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In this note we purpose to give a maximum principle for the modu-
lus of the solution of a parabolic system of equations whith partial deriva-
tives and to study the uniqueness of the solution of a boundary value prob-
lem relative to these systems. We mention that for elliptic systems the
problem of establishing of maximum principles is studied in the works
[3], [4], [5]. For parabolic systems we also mention the works [13, [5].

1. Let be @ C R” a bounded domain with boundary I' and closure
Q.Tet be TeR, T >0, fixed and D = Q x |0, T[ ; then each point in
D will be written (%, ), where x € Q and 0 <? < T. We note by S the
Jateral boundary” of domain D, that is, S = {(x, ) eD, zel, 0 <t <
< T}, and 2 the ,,parabolic boundary’ of domain D, that is, & = BUS,
where B = Q X {0}.

Tet
(1) L= S Ay (108) -2 SN A, 8) 2 Ayt — L= f

;JE-_-l +J 4 Z 1) ’ 8;»'; .,0 il ] ot
be a second order system of differential equations with partial derivatives
where

(2) Ay, Ay Age C(D, M,,(R), fe C(D,R")
and % = (4, ...., #,) is a vectorial-function, #: D — R".

Definition. The system (1) is called parabolic on a point (%, t) e
eD if for any ve R*, e R", = and 2% # 0 the inequality

0% 0%j  f=

"

(3) 3 (v A%, HT)MN = 0

ij=1
takes place, where ©* indicates transposed vector .
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Let be u « C¥(D, R"YNC(D, R*). We note by |#| the function |#]: D — R»

Tleffinecll by (x, 2) — |u(x, £)|. Then u = |u|e, where ¢ = (¢4, ..., e¢,)with
el = 1.

There takes place:

 'HBEOREM 1 (MAXIMUM PRINCIPLE). If: i) system (1) 4s parabolic
in D, 1) there exists « = R, a £ 0
so that ]
(4) e*Lie € — o

Jor any e e C¥D, R*) with |e| =1, where L, is the elliptic operator atta-
ched to L, i.e.

(3) 1”_214 Py +ZA a”‘{“Ao“

=1 ax,az; 1=1

then any solution uw = CXD, R N C(D, R"), for which u - f

- : > 0, verifi
the inequality : > 0, verifies

(6) |u(x, t)] < max{(m}ax[u(x Hl, — (max [f(x, )]}
xEL HeD

Proof. In any point (x, ) €D, in which |u(x, ) # 0, from e*L(|ule) =
= e¥f we conclude

‘?*(.E el }—FA dlule—i Aglttle — al”' e+ E A,

=1 0\’,, \J 7 1]6 a I”, +
m
oc a
-|-2A,< ~“ lu| — = lul) mrile*f, | ot
i 8*/1 %|ul "‘A |1rl Aul o R
ORI ) 3mcor +Zl o= S L) ju] = %]

where L, is the operator given in relation (5).’
If now (xy, £y) € D is a point of maximum for |u(x, #)| then from (7)
we get

"

(8) \ 2 (€% (%0, to)Aye(o, L)) Thulzro )] 4

=1 0x%;0%4
+ (e*(x0, to)Lae(xo, Lo))|t(xq, Lo)| = e*(%o, Lo)f (%0, to).

As in the point (x,, to) the function #u(x, ) has a maximum and the
system (1) is parabolic it follows that

m

©) 2 (% (%0, £o)A5(%0, L)) Futx, Ol _

i, 0505

Considering relations (4), (9) and the fact that u . f

> 0 we are brought
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to a contradiction in relation (8). Thus the maximum of |u(x, {)| cannot
be reached in an interior point of domain D. Moreover we can easily
find that the inequality (6) is true, and thus the theorem is proved.

9. We consier the following boundary value problem
Lu =fin D
u e C¥D, R”)
w=~hon X

(10)

where & = C(Z, R").
There takes place

THREOREM 2 In the conditions of Theorem 1 the boundary value problem
(10) has a unique solution.

Proof. One immediately notices that from
Ly =0 in D
e C}D, R")
=0 on X

(1) =% =0 1in D,

Then if ' and %'’ are two solutions of the problem (10) the difference
v=u —u ver1f1es the homogeneous boundary value problem (11), there-
fore, w' = u'’, that is the problem (10) has at most a solution. But
(see, for example [2]) the problem (10) has solution and therefore theo-
rem follows.

3. We give below some cases of effective expression for the condition
(4) by means of the system’s coefficients.

Case m = 1. We consider the following system

C ou
(12) TIEb A —+Bu—5_c

with
A, B « C([a, b] x 10, T[, M,,(R)), C e C([a, D]xX 10, T[, R").
The condition (4) is ’
*¢' - e*Ade’ + e*Be < —oal.
Taking into account that e*¢’ = 0, it becomes

(e*)'e’ — e*de’ — e*Be > ol
We suppose that e¥*Be < —f? and in addition

IIAII

(13) +pE>0,
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where ||4]] is the spectral norm of matrix 4. Then there exists « < R,
&« # 0, so that

Iz

w < =g g < e — Y] + 8 < () — e*de’ — e Be

and therefore condition (4) is achieved.
The following theorems takes place:

THEOREM 3. If the relation (13) is achieved thew for each solution u <
e C¥([a, b] X 10, T[, R*) of system (12) for which u - C = 0, we have
[#(x, t)| < max{max {|u(a, ?)|, |u(b, £)|}, max |« (x, 0)],
t<[0,T)] %< [a,]
: max  |C(x, )]}

6 — [1411® (#,1) = [a,b]% [0,T]
2

THEOREM 4. In the conditions of Theorvem 3 the solution of boundary
value problemn

Tt A2 L Bu— 2 —Cin [4, 8] X 10, T[
adxt dx d

I
w e CHD, R"
=" on ({a} [0, TNU{b}x [0, T7) U([a, b]x{0})

(14)

1S unique.

Case A, = a; 1. We consider the system (1) in which 4 = a;I,
a; « C(D, R). We suppose that the following relations are achieved

m

(15) ;@; a\N = e, oy A0
(16) e*d e < —p2, B #0
and

(17) A; = al + AP,

where a; « C(D, R), 4" < C(D, M,,(R)).

In this case the condition (4) is the following

N gt T SNk P n g oo g
2 % boetdld — 0 < —a
3 *

iT=1 Oxdxj i
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2e de*  Oe
i * = — 2.2 we get
and since e o o g
" de* de m * (1 _ai %A e > ol
o — — e [ >
1.3;’1 i ox; 0%j ; Yoo 0
Taking into account the relations (15), (16) and if
i -
[ 0 .0 - EllAill)“
1 |
AR (1)
0 1 0 : ”Az “
18) £*£>0
1
2 A liam
0 0 Y 7 H m
1 L 4w _ 4w 2
~tap)=glae] - —alay 2
for any e R**1, £ #0, we have
" ae a . m (1) ﬁ o Z a.
(19) i e Eet el bl
But the relation (18) is true if
1 m
2 - — AWE> 0
.(20) B 4Ya;ll 5 n

and. therefore, we get the following theorems B i
’ <fied the conditions (13), (16), (17)
rHEOREM 5. If the system (1) satisfied the condii _
and (IZ_I(]):) then cm;jl( solution u € C¥D, R") N C(D, R") of this system  for
which w - f 2 0, verifies the inequality .

1 max |f(x, #)|

1 ” (1)”2 (v, =D
- — A
B }_;1 ;

THEOREM 6. In the conditions of Theorem 5, the solution of boundary
value problem

|u(x, )] < max max|u(x, )|,
(xt) €5

" Pu m du
. 0 al(x, t) —
(21) ijL’:l i A Gx;0% ) g:li 2 0%

m du
SO A —
+ ;j Ai ox;g +

Ju .
+ Ao, v — P = f(x, t) in D
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ue C¥D, R")
w=hon X

wherve h e C(Z, R"), is unique.
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