is a linear operator.
Put
D={x e Z(S)): |g,(x)] < 1, s € Sy}.

Evidently, D is a symmetric, convex, closed subset of Z(S;). Since ||x]] <
< (1 + a)timplies |g,(x)] < 1, foralls € S,, it follows that 0 is an interior
point of D. If x € Z(S,) is such that ||| > (1 — «)~%, and x € S, is such
that |x(s)| = ||*|, then
l&s(%)| = |x(s)| — |us(x)] = ll*l] — @ - |zl = (1 — a)l|xl] > 1.

Therefore, x &€ D and D is also bounded. If B denotes the closed unit ball
of Z(S,), then

D={x eZ(S1): lg(x)|< 1, s € S} = {x € Z(5,) :|Adx(s)| = 1, -~

s & Sp} = {x € Z(Sy) :)|lAx|| € 1} = A7YB).
Since D is a convex cell it follows that 4 is an isomorphism of Z(S,) onto
Z(Sy).

Finally

A%, (x) = 3, (Ax) = Ax(s) = g, (%), x « Z(Sy), s e S,, i

A4%3, =g, se S, QE.D.
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- If X is a Banach space and M a non-void convex subset of X ‘we
that a f}mctlonal‘ S e X* (X* the conjugate of X) supports the set Msagf,
there exists a point x € M, such that f(x) = sup f(M) or f(x) = inf f(M)
We denote by_ 8(M) the set of all support functionals of the set M. .
We mention the following two results from [47:
~Lemma 5. ([4], Prop. 1. (iii)). Let X be a Banach space, M q
non-void, bounded closed comvex subset of X and B the closed unit ball
of X. Then, the set M s antiproximinal if and only if

$(M) N 8(B) = {0}.

Lemma 6. ([4], p. 555). If X, Y are Banach spaces, M a nonvoid
convex subset of X, and A : X — Y is an isomrphism, then f e S(M) if z:zd
only if (A*)7 € 8(A(M)) (ie. (M) = A*S(A(M))). i

If X is a linear space and M < X, we denote by sp(M) the linear
subsEace of X spanned by M. If X is a linear topological space, we denote
by sp (M) the closed linear space spanned by M. We have sp (M) =
= sp (M). A sequence {x,: %k e N} in a Banach space X is called complete
if sp(goxk}) = X. If every ¥ « X can be uniquely represented in the form

X% = ’2 @, %, where a, € R, then {x,} is called a basss for X. A sequence

St ke N} = X*, is called comjugate to {x)} if Fa(%) = 8, A

; . i) = O systemn
v{(x,,, f) keN} = X x X* is called bioﬁhogronal if {fi} is J"c:onjugaﬁ:e to
{x,}. If further, the system {x} is complete in X, we say that {(% f3)}
is an X-complete biorthogonal system. For complete systems and bases in
Banach spaces, see [10],

In the sequel we will use several times the following 1

simple proof is omitted. el - s

Lemma. 7. Let X, Y be Banach spaces, A : X —-Y an isomorbhism
and. {(x,, : ,f*l ke N} = X x X* a biorthogonal system. Then the fystm;
{(Ax,, (4%) i) ik €N} is  biovhlogomal in Y X Y*. Further if {x} ds
S:;m{;:'lete (a basis) in X thew the system {Ax} is complete (resp.” a basis)

- Let {¢;: i e N} be the usual basis of d{s:: 1 i j
ORI 1 of ¢y and {3;:4 «N} cof=1, its conju-

Lemma 8. Let {(x, ,):7 € N} be acy — complete biorthogonal svs-
tem in cﬂ! X b suchdtkat the set By = {x e Ocozlia-(xﬁ <1, ggl%}a i::ysa
convex celt i ¢y, and let |||, be the Mink | fumctiona :
Then s e 7 )l ¢ Minkowski functional of the set B,

Tx,- = ¢g, 1 < N,

extends to an isomelric tsomovphism T of (c '
ol , . L‘ r
adjoint operator of T, verifies f (o, |1) omto (cq, ||-Il). The

T*S: =h‘, 'iEN-
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Proof. Since B, is a convex cell in c¢,, its Minkowski functional will
be a norm on ¢, equivalent to the usual norm. By the definition of the
Minkowski functional, we have for all x € ¢,:

|#)iy =1inf A >0:xerB, =inf (A <0: 2t xe B} =
=inf A >0: |42 %) <1, ieN} =
=inf (A > 0:|k(x)] <A {eN} =
= sup {|#(x)|: 7 e N}
Put X =sp ({#;:7 € N}), Y =sp ({¢i:7 € N)}, and define the linear

operator T:X —Y by T(Q toia;%) =2 14, ¢, neN.
Then, by (7) and taking into account that %4,(y) =0 for 7 > #n, we

have for all y =D iy a;%; € X,

179 =301 aielll = max {lauf, ..., |a} = max {{mO)], ..., B} =
= sup {{&(y)]: i € N} = )3l
Therefore, T is an isometric isomorphism of (X, ||-|l) onto (Y, || |). Since
the system {x;} is complete, X = ¢, and T extends to a linear isometry
of (co, |I*]ly) into (co, ||*]l). Because the norms ||:|| and |-||, are equivalent,
there exist two real numbers o, > 0 such that, «|x] < ||#|l, < Bl#],
% € ¢o. Therefore, |Tx| = |l#ll, > «ll#||, %€ co. From this inequality, easily
follows that the operator I' has closed range. Then
Tica) =T Ti(cy) 2 B(X) 1= ¥l =3¢,
This shows that T is an isometric isomorphism of (cq, ||-|l;) onto {co, ||

Finally, by the definition of 7 and by the biorthogonality of the
systems (¢, 8{) and {(x;, 4;)} it follows,

T*8H(x) = STx;) — Silef) = i3 — hi().
The system {x,} being complete in ¢,, we have
T*3 =h,ieN, QUE.D.

Remark. It follows that the sequence {x;} from Lemma 8, is a
basis for ¢, equivalent to the usual basis of ¢,.

Proof of Theorem 1.

As was shown (see (8)), it is sufficient to prove Theorem 1 for a
space C(w*). In order to avoid tedious motations, we suppose & = 3. The
proof of the general case proceeds analogously.
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Let us then suppose that A is a closed subset of [1, w*], and I =
= Z(A) is an infinite dimensional closed ideal in C(w?). We have to con-
sider several cases.

Case I. A =0, ic. I = C(w?).
Firstly, we give a complete biorthogonal system

{le;, fi):1 €1 € 0% in Cle?) X M(w?). Let us define the elements e, e

€ C(w?) for 1 €7 < w?, by 8

( . 1if 4= b - (AU Tyhp lgihly Lty y=_

€t (k1) + - — 1)+ m?) :{ 1 G t+o-( 1) 4 m
0 in rest.

for 1 <k I, m<o;

Cut bty s oald) = ‘ Lif @ (b—1)4+o-(—1)4+1<i<?(k—1)Fw:l

0 in rest
® | for 1 <k <o
em’-k(i):{l %f o k=1 +1<i <k
0 in rest;
for 1 €k <w;
epx(i) =1, 1 <1<
Let define the functionals f; € M(w?), 1 < ¢ < % by
(for- -ty bo-t—14m = Outth—1)4e-(—1)4m ~ Our (k=1 4wt —
—~ O — O s Tor 1 <k, I, m <w;
o) ) Joree=1) 41 = Out (1) 401 — Ourr — o,
for 1 <% I <ow;
St = Stk — O
\ forr = §up

where J; are the evaluation functionals (6).
~ Lemma 9. The system {(¢, f;):1 <7 <% 1s a Clw®)-complete
biorthogonal system in C(w?) X M(w®).
Proof of Lemma 9. The biorthogonality is obvious. To complete the
proof of Lemma 9, we have to show that the system f{e;:1 <7 < 0%
is complete in C(w?).

w
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Let xeC(w®) and ¢> 0. Using the continuity of the function x

on b, w? -k and w? - (k¢ — 1)+, one can find successively the natural

numbers ko, lo, Mo, 1 < kg = by, Mo < 0, such that

(10) |%(w?) — %(8)| <e, for 1> @? - ko

1)  |x(e? - (B —1) +19) — x(w? - k)| <&, for o -l <i <o and

k=12, ..

. ke

(12)  |x(e? - k—1)+o- ¢—1) + m) — x(w? - (k—1) + D <,
Cfor me<m <o, kR=12, ..., Eepand{il =112 12 ls.

Let No = [1, ko], N, = [, ko]l X [1, o], Np = [1, kol X (1, Lol X (1, mol,

and let

= of) e+ Y [a(? + B) — w{o) s +

ke N,
"I" [x(coz : (k - 1) —l— (O‘l) = x(ﬁ)z g k)]em’-(k—l) ol —I—
(BN eN,
LY et k—1)4e - (@ — 1)Fm) — x(e (k1) +o )]
(kL) N,

*CCai(k—1) + o (I—1) +me

Using the definition of y and the inequalities (10), (11), (12), it i;S\ easy
to show that |x(i) — ()| <efor 1 < i < o®, that is |jx — y|| <e. There-
fore, {¢;} is complete in C(w?), QE.D.

ILet S be a compact Hausdorfi space. Every regular Borel measure
w e M(S) can be uniquely writen as p =p* —, where p* and p-
are non-negative regular Borel measures on S (the Jordan decomposi-
tion of a measure, see [3], IIL. 4.11). The suppor S(p) of a measure p,
is the complementary set to the largest open subset of S, on which the
variation of p is zero. Obviously, S(p) is a closed subset of S.

Let U=1{x « C(S): x|l < 1}. By a result, proved by S.I. ZUHOVICKI
[11], in the case of a metric compact S, and by R.R. PHELPS [7], in

general, p e 8(U) if and only if

(13) S(*) N S)

If the compact S is countable, then
S(p) = {se€S:ufs) # 0}

— .

(14) S?) = €5 ul) >0}

S(p™) = {s € S p(s) <0}
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Now, we want to define the functionals g, € M (w?), such that sp({g, :

1 <4< )
be deflned}by = {0}. Let us consider the maps op: (1, 0[—[1, o,

(15) f) =212+ 1), 1 i< w: 1 <k<o,
(see [4], p. 554)
Define
( Gor(%) = x(w?) + 2—2122 (—1)2-" x(w? - 4);
Goral®) = w(0? - B) + 278N (1) ()
+ 2~<k+21><£2<m (—1) 21 - %(e? - o,(),

for 1 <k <ow;
)é’m“- -1 ro(%) = 20 (B — 1) + @-0) 4 gop(x) — x{wd-E) +
S e sn Sy pr or s (b= 1y - o)
for 1 €% l<w:
ottt (-1)4m (%) = (0 - (k — 1)+ - (L — 1) + m) +
T 8ot hn) o (%) — x(e? - (B — 1) 4o - 1) +
F 27k et 5 (192 (w2 - (B 1) go - (= 1)+ o,()),

1<1<0)
for 1 <k, I, m < w.

Taking into account the formulae (14) (15 16 inati
of all possible combinations g = a,gi + az(gw%‘ o(f ‘c)fle( el)e'n?;ltzxzn.niig?vg

that S(g*) N S(g7) =2.

Put
(17) U={xeCe:|x <1},
(18) Y =sp(fe i1 < < a)),
Then
(19) Y N = {0}.

Lemma 10. Theoperator 4 defmed by
Ax(l) = g(%), 1 <7<, xe C(w?),
is an isomorphism of Clw®) onto C(w®). Its adjoint. A* verifies

A%y, =g, 1 €4 < w.
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Proof of Lemma 10. We intend to apply Lemma 4. Evidently, g,=
= 95, + u, and |ju,]] < 27! (see (16). We have to show that Ax so defined
belongs to C(w?®). But, if {a,} is a sequence in [1, w3] converging to «,
then it is a routine verification to show that g, (x) converges to g,(x),
that is Ax is a continuous function. Therefore, Lemma 4 applies, Q.E.D.

Put

(20) V={xeC):|fi(x)| <1, 1<1 <0y},

where f; are defined by (9). It easy to see that V is a convex cell in
C(w?®). There exists an isomorphism, say

(21) H: C(w?) —c,.

Put

(22) V.= A7),

and

(23) B, = H(V,) = HA™Y(V),

where A is the isomorphism of C(w?) onto C(w?), constructed in Lemma 10.
The maps A and H being isomorphisms, B, will be a convex cell in c¢,.

Let

(24) yi=Ale,
(25) u, = A*f,,
and

(26) x; = Hyj,
(27) hy = (H*)'u,,

for 1 €7 € 0®.

Applying twice ILemma 7, it follows that {(x;, %): 1 <7 < %)
is a cq-complete biorthogonal system. By (23), (20), (27) and the fact
that (HY)* = (H*)™! (see [3]. VI. 3.7), one gets

B,=HA7(V)={xeco: (AH Yxe V} = {xecy: |[i(AH(x)| <
1 <7< ={xecy: (H)*A¥(x)] €1, 1 €7 < ¥} =
={xecy: |I(x) €1, 1 <7 < .

Tet 6: N —[1, 0?], be a bijection and let us define

®; = Xoi)

(28)
by = Ao
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for all ieN. it follows that, ti i
ieN. ol ,» the ¢p-complete biorthogonal
éﬁyi,h;z_‘-)l.{zeN}, verifies the hypothesis of ILemma 8. Delllgoting Ij;s{[c[eﬁl
e Minkowski functional of the convex cell By ([|-],) will be a norm 0l
¢y equivalent to the usual norm), it follows that there exists an isometrilcj

isomorphism T : (c,, ||+|l) — (€o, 1IN, such that
(29) Tﬂzi = €;
T*§) = J,

for 7+ € N. Here {¢; i N -
e {ei} denotes the usual basis of ¢o-and {3i}, its conjugate

Let us define a new norm |||, on c,, by
ll2ll: = I1H, % € c,,

}1813 }i 15 tlle ]SCIll[:Il: 11811 (21)' It f[L 5 tllELt’ 2 111 be a norm
on Co, Qq uiv alent tO tlle us llal 1norm aIld 12 W 1].1 be an 1some tI 1C 1Somor-

Lemma 11. The set B, is an antiproximinal comvex cell in (c

ll+1l2)-

Proof of Lemma 11. Let B = {% : < =
< 1}. By the definition of the no{rme”cfh;,”x” S Hand By =frecy:fal

(17}

(30) B, = H(U),

where U denotes the closed unit ball in (Cle2?), || +1. St i i

. : , e, Since T i
1somorphism of (co, ||-|l;) onto (o, ||-[)), it follovgs that O 1
(31) By=rT(B,).

Let Y be defined by (18) and let

(32) Z =sp(di:ieN)}.

By (9), Lemma 10 and (25),

(33) Y = sp({u; : © € N}).

We intend to apply Lemma 5. It is well known and easy to see, that
(34) 8(B) = Z.

By Lemma 6, (31), (34), (32), (29). (28), (27), and (33)
8(B,) = T#8(B) = T*(2) = sp({k, : i € N}) —
=sp({h 1 <i < o¥) = (H)(Y).
On the other hand, by Lemma 6 and (30). '
8(B,) = (H*)7X(8(0)).
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Then, by (19)
§(By) N 8(By) = (H*)7HY) N (H*)7HS(U)) =
= (H*)~(Y N §(U)) = (H*)7(0) = {0}.

By Lemma 5, the set B, is antiproximinal in (c,, IH-lle), QE.D.

Now, since H is an isometric isomorphism of (C(w?®), ||-||) onto (c,,
| [l.), the set ¥y = H(B;)will be an antiproximinal convex cell in C(w?),
which concludes the proof of Theorem 1 in Case I.

Remark. By (29) and the fact that T is an isomorphism of C(w®)
onto ¢,, it follows that {#;:7 e N} is, in fact, a basis for C (0?) equiva-
lent to the usual basis of cq.

" Case II. I =Z(A), A a closed subset of [1, ] and w®e A.

The proof is the same as in Case I, with some changes in the defi-
nitions of the elemente ¢, f;, &;.

Since C{w?®) is isomorphic to ¢,, and ¢, is isomorphic to ¢, it follows
that C(w?) is isomorphic to ¢. This isomorphism carries the ideal I onto
an infinite dimensional closed ideal in c. But, every infinite dimensional
closed ideal in ¢ is isomorphic to ¢,. Therefore, there exists an isomorphism

(35) H:I —c,

(the analog of the isomorphism H from (21)).

Instead of (14), we can use the following result of R.R. PHELPS
[7]: let S be a compact Hausdorff space, S; a closed subset of Sy J =
—7(S,) a closed ideal in C(S) and U = {xe J: x| < 1}. Then, fe Vi
supports U, if and only if for every norm-preserving extension p of f to
C(S), the sets S;, S(u*) and S(u~) are pairwise disjoint. Using this fact
we shall define the elements g, e I*, such that

sp({g:}) N 8(U) = {0}
(the analog of (19)). We observe that, if f e M (w?) is such that f(«) =
=0 for a € A, then
Il =2 acal f(@)] = 11,

where A = [1, @3]\ A and f|; denotes the restriction of / to 1. "Therefore,
f is a norm-preserving extension of f|; to C(w?®). We shall define g, €
e M(w®), such that g,(«) = 0 for « € A and for g € sp({g,})-

S(gt) NSlg™) #9.

Then, by the above quoted result of R. R. Phelps, the restriction of
g to I does not attain its supremum on U.
Tet A =1, 0®\A and let

O’.1<O(2<...,

be the accumulation points of the set A of the form
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% =0 n, 1 <N <o If €A then, by the closedness of the set
A there exists a number b, 1 €1, <w, such that

(36) [ —1) 4o 441, 6 2] <A,
By the properties of ordinal numbers, it will exist a homeomorphism
B L B R A R

(n, can be defined e.g. by ) = 0, — 1) 4+ o - L+, forl <7< el
m(0?) = w? - ),

Put
8y (#) = (o) + 27640 0 (=127 alny(o - i),
1 2
S 1 for 1€ N([1, w?])
J 0 in rest,
and fak=8ak, for k=1,2, ....
Let now
e < Gpo << ... ,

be the accumulation points of the set A of the form
% = 0% (g — 1) + 0 g 1€ N, oy < o,

belonging to the interval [ope1, ). (We put ay = 1 and, if there are
only a finite number of «,, we consider also the interval [a,, ®®] where
a, is the last of «,). In this case there exist the homeomorphisms

(38) Nke,j - [1, (L)] — }ock,j_l,f ak,j].

We have now to consider some different situations. The symbol ¢, will
have the same meaning as in (15).

II. a. o, €A.
Preserving the notations from (36), we consider the sub-cases
IL al. w;eA N [ay_y, o (2, — 1) +w-4,]
Put
Bap (%) = x(ans) + 2=BH+D B0 (—1)i0~ix(n, . (),

I<i<w
: 1 for e ni([1, o
ey ; (1) = [0 N[ 1)

in rest,
oy = Bay

where v;; is the homeomorphism (38).
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IT.a.2. wieA N 3 —1)+o l, o- Rkl;
By (37) there exists a number j’ such that o ; = 7,(0 - 4'). Put

Bui (1) = {om) + 274D $597 T ()2 (e - 1)) +

+ 26D ST (1) 27 k(0 - op(4))),

1<i<w
. 1 for i en, ([1, w?])
a1 ={ .
' 0 in rest,

fak,j = Smk‘j . Sak-
I1.b. «, & A.

Put
Bag (%) = K(ong) + 2-GHHD B0 (1) 2=ix(ny i(4)),

1€i<w

1 for + = g, 5

e, (1) = )
ak”( ) 0 in rest

fak‘j s Sak’j

Let now pass to the isolated points of [1, w*] which belong to A.
By the homeomorphism (38), every isolated point o from A N ], -1,
ay;[ is of the form o = ;;(/) for a number I € [, w[. We consider now

the following cases:

IT.a.1.0.
o, €4, oap; €A N [ty w2 - (A — 1) + o - L] (see (36)).

Put

-1 . ) '
gal®) = (a) 4= 27 HHD R B0 ST (1) 2 270 gy, (3)) +
o 3D (1) 27w, (60,
1<i<w
1 for ¢ =«
(t) = 0 1n rest
foz = 80:
I1.0.2.a.

el mieA Nl (N — 1)+ w1, «lsee (36).
In this case, by (37), there exist /, ' « [1, o[, such that
a=w - (7 —1)+1
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Put
got(x) = %(O() + gock,j(x) T x(ak,f) b
L o=k + i+ Y i, 0—i Y :
f 2ottt 50 (=127, (0 - (G — 1) F o),
1 fori=u
e, {7) = .
g 0 in rest
foc = 3, — SakJ Y Sak'
11.b.c.

oy & A, O i € A,
By (38), there exists / € [1, w[, such that o = =;;(/). Put

: . ,'j_l : .
Ea(%) = m{o) - 20N p T (1) 270 x(my(9)) +
2D 5 (1) 27 (o),
' 1 fori=ua
elf) = 0 in rest
fa = 8«'
IL.b.p.

oy, 2 A, Ky, & A.

If o = n,4(4), put
(%) = (o) 4 27Ut HD Z 0 (1) 27wl - (0y(i))),

I<i<w
i 1 fori—=oua
ea(l) i 0

in rest,

fa ay Sa
'his finishes the definitions of the elements ¢, f;, g; 1
C\a\?‘g e O TS e loes o0 ¢, fi, g in Case II.
This case reduces to Case I or to Case II. Since A is closed, from

o? & A it follows the existence of a %2, = [1, o[, such th
L ) 3 t 2,
F 1), o*] < A, where A = [1, @®]N\A. Io)eno‘Eing i T

A=l -(—1)+1 - i], I;=I[1 wa]\Ah‘
A=A NA, X, =Z(A),
I'=[1, 0? - k), X=eZ(T),
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one can write
Z(A) =X, ® @ X, & X.

Tach X, is a closed ideal in Z({l,) = C(w?), and X =Z(I') =2 C(w?) Rea-
soning like in the proof of Lemma 3, we can suppose that all X are
infinite dimensional. Now, if «©* -7 & A, we decompose again Z(A;) as

above. Continuing in such a manner, we obtain finally a decomposition
of Z(A).

ZA)=Z, @ ... ®Zy,

where each Z is isometrically isomorphic to an infinite dimensional closed
ideal Z(A7) in C (w*), such that A =@ or of € A,
ke{l, 2, 8}. For x cZ(A), x =2+ .. T 2 % eZ;,
i=1, ..., p we have |zl = max{||z,]l, ..., lzl} By Case I or Case II
of Theorem 1, each Z(Ai) contains an antiproximinal convex cell. Rea-
soning again, like in the proof of Lemma 3, one can show that Z(A)
contains an antiproximinal convex cell.
Theorem 1 is completely proved.
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