MATHEMATICA — REVUE D'ANALYSE NUMÉRIQUE ET DE THÉORIE DE L'APPROXIMATION

L'ANALYSE NUMÉRIQUE ET LA THÉORIE DE L'APPROXIMATION Tome 5, Nº 2, 1976, pp. 127-143

ANTIPROXIMINAL SETS IN BANACH SPACES OF CONTINUOUS FUNCTIONS

by
S. COBZAŞ
(Cluj-Napoca)

Let X be a normed linear space, M a non-void subset of X and $x \in X$. We use the following notations:

 $d(x, M) = \inf \{||x - y|| : y \in M\}$ — the distance from x to M; $P_M(x) = \{y \in M : ||x - y|| = d(x, M)\}$ — the metric projection;

 $E(M) = \{x \in X : P_M(x) \neq \emptyset\}.$ The set M is called proximinal if E(M) = X and antiproximinal if E(M) = M (see [5]) — Following v. klee [6], let us denote by N_1 the class of all normed linear spaces which contain an antiproximinal closed convex set, and by N_2 the class of all normed linear spaces which contain an antiproximinal bounded closed convex set. Evidently, $N_2 \subseteq N_1$. As was shown by v. klee [6], a Banach space belongs to the class N_1 if and only if it is non-reflexive. The characterization of the Banach spaces of class N_2 is more complicated. The first example of a Banach space of class N_2 was given by M. EDELSTEIN and A. C. THOMPSON [4]: $c_0 \in N_2$. In [2] it was shown that the space c belongs also to the class N_2 . We use standard notation; all undefined terms are as in [3]. We consider only real Banach spaces.

We say that two normed linear spaces X, Y are isomorphic (notation $X \sim Y$) if there exists a linear homeomorphic bijection $\varphi: X \to Y$. The map φ is called an isomorphism of X onto Y. If further, $||\varphi(x)|| = ||x||$ for all $x \in X$, then φ is called an isometric isomorphism and we say that the spaces

X and Y are isometrically isomorphic (notation $X \cong Y$).

Let S be a compact Hausdorff space and C(S) be the Banach space of all real — valued, continuous functions defined on S. An *ideal* I is a linear subspace of C(S) such that $xy \in I$ for all $x \in I$ and $y \in C(S)$. If S_1 is a

subset of S let $Z(S_1) = \{x \in C(S) : x(s) = 0 \text{ for all } s \in S_1\}$. Then, I is a closed ideal in C(S) if and only if there is a closed subset S_1 of S such that. $I = Z(S_1)$ (see [8], p. 119).

We are now in position to state the main result of this paper:

THEOREM 1. Let S be a compact Hausdorff space such that C(S) is isomorphic to co. If I is an infinite dimensional closed ideal in C(S) then I belongs to N2. More precisely, I contains a closed bounded symmetric (with respect to zero), antiproximinal, convex body.

By a convex body we mean a convex set with non-void interior. We agree to call convex cell a closed bounded symmetric convex body. It follows that the Minkowski functional $||\cdot||_1$ corresponding to a convex cell M in a normed linear space $(X, ||\cdot||)$, is a norm on X equivalent to $||\cdot||$, and M = $= \{x \in X : ||x||_1 \le 1\}$. Conversely, if $||\cdot||_1$ is an equivalent norm on X, then the set $M = \{x \in X : ||x||_1 \le 1\}$ is a convex cell in X.

In the sequel we shall use some results from the theory of ordinal numbers following the treatise [9]. Concerning topological spaces of ordinal numbers, see [8]. We denote by ω the first infinite ordinal number. If α , β are ordinal numbers, then $[\alpha,\,\beta]=\{\gamma\, ; \, \gamma \text{ is an ordinal number and } \, \alpha \leqslant$ $\leq \gamma \leq \beta$, $[\alpha, \beta[$ = $[\alpha, \beta] \setminus \{\beta\}$ etc. We shall identify the sets $[1, \omega[$ and N (the set of positive integers). If α , β are ordinal numbers then $[\alpha, \beta]$ equiped with the interval topology is a compact Hausdorff space. If a is an ordinal number, we use the notation $C(\alpha) = C([1, \alpha])$. We shall use also the Cantor normal expansion of ordinal numbers (see [9], p. 322) with the difference that in an expansion $\omega^{\alpha_1} \cdot n_1 + \ldots + \omega^{\alpha_k} \cdot n_k$ we admit the numbers n_i to be zero. The occurrence of a number $n_i = 0$, means that the corresponding term misses, e.g. $\omega^3 \cdot 0 + \omega^2 \cdot 5 + \omega \cdot 0 + 6 = \omega^2 \cdot 5 + 6$.

It is well known that c is isomorphic to c_0 . As $c = C(\omega)$ and $c_0 =$ $= \{x \in C(\omega) : x(\omega) = 0\}$ is a closed ideal in $C(\omega)$, from Theorem 1 one gets Corollary 2. ([4], [2]). The spaces c_0 and c belong to the class N_2 . More precisely, they contain antiproximinal convex cells.

By a result of D. AMIR [1], the space C(S) is isomorphic to c_0 , if and only if there exist the natural numbers k, n, $1 \le k$, $n < \omega$, such that C(S)is isometrically isomorphic to $C(\omega^k \cdot n)$. It follows that it is sufficient to prove Theorem 1 for a space $C(\omega^k \cdot n)$. The following lemma shows that it is sufficient to prove it for a space $C(\omega^h)$.

Lemma 3. Let k, $1 \le k < \omega$ be a natural number. If every infinite dimensional closed ideal in $C(\omega^k)$ contains an antiproximinal convex cell, then every infinite dimensional closed ideal in $C(\omega^k \cdot n)$ contains an antiproximinal convex cell, for $1 \le n < \omega$.

Proof. Let I be an infinite dimensional closed ideal in $C(\omega^k \cdot n)$. Then there exists a closed set $\Lambda \subseteq [1, \omega^k \cdot n]$ such that $I = Z(\Lambda)$. Put

$$\Delta_i = [\omega^k \cdot (i-1) + 1, \ \omega^k \cdot i], \ \Gamma_i = [1, \omega^k \cdot n] \setminus \Delta_i$$

and
$$Z_i = Z(\Gamma_i)$$
 for $i = 1, 2, ..., n$.

Is Ω is a set and $\Gamma \subseteq \Omega$ we denote by \mathcal{X}_{Γ} the characteristic function of the

$$\chi_{\Gamma}(t) = \begin{cases} 1 & \text{for } t \in \Gamma \\ 0 & \text{for } t \in \Omega \setminus \Gamma. \end{cases}$$

$$Z_i = \{x \cdot \chi_{\Delta_i} : x \in C(\omega^k \cdot n)\} \cong C(\Delta_i).$$

Since Δ_i is homeomorphic to $[1, \omega^k]$ it follows that $Z_i \cong C(\omega^k)$ (i.e. they are isometrically isomorphic). Put $\Lambda_i = \Lambda \cap \Delta_i$ and $X_i = \{x \in Z_i : x(\alpha) = \alpha\}$ = 0 for $\alpha \in \Lambda_i$, for $i = 1, 2, \ldots, n$. Then X_i is a closed ideal in Z_i , and

$$(1) I = X_1 \oplus \ldots \oplus X_n,$$

(the direct sum holds algebrically and topologically). For all $x \in I$, $x = x_1 + \ldots + x_n$, $x_i \in X_i$, $i = 1, 2, \ldots, n$, we have

(2)
$$||x|| = \max\{||x_1||, \ldots, ||x_n||\}.$$

We intend to show that without loosing the generality we can suppose that all the ideals X_i , in the direct sum (1), are infinite dimensional. Indeed, let us suppose that $[1, n] = M_1 \cup M_2$, and X_i is finite dimensional for $i \in M_1$ and infinite dimensional for $i \in M_2$. The ideal X_i is finite dimensional if and only if the set $\Delta_i \setminus \Lambda_i$ is finite.

Put $\Delta' = \bigcup_{i \in M_1} (\Delta_i \setminus \Lambda_i)$, $m = \operatorname{card}(\Delta')$, $M_1 = \{i_1, \ldots, i_p\}$, $i_1 < \ldots < i_p$, $M_2 = \{j_1, \ldots, j_l\}, j_1 < \ldots < j_l, l + p = n$. Since the set $\Delta_i \setminus \Lambda_i$ is finite and the set Λ_i is closed, it follows that all the accumulation points of the set Δ_i belong to the set Λ_i , so that the sets Λ_i and Δ_i are homeomorphic. Therefore, there exist the homeorphisms: $\varphi_{j_1}: \Delta_{j_1} \to [m+1, \omega^k], \ldots,$ $\varphi_{i_l} : \Delta \to \Delta_{i_l} \varphi_{i_1} : \Lambda_{i_1} \to \Delta_{l+1}, \ldots, \varphi_{i_p} : \Lambda_{i_p} \to \Delta_n.$ Let $\psi: \Delta' \to [1, m]$ be a bijection, and let us define the map

$$\varphi: [1, \omega^{k} \cdot n] \to [1, \omega^{k} \cdot n]$$

$$\varphi(\alpha) = \begin{cases} \psi(\alpha), & \alpha \in \Delta' \\ \varphi_{i}(\alpha), & \alpha \in \Delta_{i} \setminus \Delta', i = 1, 2, ..., n. \end{cases}$$

Then φ will be a homeorphism of $[1, \omega^k \cdot n]$ onto $[1, \omega^k \cdot n]$, and the map $T: C(\omega^k \cdot n) \to C(\omega^k \cdot n)$, defined by

$$Tx(\alpha) = x(\varphi(\alpha)), \ \alpha \in [1, \ \omega^k \cdot n], \ x \in C(\omega^k \cdot n),$$

will be an isometric isomorphism of $C(\omega^k \cdot n)$ onto $C(\omega^k \cdot n)$. This isomorphism maps the ideal I onto an ideal J = T(I), of the form:

$$J = Y_1 \oplus \ldots \oplus Y_l \oplus Z(\Delta_{l+1}) \oplus \ldots \oplus Z(\Delta_n) =$$

$$= Y_1 \oplus \ldots \oplus Y_l \oplus \{0\} \oplus \ldots \oplus \{0\},$$

where Y are infinite dimensional closed ideals in Z_i , $i=1,\ldots,l$. Therefore, we can suppose that J is a closed ideal in $C(\omega^k \cdot l)$ of the form $J=Y_1\oplus\ldots\oplus Y_l, Y_i$ being infinite dimensional closed ideals in Z_i , $i=1,2,\ldots,l$.

Let us then suppose that in the expansion (1), X_i is an infinite dimensinal closed ideal in Z_i , $i=1,2,\ldots,n$. Since $Z_i\cong C(\omega^k)$, by hypothesis X_i will contain an antiproximinal convex cell V_i , $i=1,2,\ldots,n$. We will show that the set $V=V_1+\ldots+V_n$, is an antiproximinal convex cell in I. Since the sum (1) holds algebraically and topologically, V is a convex cell in I. To complete the proof of the lemma, we have to show that V is an antiproximinal set. Let $x\in I$, V, $y\in V$, $x=x_1+\ldots+x_n$, $y=y_1+\ldots+y_n$, $x_i\in X_i$, $y_i\in V_i$, $i=1,2,\ldots,n$. By (2)

$$0 < ||x - y|| = \max \{||x_i - y_i|| : i = 1, 2, \dots, n\}.$$

Put $N_1 = \{i \in [1, n]: \|x_i - y_i\| = \|x - y\|\}$ and $N_2 = [1, n]$ N_1 . Then, $N_1 \neq \emptyset$, and for all $i \in N_1$, $\|x_i - y_i\| = \|x - y\| > 0$, so that if $x_i \notin V_i$, the set V_i being antiproximinal, there exists $y_i' \in V_i$, such that $\|x_i - y_i'\| < \|x_i - y_i'\|$. If $i \in N_1$ and $x_i \in V_i$, put $y_i' = \frac{x_i + y_i}{2} \in V_i$. Set

$$y' = \sum_{i \in N_1} y_i' + \sum_{i \in N_2} y_i$$

(we agree that $\sum_{i\in\mathcal{O}}y_i=0$). Then, putting $\max\mathcal{O}=0$, we have $\|x-y'\|=\max$ ($\max\{\|x_i-y'_i\|:i\in N_1\}$, \max $\{\|x_i-y_i\|:i\in N_2\}$) $<\|x-y\|$. Therefore, the set V is antiproximinal. O.E.D.

By Lemma 3, it follows that we can suppose

$$C(S) = C(\omega^k).$$

If S is a compact Hausdorff space then, the conjugate of the Banach space C(S) is the space M(S) of all regular Borel measures on S. For $\mu \in M(S)$, we have

 $\|\mu\| = v(\mu, S)$ (the total variation of μ)

and

$$\mu(x) = \int_{S} x(s) \cdot d\mu(s), \ x \in C(S),$$

(see [3], IV. 6.3). (In [3] the space M(S) is denoted by rca (S)). If S is countable, then

$$\|\mu\| = \sum_{s \in S} |\mu(s)|$$

and

(5)
$$\mu(x) = \sum_{s \in S} x(s) \cdot \mu(s), \ x \in C(S).$$

Conversely, every function $\mu: S \to \mathbf{R}$, such that $\Sigma_{s \in S} |\mu(s)| < \infty$, defines through (5) a continuous linear functional on C(S), whose norm is (4). If α is an ordinal number, we denote $M(\alpha) = M([1, \alpha])$, i.e. the conjugate of the space $C(\alpha)$.

The isomorphism A from the following lemma, was constructed by M. EDELSTEIN and A. C. THOMPSON [4], in the particular case of the space c_0 . The proof given here is the same as in [4]. If S is a compact Hausdorff space, we denote by δ_c the evaluation functionals on S, i.e.

(6)
$$\delta_s(x) = x(s), \ x \in C(S), \ s \in S.$$

Let m ma 4. Let S be a countable and compact Hausdorff space, S_1 a closed subset of S, $I = Z(S_1)$ a closed ideal in C(S), $S_2 = S \setminus S_1 \neq \emptyset$, $u_s \in M(S)$, $||u_s|| \leq a < 1$, $s \in S_2$, and $g \in M(S)$ defined by

$$g_s = \delta_s + u_s$$
, $s \in S_2$.

If for all $x \in Z(S_1)$ the function Ax defined by

$$Ax(s) = \begin{cases} g_s(x), & s \in S_2, \\ 0, & s \in S_1, \end{cases}$$

belongs to $Z(S_1)$, then A is an isomorphism of $Z(S_1)$ onto $Z(S_1)$, and its adjoint A^* verifies the relations:

$$A*\delta_s = g_s, s \in S_2.$$

Proof. By the definition of A, it is clear that A is a linear operator. Put

$$D = \{x \in Z(S_1) : |g_s(x)| \leq 1, \ s \in S_2\}.$$

Evidently, D is a symmetric, convex, closed subset of $Z(S_1)$. Since $||x|| < (1+a)^{-1}$ implies $|g_s(x)| < 1$, for all $s \in S_2$, it follows that 0 is an interior point of D. If $x \in Z(S_1)$ is such that $||x|| > (1-a)^{-1}$, and $x \in S_2$ is such that |x(s)| = ||x||, then

$$|g_s(x)| \ge |x(s)| - |u_s(x)| \ge ||x|| - a \cdot ||x|| = (1 - a)||x|| > 1$$

Therefore, $x \notin D$ and D is also bounded. If B denotes the closed unit ball of $Z(S_1)$, then

$$D = \{x \in Z(S_1) : |g_s(x)| \le 1, \ s \in S_2\} = \{x \in Z(S_1) : |Ax(s)| \le 1, \ s \in S_2\} = \{x \in Z(S_1) : |Ax| \le 1\} = A^{-1}(B).$$

Since D is a convex cell it follows that A is an isomorphism of $Z(S_1)$ onto $Z(S_1)$.

Finally

$$A*\delta_s(x) = \delta_s(Ax) = Ax(s) = g_s(x), x \in Z(S_1), s \in S_2$$
, i.e. $A*\delta_s = g_s, s \in S_2$, Q.E.D.

Ĝ

If X is a Banach space and M a non-void convex subset of X, we say that a functional $f \in X^*$ (X^* the conjugate of X) supports the set M, if there exists a point $x \in M$, such that $f(x) = \sup f(M)$ or $f(x) = \inf f(M)$. We denote by \$(M) the set of all support functionals of the set M.

We mention the following two results from [4]:

Lemma 5. ([4], Prop. 1. (iii)). Let X be a Banach space, M a non-void, bounded closed convex subset of X and B the closed unit ball of X. Then, the set M is antiproximinal if and only if

$$\mathcal{S}(M) \cap \mathcal{S}(B) = \{0\}.$$

Lemma 6. ([4], p. 555). If X, Y are Banach spaces, M a nonvoid, convex subset of X, and $A: X \to Y$ is an isomorphism, then $f \in \mathcal{S}(M)$ if and

only if $(A^*)^{-1}f \in S(A(M))$ (i.e. $S(M) = A^*S(A(M))$).

If X is a linear space and $M \subseteq X$, we denote by $\operatorname{sp}(M)$ the linear subspace of X spanned by M. If X is a linear topological space, we denote by $\operatorname{sp}(M)$ the closed linear space spanned by M. We have $\operatorname{sp}(M) = \operatorname{sp}(M)$. A sequence $\{x_k : k \in \mathbb{N}\}$ in a Banach space X is called complete if $\operatorname{sp}(\{x_k\}) = X$. If every $x \in X$ can be uniquely represented in the form $x = \sum_{k=1}^{\infty} a_k x_k$, where $a_k \in \mathbb{R}$, then $\{x_k\}$ is called a basis for X. A sequence $\{f_k : k \in \mathbb{N}\} \subseteq X^*$, is called conjugate to $\{x_k\}$ if $f_k(x_i) = \delta_{ki}$. A system $\{(x_k, f_k) : k \in \mathbb{N}\} \subseteq X \times X^*$ is called biorthogonal if $\{f_k\}$ is conjugate to $\{x_k\}$. If further, the system $\{x_k\}$ is complete in X, we say that $\{(x_k, f_k)\}$ is an X-complete biorthogonal system. For complete systems and bases in Banach spaces, see [10].

In the sequel we will use several times the following lemma, whose simple proof is omitted.

I, e m m a. 7. Let X, Y be Banach spaces, $A: X \to Y$ an isomorphism, and $\{(x_k, f_k): k \in \mathbb{N}\} \subseteq X \times X^*$ a biorthogonal system. Then the system $\{(Ax_k, (A^*)^{-1}f_k): k \in \mathbb{N}\}$ is biorthogonal in $Y \times Y^*$. Further if $\{x_k\}$ is complete (a basis) in X then the system $\{Ax_k\}$ is complete (resp. a basis) in Y.

Let $\{e_i: i \in \mathbb{N}\}$ be the usual basis of c_0 and $\{\delta_i: i \in \mathbb{N}\} \subseteq c_0^* = l_1$ its conjugate system.

Lemma 8. Let $\{(x_i, h_i): i \in \mathbb{N}\}$ be ac_0 — complete biorthogonal system in $c_0 \times l_1$ such that the set $B_1 = \{x \in c_0: |h_i(x)| \leq 1, i \in \mathbb{N}\}$, is a convex cell in c_0 , and let $\|\cdot\|_1$ be the Minkowski functional of the set B_1 . Then the map

$$Tx_i = e_i, i \in \mathbb{N}$$

extends to an isometric isomorphism T of $(c_0, \|\cdot\|_1)$ onto $(c_0, \|\cdot\|)$. The adjoint operator of T, verifies

$$T^*\delta_i'=h_i, \qquad i\in\mathbf{N}.$$

Proof. Since B_1 is a convex cell in c_0 , its Minkowski functional will be a norm on c_0 , equivalent to the usual norm. By the definition of the Minkowski functional, we have for all $x \in c_0$:

$$||x||_{1} = \inf \{\lambda > 0 : x \in \lambda B_{1} = \inf \{\lambda < 0 : \lambda^{-1} \ x \in B_{1}\} =$$

$$= \inf \{\lambda > 0 : |h_{i}(\lambda^{-1} \cdot x)| \leq 1, \ i \in \mathbb{N}\} =$$

$$= \inf \{\lambda > 0 : |h_{i}(x)| \leq \lambda, \ i \in \mathbb{N}\} =$$

$$= \sup \{|h_{i}(x)| : i \in \mathbb{N}\}.$$

Put $X = \operatorname{sp} (\{x_i : i \in \mathbb{N}\})$, $Y = \operatorname{sp} (\{e'_i : i \in \mathbb{N}\})$, and define the linear operator $T: X \to Y$ by $T(\sum_{i=1}^n a_i a_i) = \sum_{i=1}^n a_i e'_i$, $n \in \mathbb{N}$.

Then, by (7) and taking into account that $h_i(y) = 0$ for i > n, we have for all $y = \sum_{i=1}^{n} a_i x_i \in X$,

$$||Ty|| = ||\sum_{i=1}^{n} a_i e_i'|| = \max\{|a_1|, \ldots, |a_n|\} = \max\{|h_1(y)|, \ldots, |h_n(y)|\} = \sup\{|h_i(y)| : i \in \mathbb{N}\} = ||y||_1.$$

Therefore, T is an isometric isomorphism of $(X, \|\cdot\|_1)$ onto $(Y, \|\cdot\|)$. Since the system $\{x_i\}$ is complete, $\overline{X} = c_0$ and T extends to a linear isometry of $(c_0, \|\cdot\|_1)$ into $(c_0, \|\cdot\|)$. Because the norms $\|\cdot\|$ and $\|\cdot\|_1$ are equivalent, there exist two real numbers $\alpha, \beta > 0$ such that, $\alpha \|x\| \le \|x\|_1 \le \beta \|x\|$, $x \in c_0$. Therefore, $\|Tx\| = \|x\|_1 \ge \alpha \|x\|$, $x \in c_0$. From this inequality, easily follows that the operator T has closed range. Then

$$T(c_0) = \overline{T(c_0)} \supseteq \overline{T(X)} = \overline{Y} = c_0.$$

This shows that T is an isometric isomorphism of $(c_0, \|\cdot\|_1)$ onto $(c_0, \|\cdot\|)$. Finally, by the definition of T and by the biorthogonality of the systems (e_i^i, δ_i^i) and $\{(x_i, h_i)\}$ it follows,

$$T^*\delta_i'(x_j) = \delta_i'(Tx_j) = \delta_i'(e_j') = \delta_{ij} = h_i(x_j).$$

The system $\{x_i\}$ being complete in c_0 , we have

$$T*\delta_i' = h_i, i \in \mathbb{N}, \quad Q.E.D.$$

 $R\ e\ m\ a\ r\ k$. It follows that the sequence $\{x_i\}$ from Lemma 8, is a basis for c_0 , equivalent to the usual basis of c_0 .

Proof of Theorem 1.

As was shown (see (3)), it is sufficient to prove Theorem 1 for a space $C(\omega^k)$. In order to avoid tedious notations, we suppose k=3. The proof of the general case proceeds analogously.

Let us then suppose that Λ is a closed subset of $[1, \omega^3]$, and $I = Z(\Lambda)$ is an infinite dimensional closed ideal in $C(\omega^3)$. We have to consider several cases.

Case I. $\Lambda = \emptyset$, i.e. $I = C(\omega^3)$.

Firstly, we give a complete biorthogonal system

 $\{(e_i, f_i): 1 \leq i \leq \omega^3\}$ in $C(\omega^3) \times M(\omega^3)$. Let us define the elements $e_i \in C(\omega^3)$ for $1 \leq i \leq \omega^2$, by

$$\begin{cases} e_{\omega^{2} \cdot (k-1) + \omega \cdot (l-1) + m}(i) = \begin{cases} 1 & \text{if } i = \omega^{2} \cdot (k-1) + \omega \cdot (l-1) + m \\ 0 & \text{in rest.} \end{cases} \\ \text{for } 1 \leq k, \ l, \ m < \omega; \\ e_{\omega^{2} \cdot (k-1) + \omega \cdot l}(i) = \begin{cases} 1 & \text{if } \omega^{2} \cdot (k-1) + \omega \cdot (l-1) + 1 \leq i \leq \omega^{2} \cdot (k-1) + \omega \cdot l \\ 0 & \text{in rest} \end{cases} \\ \text{for } 1 \leq k, \ l < \omega; \\ e_{\omega^{2} \cdot k}(i) = \begin{cases} 1 & \text{if } \omega^{2} \cdot (k-1) + 1 \leq i \leq \omega^{2} \cdot k \\ 0 & \text{in rest}; \end{cases} \\ \text{for } 1 \leq k < \omega; \\ e_{\omega^{2}}(i) = 1, \quad 1 \leq i \leq \omega^{3}. \end{cases}$$

Let define the functionals $f_i \in M(\omega^2)$, $1 \le i \le \omega^3$, by

$$\begin{cases}
f_{\omega^{3} \cdot (k-1) + \omega \cdot (l-1) + m} = \delta_{\omega^{3} \cdot (k-1) + \omega \cdot (l-1) + m} - \delta_{\omega^{3} \cdot (k-1) + \omega \cdot l} - \\
- \delta_{\omega^{2} \cdot k} - \delta_{\omega^{3}} ; \text{ for } 1 \leq k, l, m < \omega; \\
f_{\omega^{3} \cdot (k-1) + \omega \cdot l} = \delta_{\omega^{3} \cdot (k-1) + \omega \cdot l} - \delta_{\omega^{3} \cdot k} - \delta_{\omega^{3}}, \\
\text{ for } 1 \leq k, l < \omega; \\
f_{\omega^{3} \cdot k} = \delta_{\omega^{3} \cdot k} - \delta_{\omega^{3}} \\
f_{\omega^{3}} = \delta_{\omega^{3}}
\end{cases}$$

where δ_i are the evaluation functionals (6).

Lemma 9. The system $\{(e_i, f_i): 1 \leq i \leq \omega^3\}$ is a $C(\omega^3)$ -complete bienthogonal system in $C(\omega^3) \times M(\omega^3)$

biorthogonal system in $C(\omega^3) \times M(\omega^3)$.

Proof of Lemma 9. The biorthogonality is obvious. To complete the proof of Lemma 9, we have to show that the system $\{e_i: 1 \leq i \leq \omega^3\}$ is complete in $C(\omega^3)$.

Let $x \in C(\omega^3)$ and $\varepsilon > 0$. Using the continuity of the function x on ω^3 , $\omega^2 \cdot k$ and $\omega^2 \cdot (k-1) + l$, one can find successively the natural numbers k_0 , l_0 , m_0 , $1 \le k_0 \cdot l_0$, $m_0 < \omega$, such that

$$|x(\omega^3) - x(i)| < \varepsilon, \text{ for } i > \omega^2 \cdot k_0;$$

(11)
$$|x(\omega^2 \cdot (k-1) + i) - x(\omega^2 \cdot k)| < \varepsilon$$
, for $\omega \cdot l_0 < i < \omega^2$ and $k = 1, 2, \ldots, k_0$;

(12)
$$|x(\omega^2 \cdot (k-1) + \omega \cdot (l-1) + m) - x(\omega^2 \cdot (k-1) + \omega \cdot l)| < \varepsilon$$
, for $m_0 < m < \omega$, $k = 1, 2, \ldots, k_0$ and $l = 1, 2, \ldots, l_0$.

Let $N_0 = [1, k_0], N_1 = [1, k_0] \times [1, l_0], N_2 = [1, k_0] \times [1, l_0] \times [1, m_0],$ and let

$$y = x(\omega^{3}) \cdot e_{\omega^{3}} + \sum_{k \in N_{0}} [x(\omega^{2} \cdot k) - x(\omega^{3})] e_{\omega^{3} \cdot k} +$$

$$+ \sum_{(k,l) \in N_{1}} [x(\omega^{2} \cdot (k-1) + \omega \cdot l) - x(\omega^{2} \cdot k)] e_{\omega^{3} \cdot (k-1) + \omega \cdot l} +$$

$$+ \sum_{(k,l,m) \in N_{2}} [x(\omega^{2} \cdot (k-1) + \omega \cdot (l-1) + m) - x(\omega^{2} \cdot (k-1) + \omega \cdot l)] \cdot$$

$$\cdot e_{\omega^{3} \cdot (k-1) + \omega \cdot (l-1) + m}.$$

Using the definition of y and the inequalities (10), (11), (12), it is easy to show that $|x(i) - y(i)| < \varepsilon$ for $1 \le i \le \omega^3$, that is $||x - y|| < \varepsilon$. Therefore, $\{e_i\}$ is complete in $C(\omega^3)$, Q.E.D.

Let S be a compact Hausdorff space. Every regular Borel measure $\mu \in M(S)$ can be uniquely writen as $\mu = \mu^+ - \mu^-$, where μ^+ and μ^- are non-negative regular Borel measures on S (the Jordan decomposition of a measure, see [3], III. 4.11). The support $S(\mu)$ of a measure μ , is the complementary set to the largest open subset of S, on which the variation of μ is zero. Obviously, $S(\mu)$ is a closed subset of S.

Let $U = \{x \in C(S) : ||x|| \le 1\}$. By a result, proved by S.I. ZUHOVICKI [11], in the case of a metric compact S, and by R.R. PHELPS [7], in general, $\mu \in \mathcal{S}(U)$ if and only if

(13)
$$S(\mu^{+}) \cap S(\mu^{-}) = \emptyset.$$

If the compact S is countable, then

(14)
$$S(\mu) = \{ \overline{s \in S} : \mu(s) \neq 0 \}$$
$$S(\mu^{+}) = \{ \overline{s \in S} : \mu(s) > 0 \}$$
$$S(\mu^{-}) = \{ \overline{s \in S} : \mu(s) < 0 \}.$$

Now, we want to define the functionals $g_i \in M(\omega^3)$, such that $\operatorname{sp}(\{g_i:$ $1 \leq i \leq \omega^3$) $\cap \mathcal{E}(U) = \{0\}$. Let us consider the maps $\sigma_k: [1, \omega] \to [1, \omega]$ be defined by

(15)
$$\sigma_k(i) = 2^{k-1}(2i+1), 1 \leq i < \omega; \qquad 1 \leq k < \omega,$$

(see [4], p. 554)

$$\begin{cases}
g_{\omega^{3}}(x) = x(\omega^{3}) + 2^{-2} \sum_{1 \leq i < \omega} (-1)^{i} 2^{-i} \cdot x(\omega^{2} \cdot i); \\
g_{\omega^{3} \cdot k}(x) = x(\omega^{2} \cdot k) + 2^{-2} \sum_{i=1}^{3 \cdot 2^{k-1} - 1} (-1)^{i} 2^{-i} \cdot x(\omega^{2} \cdot i) + \\
+ 2^{-(k+2)} \sum_{1 \leq i < \omega} (-1)^{i} 2^{-i} \cdot x(\omega^{2} \cdot \sigma_{k}(i)), \\
\text{for } 1 \leq k < \omega; \\
g_{\omega^{3} \cdot (k-1) + \omega \cdot l}(x) = x(\omega^{2} \cdot (k-1) + \omega \cdot l) + g_{\omega^{3} \cdot k}(x) - x(\omega^{2} \cdot k) + \\
+ 2^{-(k+l+2)} \sum_{1 \leq i < \omega} (-1)^{i} \cdot 2^{-i} \cdot x(\omega^{2} \cdot (k-1) + \omega \cdot \sigma_{l}(i)), \\
\text{for } 1 \leq k, l < \omega; \\
g_{\omega^{3} \cdot (k-1) + \omega \cdot (l-1) + m}(x) = x(\omega^{2} \cdot (k-1) + \omega \cdot (l-1) + m) + \\
+ g_{\omega^{3} \cdot (k-1) + \omega \cdot l}(x) - x(\omega^{2} \cdot (k-1) + \omega \cdot l) + \\
+ 2^{-(k+l+m+2)} \sum_{1 \leq i < \omega} (-1)^{i} 2^{-i} x(\omega^{2} \cdot (k-1) + \omega \cdot (l-1) + \sigma_{m}(i)), \\
\text{for } 1 \leq k, l, m < \omega.
\end{cases}$$

Taking into account the formulae (14), (15), (16), an examination of all possible combinations $g = a_1 g_{i'} + a_2 g_{i''}$, of the elements g_i , shows that $\hat{S(g^+)} \cap S(g^-) = \emptyset$.

Put
$$U = \{x \in C(\omega^3) : ||x|| \leq 1\},$$

(18)
$$Y = \text{sp}(\{g_i : 1 \le i \le \omega^3\}).$$

Then

$$(19) Y \cap \mathcal{S}(U) = \{0\}.$$

Lemma 10. The operator A defined by

$$Ax(i) = g_i(x), 1 \leq i \leq \omega^3, x \in C(\omega^3)$$

is an isomorphism of $C(\omega^3)$ onto $C(\omega^3)$. Its adjoint A^* verifies

$$A*\delta_i = g_i, \qquad 1 \leqslant i \leqslant \omega^3.$$

Proof of Lemma 10. We intend to apply Lemma 4. Evidently, $g_i =$ $=\delta_i + u_i$ and $||u_i|| \le 2^{-1}$ (see (16). We have to show that Ax so defined belongs to $C(\omega^3)$. But, if $\{\alpha_n\}$ is a sequence in [1, ω^3] converging to α , then it is a routine verification to show that $g_{\alpha_n}(x)$ converges to $g_{\alpha}(x)$, that is Ax is a continuous function. Therefore, Lemma 4 applies, Q.E.D.

(20)
$$V = \{x \in C(\omega^3) : |f_i(x)| \le 1, \ 1 \le i \le \omega^3\},$$

where f_i are defined by (9). It easy to see that V is a convex cell in $C(\omega^3)$. There exists an isomorphism, say

$$(21) H: C(\omega^3) \to c_0.$$

Put

$$(22) V_1 = A^{-1}(V),$$

and

(23)
$$B_1 = H(V_1) = HA^{-1}(V),$$

where A is the isomorphism of $C(\omega^3)$ onto $C(\omega^3)$, constructed in Lemma 10. The maps A and H being isomorphisms, B_1 will be a convex cell in c_0 . Let

$$(24) y_{i} = A^{-1}e_{i}$$

(25) and
$$u_i = A^*f_i$$
, the pseudostatic standard and

and

$$(26) x_i = Hy_i,$$

$$(27) h_i = (H^*)^{-1}u_i, (31) (31) (31) (32) (33)$$

for $1 \le i \le \omega^3$.

Applying twice Lemma 7, it follows that $\{(x_i, h_i): 1 \leq i \leq \omega^3\}$ is a c_0 -complete biorthogonal system. By (23), (20), (27) and the fact that $(H^{-1})^* = (H^*)^{-1}$ (see [3]. VI. 3.7), one gets

$$B_{1} = HA^{-1}(V) = \{x \in c_{0} : (AH^{-1})x \in V\} = \{x \in c_{0} : |f_{i}(AH^{-1}(x))| \leq 1,$$

$$1 \leq i \leq \omega^{3}\} = \{x \in c_{0} : |(H^{-1})^{*}A^{*}f_{i}(x)| \leq 1,$$

$$1 \leq i \leq \omega^{3}\} =$$

$$= \{x \in c_{0} : |h_{i}(x)| \leq 1,$$

$$1 \leq i \leq \omega^{3}\}.$$

Let $\sigma: \mathbb{N} \to [1, \omega^3]$, be a bijection and let us define

$$\hat{x}_i = x_{\sigma(i)}$$

$$h_i = h_{\sigma(i)}$$

12

By Lemma 5, the set B_1 is antiproximinal in $(c_0, \|\cdot\|_2)$, Q.E.D.

Now, since H is an isometric isomorphism of $(C(\omega^3), \|\cdot\|)$ onto $(c_0, \|\cdot\|)$ $\|\cdot\|_2$), the set $V_1 = H^{-1}(B_1)$ will be an antiproximinal convex cell in $C(\omega^3)$, which concludes the proof of Theorem 1 in Case I.

Remark. By (29) and the fact that T is an isomorphism of $C(\omega^3)$ onto c_0 , it follows that $\{\bar{x}_i: i \in \mathbb{N}\}$ is, in fact, a basis for $C(\omega^3)$ equivalent to the usual basis of c_0 .

Case II. $I = Z(\Lambda)$, Λ a closed subset of $[1, \omega^3]$ and $\omega^3 \in \Lambda$.

The proof is the same as in Case I, with some changes in the definitions of the elemente e_i , f_i , g_i .

Since $C(\omega^3)$ is isomorphic to c_0 , and c_0 is isomorphic to c_0 , it follows that $C(\omega^3)$ is isomorphic to c. This isomorphism carries the ideal I onto an infinite dimensional closed ideal in c. But, every infinite dimensional closed ideal in c is isomorphic to c_0 . Therefore, there exists an isomorphism

$$(35) H: I \to c_0,$$

(the analog of the isomorphism H from (21)). Instead of (14), we can use the following result of R.R. PHELPS [7]: let S be a compact Hausdorff space, S_1 a closed subset of S, J = $=Z(S_1)$ a closed ideal in C(S) and $\tilde{U}=\{x\in J:\|x\|\leqslant 1\}$. Then, $f\in J^*$ supports U, if and only if for every norm-preserving extension μ of f to C(S), the sets S_1 , $S(\mu^+)$ and $S(\mu^-)$ are pairwise disjoint. Using this fact we shall define the elements $g_i \in I^*$, such that

$$\operatorname{sp}(\{g_i\}) \, \cap \, \$(U) = \{0\}.$$
 The second of which $\operatorname{sp}(\{g_i\}) \, \cap \, \$(U) = \{0\}$

(the analog of (19)). We observe that, if $f \in M(\omega^3)$ is such that $f(\alpha) =$ = 0 for $\alpha \in \Lambda$, then

ground the
$$||f|| = \sum_{\alpha \in \Delta} |f(\alpha)| = ||f|_I|$$
, and then all probables of

where $\Delta = [1, \omega^3] \setminus \Lambda$ and $f|_I$ denotes the restriction of f to I. Therefore, f is a norm-preserving extension of $f|_I$ to $C(\omega^3)$. We shall define $g_i \in$ $\in M(\omega^3)$, such that $g_i(\alpha) = 0$ for $\alpha \in \Lambda$ and for $g \in sp(\{g_i\})$.

$$S(g^+) \cap S(g^-) \neq \emptyset$$
.

Then, by the above quoted result of R. R. Phelps, the restriction of g to I does not attain its supremum on U. Let $\Delta = [1, \omega^3] \setminus \Lambda$ and let

In the same particles
$$lpha_1 < lpha_2 < \ldots$$
 , which have

be the accumulation points of the set Δ of the form

for all $i \in \mathbb{N}$, it follows that, the c_0 -complete biorthogonal system $\{x_i, h_i\}: i \in \mathbb{N}\}$, verifies the hypothesis of Lemma 8. Denoting by $\|\cdot\|_1$ the Minkowski functional of the convex cell B_1 ($\|\cdot\|_1$) will be a norm on co equivalent to the usual norm), it follows that there exists an isometric isomorphism $T:(c_0,\|\cdot\|_1)\to(c_0,\|\cdot\|)$, such that

(29)
$$T\bar{x}_{i} = e'_{i}$$
$$T^{*}\delta'_{i} = \bar{h}_{i}$$

for $i \in \mathbb{N}$. Here $\{e_i'\}$ denotes the usual basis of c_0 and $\{\delta_i'\}$, its conjugate system.

Let us define a new norm $\|\cdot\|_2$ on c_0 , by

$$||x||_2 = ||H^{-1}x||, \ x \in c_0,$$

where H is the isomorphism (21). It follows that, $\|\cdot\|_2$ will be a norm on c_0 , equivalent to the usual norm and, H will be an isometric isomorphism of $(C(\omega^3), \|\cdot\|)$ onto $(c_0, \|\cdot\|_2)$.

Lemma 11. The set B_1 is an antiproximinal convex cell in $(c_0,$ where it is the isomorphism of Class onto Class on the is the isomorphism of Class onto Call.

Proof of Lemma 11. Let $B=\{x\in c_0\colon \|x\|\leqslant 1\}$ and $B_2=\{x\in c_0\colon \|x\|_2\leqslant 1\}$ \leq 1}. By the definition of the norm $\|\cdot\|_{2}$

$$(30) B_2 = H(U).$$

where U denotes the closed unit ball in $(C(\omega^3), \|\cdot\|)$. Since T is an isometric isomorphism of $(c_0, \|\cdot\|_1)$ onto $(c_0, \|\cdot\|)$, it follows that

$$(31) B = T(B_1).$$

Let Y be defined by (18) and let

$$(32) Z = \operatorname{sp}(\delta_i': i \in \mathbb{N})\}.$$

By (9), Lemma 10 and (25), (33)
$$Y = \text{sp}(\{u_i : i \in \mathbb{N}\}).$$

We intend to apply Lemma 5. It is well known and easy to see, that (34)

By Lemma 6, (31), (34), (32), (29), (28), (27), and (33)

$$\$(B_1) = T^*\$(B) = T^*(Z) = \sup(\{\overline{h}_i : i \in \mathbf{N}\}) =$$

$$= \sup(\{h_i : 1 \le i \le \omega^3\}) = (H^*)^{-1}(Y).$$

On the other hand, by Lemma 6 and (30).

$$S(B_2) = (H^*)^{-1}(S(U)).$$

 $\alpha_k = \omega^2 \cdot \lambda_k$, $1 \leqslant \lambda_k < \omega$. If $\alpha_k \in \Delta$ then, by the closedness of the set Λ there exists a number l_k , $1 \leqslant l_k < \omega$, such that

$$[\omega^2 \cdot (\lambda_k - 1) + \omega \cdot l_k + 1, \ \omega^2 \cdot \lambda_k] \subseteq \Delta.$$

By the properties of ordinal numbers, it will exist a homeomorphism

(37)
$$\eta_k: [1, \omega^2] \to [\omega^2 \cdot (\lambda_k - 1) + \omega \cdot l_k + 1, \omega^2 \cdot \lambda_k].$$

 $(\eta_k \text{ can be defined e.g. by } \eta_k(i) = \omega^2 \cdot (\lambda_k - 1) + \omega \cdot l_k + i \text{, for } 1 \leqslant i < \omega^2,$ $\eta_k(\omega^2) = \omega^2 \cdot \lambda_k$

Put
$$g_{\alpha_k}(x) = x(\alpha_k) + 2^{-(k+1)} \sum_{1 \leq i < \omega} (-1)^i 2^{-i} \cdot x(\eta_k(\omega \cdot i)),$$

$$e_{\alpha_k}(i) = \begin{cases} 1 & \text{for } i \in \eta_k([1, \omega^2]) \\ 0 & \text{in rest,} \end{cases}$$
 and
$$f_{\alpha_k} = \delta_{\alpha_k}, \text{ for } k = 1, 2, \dots$$
 Let now

$$f_{\alpha_k} = \delta_{\alpha_k}$$
, for $k = 1, 2, ...$

$$lpha_{k,1}$$

be the accumulation points of the set Δ of the form

$$lpha_{k,j} = \omega^2 \cdot (\lambda_{k,j} - 1) + \omega \cdot \mu_{k,j}, \ 1 \leqslant \lambda_{k,j}, \ \mu_{k,j} < \omega,$$

belonging to the interval $[\alpha_{k-1}, \alpha_k]$. (We put $\alpha_0 = 1$ and, if there are only a finite number of α_k , we consider also the interval $[\alpha_n, \omega^3]$ where α_n is the last of α_k). In this case there exist the homeomorphisms

(38)
$$\eta_{k,j} \colon [1, \omega] \to]\alpha_{k,j-1}, \alpha_{k,j}].$$

We have now to consider some different situations. The symbol σ_k will have the same meaning as in (15).

II.
$$a. \quad \alpha_k \in \Delta$$
.

Preserving the notations from (36), we consider the sub-cases

II.
$$a.1.$$
 $\alpha_{k,j} \in \Delta \cap [\alpha_{k-1}, \omega^2 \cdot (\lambda_k - 1) + \omega \cdot l_k].$ Put

$$g_{\alpha_{k,j}}(x) = x(\alpha_{k,j}) + 2^{-(k+j+1)} \sum_{1 \le i < \omega} (-1)^{i} 2^{-i} x(\eta_{k,j}(i)),$$

$$e_{\alpha_{k,j}}(i) = \begin{cases} 1 & \text{for } i \in \eta_{k,j}([1, \omega]) \\ 0 & \text{in rest,} \end{cases}$$

$$f_{lpha_{k,j}} = \delta_{lpha_{k,j}},$$

where $\eta_{k,j}$ is the homeomorphism (38).

II.a.2. $\alpha_{k,j} \in \Delta \cap \omega^2 \cdot (\lambda_k - 1) + \omega \cdot l_k, \ \omega^2 \cdot \lambda_k$]. By (37) there exists a number j' such that $\alpha_{k,j} = \eta_k(\omega \cdot j')$. Put

$$g_{\alpha_{k,j}}(x) = x(\alpha_{k,j}) + 2^{-(k+1)} \sum_{i=1}^{3 \cdot 2^{j'-1}} (-1)^{i} 2^{-i} x(\eta_{k}(\omega \cdot i))) +$$

$$+ 2^{-(k+j'+1)} \sum_{1 \leq i < \omega} (-1)^{i} 2^{-i} x(\eta_{k}(\omega \cdot \sigma_{j'}(i))),$$

$$e_{\alpha_{k,j}}(i) = \begin{cases} 1 & \text{for } i \in \eta_{k} \quad ([1, \ \omega^{2}]) \\ 0 & \text{in rest,} \end{cases}$$

$$f_{\alpha_{k,j}} = \delta_{\alpha_{k,j}} - \delta_{\alpha_{k}}.$$

II.b. $\alpha_k \notin \Delta$.

Put

$$g_{\alpha_{k,j}}(x) = x(\alpha_{k,j}) + 2^{-(k+j+1)} \sum_{1 \leqslant i < \omega} (-1)^i 2^{-i} x(\eta_{k,j}(i)),$$

$$e_{\alpha_{k,j}}(i) = \begin{cases} 1 & \text{for } i = \alpha_{k,j} \\ 0 & \text{in rest} \end{cases}$$

$$f_{\alpha_{k,i}} = \delta_{\alpha_{k,i}}$$

Let now pass to the isolated points of $[1, \omega^3]$ which belong to Δ . By the homeomorphism (38), every isolated point α from $\Delta \cap [\alpha_{k,i-1}]$ $\alpha_{k,j}[$ is of the form $\alpha = \eta_{k,j}(l)$ for a number $l \in [1, \omega[$. We consider now the following cases:

II.a.1. α .

$$\alpha_k \in \Delta$$
, $\alpha_{k,j} \in \Delta \cap [\alpha_{k-1}, \omega^2 \cdot (\lambda_k - 1) + \omega \cdot l_k]$ (see (36)).

Put

$$g_{\alpha}(x) = x(\alpha) + 2^{-(k+j+1)} \sum_{i=1}^{3 \cdot 2^{l-1}} (-1)^{i} \cdot 2^{-i} \cdot x(\eta_{k,j}(i)) +$$
 $+ 2^{-(k+j+l+1)} \sum_{1 \leq i < \omega} (-1)^{i} \cdot 2^{-i} \cdot x(\eta_{k,j}(\sigma_{l}(i))),$
 $e_{\alpha}(i) = \begin{cases} 1 & \text{for } i = \alpha \\ 0 & \text{in rest} \end{cases}$
 $f_{\alpha} = \delta_{\alpha}$

$$\alpha_k \in \Delta$$
, $\alpha_{k,j} \in \Delta \cap] \omega^2 \cdot (\lambda_k - 1) + \omega \cdot l_k$, α_k (see (36)).

In this case, by (37), there exist $l, j' \in [1, \omega]$, such that

$$\alpha = \eta_k(\omega \cdot (j'-1) + l)$$

$$\begin{split} g_{\alpha}(x) &= x(\alpha) + g_{\alpha_{k,j}}(x) - x(\alpha_{k,j}) + \\ &+ 2^{-(k+j+l+1)} \sum_{1 \leq i < \omega} (-1)^i \cdot 2^{-i} \cdot x(\gamma_k (\omega \cdot (j'-1) + \sigma_l(i))), \\ e_{\alpha}(i) &= \left\{ \begin{array}{l} 1 & \text{for } i = \alpha \\ 0 & \text{in rest} \end{array} \right. \\ f_{\alpha} &= \delta_{\alpha} - \delta_{\alpha_{k,j}} - \delta_{\alpha_{k}}. \end{split}$$

II. $b.\alpha$.

$$\alpha_k \not\in \Delta$$
, $\alpha_{k,j} \in \Delta$.

By (38), there exists $l \in [1, \omega[$, such that $\alpha = \eta_{k,i}(l)$. Put

$$g_{\alpha}(x) = x(\alpha) + 2^{-(k+j+l)} \sum_{i=1}^{3 \cdot 2^{l}-1} (-1)^{i} \cdot 2^{-i} \cdot x(\eta_{k,j}(i)) +$$

$$+ 2^{-(k+j+l+1)} \sum_{1 \leq i < \omega} (-1)^{i} \cdot 2^{-i} \cdot x(\eta_{k,j}(\sigma_{l}(i))),$$

$$e_{\alpha}(i) = \begin{cases} 1 & \text{for } i = \alpha \\ 0 & \text{in rest} \end{cases}$$

$$f_{\alpha} = \delta_{\alpha}.$$

$$b.\beta.$$

II. $b.\beta$.

$$\alpha_k \not\in \Delta, \qquad \alpha_{k,j} \not\in \Delta.$$

If $\alpha = \eta_{k,j}(l)$, put

$$g_{\alpha}(x) = x(\alpha) + 2^{-(k+j+1)} \sum_{1 \leq i < \omega} (-1)^{i} \cdot 2^{-i} \cdot x(\eta_{k,j} \cdot (\sigma_{l}(i))),$$

$$e_{\alpha}(i) = \begin{cases} 1 & \text{for } i = \alpha \\ 0 & \text{in rest,} \end{cases}$$

$$f_{\alpha} = \delta_{\alpha}$$

This finishes the definitions of the elements e_i , f_i , g_i in Case II.

Case III. $I = Z(\Lambda), \Lambda \neq \emptyset$ and $\omega^3 \not\in \Lambda$.

This case reduces to Case I or to Case II. Since Λ is closed, from $\omega^3 \not\in \Lambda$ it follows the existence of a $k_0 \in [1, \omega]$, such that $[\omega^2 \cdot (k_0 + \omega)]$ +1), ω^3] $\subseteq \Delta$, where $\Delta = [1, \omega^3] \setminus \Lambda$. Denoting

$$\Delta_i = [\omega^2 \cdot (i-1) + 1, \ \omega^2 \cdot i], \quad \Gamma_i = [1, \ \omega^3] \setminus \Delta_i,$$

$$\Lambda_i = \Delta_i \cap \Lambda, \qquad X_i = Z(\Lambda_i),$$

$$\Gamma = [1, \ \omega^2 \cdot k_0], \qquad X = Z(\Gamma),$$

one can write

16

$$Z(\Lambda) = X_1 \oplus \ldots \oplus X_{k_0} \oplus X.$$

Each X_i is a closed ideal in $Z(\Gamma_i) \cong C(\omega^2)$, and $X = Z(\Gamma) \cong C(\omega^3)$ Reasoning like in the proof of Lemma 3, we can suppose that all X are infinite dimensional. Now, if $\omega^2 \cdot i \notin \Lambda_i$ we decompose again $Z(\Lambda_i)$ as above. Continuing in such a manner, we obtain finally a decomposition of $Z(\Lambda)$.

$$Z(\Lambda) = Z_1 \oplus \ldots \oplus Z_p$$

where each Z is isometrically isomorphic to an infinite dimensional closed ideal $Z(\Lambda_i)$ in $C(\omega^k)$, such that $\Lambda_i' = \emptyset$ or $\omega^k \in \Lambda_i$,

$$k \in \{1, 2, 3\}$$
. For $x \in Z(\Lambda)$, $x = z_1 + \ldots + z_p$, $z_i \in Z_i$,

 $i=1,\ldots,p$ we have $\|x\|=\max\{\|z_1\|,\ldots,\|z_p\|\}$. By Case I or Case II of Theorem 1, each $Z(\Lambda_i)$ contains an antiproximinal convex cell. Reasoning again, like in the proof of Lemma 3, one can show that $Z(\Lambda)$ contains an antiproximinal convex cell.

Theorem 1 is completely proved.

[1] Amir, D., Continuous function spaces with the bounded extension property, Bull. Res. Counc. of Israel, 10F 133-138, (1962).

[2] С. Кобзаш, С. Выпуклые антипроксиминальные множества в пространствах со и с Мат. Заметки, т. 17, № 3 449-457 (1975).

[3] Dunford, N., and Schwartz, J. T., Linear operators. I. General theory, Interscience, New York, 1958 (Russian translation Moscow 1962).

[4] Edelstein, M., and Thompson, A. C., Some results on nearest points and support properties of convex sets in co, Pacific J. Math. 40, 4, 553-560, (1972).

[5] Holmes, R.R., A course on optimization and best approximation, Lecture Notes in Math. v. 257, Springer Verlag, Berlin-Heidelberg-New York, 1972.

[6] Klee, V., Remarks on nearest points in normed linear spaces, Proc. Colloq. Concexity, Copenhagen 1965, 168-176, Copenhagen 1967.

[7] Phelps, R. R., Some subreflexive Banach spaces, Archiv der Math. 10, 162-169 (1959)

[8] Semadeni Z., Banach spaces of continuous functions, I, Warszawa 1971.

[9] Sierpinski, W., Cardinal and ordinal numbers, Warszawa 1965.

[10] Singer, I., Bases in Banach spaces, I. Springer Verlag, Berlin-Heidelberg- New Yrok, 1970

[11] Зуховицкий С.И., О минимальных расширениях линейных функционалов в пространстве непрерывных функц Изв. Акад. Наук СССР, Сер матем 21; 3 (409-422),

University Babeș-Bolyai, Cluj-Napoca Institute of Mathematics.