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Introduetion

The three lemmas on real continued fractions of the first paragraph
are essential in the proofs of the theorems of paragraph O. 4 weel

In second paragraph, we state the known concepts and propositions
on the Banach algebras, necessary in the paragraphs 3—7.

The definitions of non-commutative continued fractions and their
convergence of paragraph 3 are given according to wvyMAN FAIR [1].

The new results of this note of paragraphs 1, 4—7 suggest a . general
method which may be used to prove the theorems of convergence for
non-commutative continued fractions. In paragraph 6, we obtain a gene-
ralization of a classical wWoRrRPITZKY'S theorem on the convergence of
some continued fractions of complex numbers. In paragraph 7 too, we
give some consequences of the main theorem from paragraph 6.

a

1. Three lemmas on r(_aal continued fractions
Lemma 1.1. Let be

(1.1) @

a real continued fraction, where

0<a<i-
4



166 N. NEGOESCU

Then

(i) the comvergents of comtinued fraction (1.1) are positive and its seque-
nce is strictly monoton increasing,
(ii) the comvergents satisfy the inequalities
(1.2) T NP
qy 2n+1
(i) the sequence of comvergemts of (1.1) is convergent to the number

(1.3) S 11— (1 — 4a)2),
which is less or equal%.

Proof. (i) From the evident inequality

(1.4) Of ks e,
1 1—a
it follows, for the first two convergents of real continued fraction (1.1),
gty
_ q1 02
From inequality (1.4), it follows also
Pa byl < a _Ps
q2 1—a 1 a qs
= lx 10

By induction, we now suppose that

(1.5) Pr—1 <P_"
Tn—1 n

Since

(16) Pnts __ P + apy_, ,

Int1 it Agn—1

then the function
- Pu + ¥Pu—1
n + ¥¢n—1

X

has the derivative
Qubr—1 — Pudn—1
(@n + #qn—)*
which is strictly negative. From equality (1.6) , it follows
Putr s Pu
In+ In
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This completes the induction and the proof of (i).

(i) By the hypothesis of the lemma, we have

.p_lzagi
41 4

By induction, we now suppose that 7" satisfies (1.2). Then

qn
1
P,,+1.= a < Z :in_#—_l
9411 1-—&' 1“1 n 2n+2
qn 2n+1

Therefore, (ii) is proved completely.
(iti) By (i) the sequence of the convergents is strictly monoton increa

: 1 iR
sing and by (ii) the same sequence 1S less than igle therefore it is con-

vergent. ] ) L -
The real continued fraction, being periodic, its value is given as th-

. . 1 .
root, which is less than; , of equation

a

% = , that is

1 —x

il —dar]< L.
x—-E[l (1 — 4a) ]SZ

Lemma 12 If
(1.7)

]

is a veal continued fraction, then

1
where Osak<a<z

(i) the comvergents of this continued fraction are mom-negative and

(ii) the comvergemts satisfy tnequalities

”n

I jﬁ’<l. .
(1.8) s
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4
Proof. For the first convergent %: a;, we have evident
1
Dot < 2
1
If we suppose
(1.9) @ =t D
R B
then, since a; > 0 by hypothesis, it follows that
(110) Pt == G
. ) nt1 1 —a
1s non-negative. ‘
(ii) If the real contigued fraption (1.9) is less than " | then, |

from (1.10), we obtain 20+ 1)

-

P"+L 1 n+1

2 11,—[—2.

a,

Ul

<

9
2(n - 1)

qn+l a’

This completes the proof of lemma 2.2.

= 1
Lemma 13. For > T the real contimued fraction

(1.11)

is divergent.

Proof. If we suppose that continued fracti i
i ract g
then it converges to a real number, i L G

On the other hand, -real continued fracti ] ST
i : ’ ctio 1.
its value is one of the complex numbers n (1.11), being periodic,

S (1 —49)7),
which are the roots of the equation

a
X =

1 —-x

This contradiction proves the lemma.
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2. Banach algebras
Definition 3.1. 4 Banach algebra with elements %, y, ... 1S @

that is a complete nmormed space endowed with a multipli-

Banach space,
distributive with respect to every

cation, everywhere defined, associative,
Linear combination and such that

(2.1) oyl < llll ¥
for any x, y of Q. i
Algebra @ is said to be commutative if the multiplication 1s ‘commuta-

tive.
A subspace & of & s called a subalgebra of & if

It is easy to prove the following propositions : .

Proposition 2.1. If (x,) and (y,) are convergent - sequences, with
respect the topology induced by the algebra norm, then (x,y,) converges to
xy, that is the multiplication is continuous. :

Proposition 2.2. For every % of
w have

it 1s also an algebra.

a Banach algebra and n € N¥,

ll®ll < fiell®.

Proposition 23. If there is in G an clement, ¢ which satisfies
the relation

(2.2)

then ¢ is unique and |le|| =
Proposition 2.4.
(2.2), then the expresion

el = sup {llaa]: ull = 1}

sxists in @ and it defines a norm equivalent with the imitial norm such that

ex = Xe = X.

1, if 4 # {0}.
If theve is an clement e in @ which satisfies

2.3) el = 1

holds. ”
For the norm || - |, @ is also a Banach algebra with properties (2.2)

and (2.3).

It is easy to verify that || is a norm. Then
lelf’ = sup{lleat] : ljull = 1} = sup {lull: llull = 1} =1,
| = 1}yl <

/14
i
I

yull

Iyl = sup{llayal) : flull = 1} = sup{

P
Hyull

< sup{ [ ] = 1} sup {llyul: Jull = 13 = =l Il

since yu/||yu|| has the norm 1.
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This norm is equivalent to the initial norm, because

2" < [l < sup {Jleell :fleell = T}lel] < || lfel],
where % = ¢/||e||.
Propositions (2.3) and (2.4) suggest:

Definition 2.2. A Banach algebra is said to have the uwit ¢ 2],
if for any x € A we have the relation (2.2) and (2.3).

. Definition 28. Let @ be a Banach algebra with the element o,
wich satisfies (2.2). An element x e & has a left inverse, if it exists an
element x71 e a, such that x71x =e.

An element x € A has a right imverse, if it exists an clement x7led,
such that x;7'x = e. The element x is called invertible, if it has a left inverse
and a right imyerse.

Proposition 2.5. The dmvertible clements in a Banach algebra A
with an element e, wich satisfies relations (2.2) have following properties :

‘ (i) If yz2 = xz = ¢, then x is imvertible in & and y = z. Therefore, lhe
inverse of an clement, if it exists, is unique. It is noted x 1.

(ii) If x 4s tnvertible in & and xy = e(yx = e), thew y = x—1.

(ifi) The element ¢ is tnvertible and it is the own inverse. The element O
1S not invertible.

(iv) If x is dmvertible in Q, thew cx is imvertible in & for awny scalar
ceC with ¢c #0 and

(cx)™! = 4 %1,
c

(v) If %y ave invertible in @, then the product is imvertible and
(gy) 7=y

It is also easy to prove

Proposition 2.6. If @ is a Banach algebra with unit ¢ (defini-

tion 2.2) and x e A verifies inequality ||x| < 1, them the clement e—x is
wvertible in & and

(i) e —x) ' =c+ x4+ 224+ ...,
1
T

(1) llle = )7 <

Onc also see that if 4 4s a Banach algebra with unit, e, then

(i) {#(»): ¥V polynomial p, x €@ is a commutative subalgebra of &,
with unit e.

(i) {ae:ae K}, where & is R or €, is a commutative subalgebra of
A. isomorphic to I, with unit e,
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3. Non-commutative eontinued fractions

Definition 3.1. The formal expression

8

wich may be written also as

Ay @y Q3

(3.1) Ford s R

where a, ave elements of a non-commutative complex Banach algebra 4 with
unit e, is said to be a non-commudative continued fraction.

Definition 3.2. The element

(3.2) 4, "Px
(supposing g, invertible that is g 'p, €9), where p, and g, are gwen
by the formules

P;H—I = 15,, -+ dn-}-lﬁu—l;
(33) Gu+1 = 4, + Gn+19n—1,

}51:]52:“1; 41:6, q2=e+a21

is called the w" convergent of the continued fraction (3.1).

initi ; ! racit 1.1} s
Definition 3.3. The non-commutative continued fraciion (
said to be comvergent, if q, ave imvertible for a sufficient large n and the
sequence of elements (3.2) converges.

4. Relations for non-commutative continued fractions

Proposition 4.1. For the non-commutative continued fractions,
we have the following identities :

i) ¢gs=¢+ as + as
(ii) f)n+19n - j)nqn+1 = —a,,+1(p,,q,,_1 i 1 ?5»—1%):
(it)) pus1y — Padur1 = (—1)"Gnp18,00 1 .. 430105,

(iv) Tuto = (e + awr1 + Any2)qn — n+1%Tn—2-
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Proof.
(i) and (ii) follow directly from (3.3).
(iii) is a corollary of (ii).
(iv) From formulas (3.8) we obtain
Int1 = G + Guirfu1 = G + @ua(g, —

Y (6 + a”+1)q" — An412,Gn 2,

anqﬂ—Q) =

and
Gu+2 = Gns1 + At2fp = (8 N a”-l-l)qn — Aui1%,9n—2 + fln+2f]n"=
5 (3 + a»—,tl + an+2)q” i a”+1ang,,+2.

Proposition 42 Ifg, 4, q,, ¢, are invertible elements of Banach
algebra @ with unit e, then

(4.1) Goiibnit — Gn Py = —Qni1@uirgn 1(gn Py — sy
Proof. From (3.3), we obtain
q.;+11pvlt+l S qu_llbu e q;-ll-l(PnH o qn+1q;1?5n) =
-1 - - — e
= q'l-l»lan-Q»l(j)n-l byl Qoljlqn ]Pn) 5 ”"q.n-llau+19n—l(q»_lj7n 8 %;11115”—1)-

Proposition 4.3. If ¢,, ¢, .
Banach algebra d with unit e, then

.+, Qut1 are invertible elements of

1 i _
(42) qﬂ+1ﬁ"+1 — qa lpn = (_1)"%4:1%4-1%—1 3 qn_la”q"“z - q;1a3Q1 3 q;lazal

or

(4.3) Tatipnss — @0 'y = (—1)"guiCuiaCy - .. Cottaay,
where

(44) ,Cn = a,.Qn—zq;—IL

. Proof. By writing (4.1) for #», #.— 1, ..., 1 and after necessary chan-
ges one obtains (4.2). Using notations (4.4), formula (4.2) becomes (4.3).

Proposition 4.4. If ¢, is invertible we have
(4.5) Int1 = (€ + Cp11)q,.
Proof. (1.3) and (4.4) imply

q“'f‘l e q” + an-l-lqn_l = eq” + a"+1q,,_1q,71qn = (e + C"+1)q”.
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5. Conditions for invertibility of clements g, and limitations for ¢, ' and

q;-I{lan - qn—lpw

THEOREM 5.1. If a, are clements of a Banach algebra with unit e,
which verify the inequalities

1
laall < zfor n=2 34, ...,

then the norms of c, for the mon-commutative continued fraction (1.1) satisfy
to inequalities

1
leasall < — ”ilfor n=2 34, ...,

and the elements q, are invertible.
Proof. From proposition 2.5 (ili) ¢, = e s invertible. g, = e + a, is

also invertible because ||—ayl| = ||a.l| < %< 1 (proposition 2.6).

From proposition 2.6 (ii), we have

A 1
llgz = li(e + @)l <

1 — |layll

Then
llaall

1
. X —
1 — [lall 3

L 1 2
lleall = llasgag; !l < llaall fi(e + a2) ™M < E1 bl
and

gs = (¢ + ¢5)qy is invertible (proposition 2.5 (v)) being the product

of two invertible elements (¢ - ¢ is invertible because [|—¢;| < % <1, g,

is also invertible by the preceding argument).

We suppose inductively that ¢, (¢ =1, 2, ..., » + 1) are invertible

and
llesasll < llag 1 <l ® for k=283 ... 0+1,
L llayll 2 k1
Li— s
1= |l _
From notation (.4) and _roposition 4.4, we obtain
lewrall = lanrogugoill < lanizll Igale + cnrrdga I <
.t Hantall
< Nlansall fite + coen) 2 < 2
L Ml
1.
Tl — laall

Then, from lemma 1.2, we hvae
n+1
#+ 2

1
llea+all < 3
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a_nd Jnio = (e c,,+2)q,,+1'is jnvertible, because it is product of two inver-
tible clements (e + ¢,z is invertible since || —cpioll = [|caall <1 and g,41
is invertible by the hypothesis).

__THEOREM 52. If a are elements of a Banach algebra G with umit ¢
wich verify inequalities ’

lal < — for n =2, 3, 4, ...,

1
4

n

n 41

(5.1) llg 1l < for n=1,12,3, ...

é’rloof. he invertibility of the elements g, is a consequence of theo-
rem 5.1.

From formula (4.5), we have

B - 2. llg; 241 llg, L4l
gt = lig;2ile + c) Ml < — < —
1 — |lenll 1 n—1
= 2n
that is
n
—1 < —1 ]
llg, ”+1MWM
By writing the inequalities for » — 1, #» — 2, ..., 2 and after their multi-

plication, we obtain

2n 2n — 1)

4
. " T
741 n 3

llg,; il <

that 1s
2‘"

n—|—1‘

llg il <

. THEOREM 53. If a, are elements of a Banach algebra Q with wunil e,
wich wverify the inequalities
1
e, < Ifo'r n=2 3,4, ...,
then for non-commutative continued fraction (3.1), we have

lgtipnss — 6"l < Nall gy n=1,23, ...

n A1)+ 2)

Proof. The invertibility of g, follows from thorem 5.1. The relations
(4.2) and (2.1) imply the inequality

lgrtipass — o Ball < ligarill lewsall leall - o fleall flasll llaal
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Using theorems 52 and 5.1, we obtain
ont+l 1 = 1a-—1

—1 1 2
dn Ibnl\S————————;——‘E;

-1
”%;+1jbn+1 n+2 2n+1 2 m

or
2|4, ||

—1 — gt ol & T T s
“qﬂJrljbn 1 Gn Ib ” 4+ Din + 2)

6. Generalized Worpitzky’s theorem and some consequences
rurorREM 6.1, If a, are elements of a Banach algebra & with unit e,
wich satisfy the inequalities

lall < = for n =2, 3, 4, ...,

1
4
then

(i) the non-commutative continued fraction (3.1) converges uniformly
to an element x < &,
(il) the values of non-commutative continued fraction (3.1) and of its

convergents are i the seb defined by inequality
1
lay — < 5 Il
wheve a, is a fixed element from &,

(iii)% is the ,best’ constant ¢ >0 such that the non-commutalive

continued fraction (3.1) converges for
lad <¢c (=23 ...)
Proof. (i) In view of the identity
Y 970w = (@issPurn — Gt abaint) +
+ (Trtr1Porr—1 — Gotpsburpa)t -0 T (@t Pusr = 4 P0)

the subadditivity of the norm and theorem 5.3, we can write

1 1
—1 . g-1 < 2
L S bl [(n + Dn -+ 2) + n + 2)(n + 3)

: ] .

i (4 k)m+k+1

-t

One also see that we have the inequality
- 1 ) S 2klja4ll
ntl w4 k41 + D+ k+1)

(6.1) g5 sBurs — 9aPall < 21|a1n(
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Therefore ¢, 1,7, ., —4,', € & tends in norm to O, for every natural
number %, when # tends to oo, such that {g-'p } is a Cauchy sequemnce.

Banach algebra @ with unit e being complete with respect the metric
topology induced by the algebra norm, it follows that sequence {g;'#p }

converges to an clement x = d.
(ii) First we shall prove that
2l < 2fla)f] and |[lga'Pall < 2laall.

T.et us remark that

%= qipr + (92 %s — qi'py) + (g5 'pa — @@ Ps) + - ..
and

Gubw = qi Py + (@2 P2 — ¢72P1) + (@3 ps — @2'Pa) + ...

TG Pw — G vPun)-

By this remark and theorem 5.3, we obtain

[| ] 9%|a -
< a2l g Ml
gl .
or
[| ]| (1 1 ] 1 :
<1+q——¢fr~——+-~me
i { e Rl C) |

Therefore, we proved

%l < 2flayll  and also  [igip,ll < 2jal

Now in order to prove (ii), we remark that we can write every conver-
gent of the non-commutative continued fraction (3.1) and its value, deno-
ted by x, as follows

(62) x = al (e + Tliy)_l
with
6.3 L Y1 e, ,
(6.3) y=2 2 and il <1
Hence

rfetLy)=a
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or, according to (2.1),
1
Jay — ol < Ll Wy

From the first part of the proof, it follows ||| < 2 and therefore,
we have

(6.4) lay — &l < 5 lal.

(iii) In order to prove that % is the ,best” constant ¢ > 0 such

that the non-commutative continued fraction (3.1) converges for |la,|| < ¢
(n =2, 3, ...), it is sufficient to observe that in the Banach subalgebra
d, C @ of the real numbers multiplied by ¢ e &, the continued fractions
with @, = ae and a > 1/4 diverge according to lemma 1.3.

Corollary 6.1. (Approximation theorem) In the conditions of theo-
rem 6.1, we have
2llall

— g1 g
Il — gl < =2

Proof. From
X — q”—lpn = (q;llpﬂ‘i—l ik q;lpn) + (qn—1{2pn+2 i q;—}]—.lpﬂ+l‘) —I_ ckn

and theorem 5.3, we obtain

b — apl < 2|~ ) + N

+ 2 11—{—2-—11—}—3 n+1

Corollary 62. If a, are some elements of a Banach algebra with
wnit e, which salisfy the inequalities

lle i < M for n =2, 3, ...
and x 1is variable element of @, then the mon-commutative continued frac-
tion.
Gy ¥ (g% a,x

et et et et

- 1
converges uniformly for |l < — .

Proof. We are in the conditions of theorem 6.1. and we have

laxl < lla,l ol < M-~ =21 for n =2, 3, 4, ...
4M 4

Remark 6.1. Theorem 6.1. (i) is evidently true also in the case in

. . . T .
which a,, a4y ... @, of @ are fixed, a,4;€d with |la, || < o (1=

§ — Mathematica — Revue d'analyse numérique et de théorie de l'approximation., Tome §, N? 2. 1976,
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=1, 2, ...). This problem, in a particular case, is solved in proposition

7.2.

Remark 6.2. If in the formulas (3.3) we permute a,., with p,_, in
the first relation and a,,, with ¢, ; in the second, then we have to per-
mute ¢, with p, in (3.2), in order that the methode be still applicable.

7. Particular eases of theorem 6.1

Theorem 6.1 is evidently true also in the case in which the Banach
algebra 4 with unit ¢ is commutative.

i) =R with ¢ =1 and the norm ||| = || is a commutative
Banach algebra. In this case, according to theorem 6.1, the real continued
fraction

(7.1) —>2 — (s,¢R)

convetrges and the convergents and its value is in the interval
[M 2[(11,] i |a,| <~ (n =28 ).
3 1 4
(i) 4 =C, with e =1 and ||| = ||, is a commutative algebra.
Then complex continued fraction (7.1) (a, e C) converges to the value
z from the disk

4

D, :{zeC:%z — 1 a <-§—[a1[}

if o, <1/4 (n=23, ...).

In this case, continued fraction (7.1) can be considered as a complex
function f of complex variables ay, a,, ..., (4, is fixed) and

(7.2) z2=f(a, @y, A3, ..., Ay, «..).
Proposition 7.1. The values of the function [ fill the closed disk
D, when every a,(n=2,3, ...) runs over closed disk 9, = {z eC:lz] < %} ;

Proof. Tet be

7.2 T O TP, W . 7
(7.2) R
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where @, € C is fixed and 4, € C is a complex variable. It is easy to
see that

= 4
2a, -+ 1
) . . I
which is linear and this function transforms the circle |2| = i circle
PR a| = kd |a,|. Therefore, this function carries the disk 9, on to the
3 3
disk @,.
Proposition 72. If&=C,e=1, ||:| =1|, a1, @, ..., 4, are
fixed,
18]
,(l",j' < : (_7 . 1; 2; B )
and
e 4 2
(73) |22 La,]> 2lal,
In—2 3 3

hen the complex continued fraction (7.1) converges and the values of function
fill a closed disk @, C C.

Proof. If.

ay
==

Ayt

L4+
Qute
1+
then, a fill the closed disk
4 2
= Cila——a,l<a,l}.
®1n {dE a 3 an 3 I I}

Because z from (7.1) is given by linear function

7 — tL—l__—tifﬁ‘Lz

In—1 T #qn-—

it follows, as in proposition 7.1, that the values of function f fill a closed
disck 9, C C. Condition (7.3) implies that o & 9, (condition oo & 9,
is automatic satisfied in proposition 7.1.).

Remark 7.1. If @ =C, e=1, ||'|| = || and a, = a, then (i) of the
theorem 6.1 gives classical WORPITZKY'S theorem [3].
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Remark 7.2. £ & =C, e =1, ||:]| = || and ay = 1, then the propo-
sitions (ii) and (iii) of theorem 6.1 and propositions 7.1 are Wall and
PAYDON’s precisions [4] of Worpitzky’s theorem.

(i) & = C, with e = 1, ||z]] = |%| + |¥| and Jle]| = 1, is a commutative
algebra. Theorem 6.1 shows that, if

lal <= (r=2,3,...)

(the complex numbers a,, belong of the square centred at 0 with the ver-
tices at the points :J: and 4 I) , then the value of complex continued

fraction (7.1) (a, € C) belongs to the set defined by the imequation

(7.4) oy — x| + B — ¥] < (|x|+|y])

t\zlr—‘

where z = x 4 4y and @, = a, + if;.
Tor instance, if a, = 2 + 37, then (7.4) shows that z belongs to con-
vex hull of the points - +3l 2 —l—~¢ 7 4 37, 2 + 8.

(iv) @ =0C, with e =1, |¢|| =max {|«|, |¥} and |lj=1, is a
commutative algebra. Then, if ||a,| < % (m=2,3, ...) (a, runs - a square
with the sides parallel to the coordinate axes and centred at 0), the
value of continued fraction (7.1) (a, e C) are in the set defined by the
inequation

max {{a, — x|, [B.— ¥} < i) max {|x|, | v},

where z = x + iy and a, = 2, -+ iB,.
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